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A NUMERICALLY BASED INVESTIGATION ON THE
SYMMETRY BREAKING AND ASYMPTOTIC BEHAVIOR OF

THE GROUND STATES TO THE p-HÉNON EQUATION

XUDONG YAO, JIANXIN ZHOU

Abstract. The symmetry breaking phenomenon (SBP) to the Hénon equa-
tion was first numerically observed in [4] and then theoretically verified on the
unit ball Bn in [8]. Some results on the asymptotic behavior of the ground
states to the Hénon equation on Bn are presented in [2, 3, 7]. [8] further dis-
cussed SBP to the p-Hénon equation and obtained some results with special
value p ≤ n on Bn. To inspire theoretical study on more general p, a series
of numerical experiments to the p-Hénon equation on a disk and a square are
carried out in this paper. Numerical computations are made by the minimax
method developed in [9, 10]. Then, SBP, a peak break phenomenon (PBP);
i.e., a 1-peak solution, which is symmetric about two axes and two diagonal
lines, breaks its peak from 1 to 4, and a 1-peak positive non-ground state so-
lution, which is only symmetric about one axis, on the square are numerically
captured and visualized. The peak point and the peak height of the ground
states are carefully calculated to study their asymptotic behavior. Several con-
jectures are made based on the numerical observations to stimulate theoretical
analysis. Two of them are proved in this paper.

1. Introduction

Consider the p-Hénon equation, a quasi-linear elliptic boundary value problem
(BVP) of the form

∆pu + |x|r|u|q−2u = 0, x ∈ Ω, u ∈ W 1,p
0 (Ω), (1.1)

where ∆p is the p-Laplacian operator defined by ∆pu = div(|∇u|p−2∇u) (p > 1),
Ω ⊂ Rn is a bounded open domain, |x| is the Euclidian norm of x, p < q < p∗

(p∗ is the Sobolev exponent) and r ≥ 0. The original Hénon equation (p = 2) was
proposed by French astronomer and mathematician Michel Hénon [6] to improve a
model by the Lane-Emden (-Fowler) equation (p = 2, r = 0) in astrophysics in study
of stellar systems. The study of the Hénon equation has crossed several disciplinary
branches. Many interesting properties, such as solution multiplicity and various
structures, bifurcation, chaos, . . . , are explored. This equation was modified in
several different ways and becomes an important model in the study of nonlinear
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dynamic systems. One of the important modifications leads to the p-Hénon equation
due to applications in physical fields, typically in non-Newtonian/Darcian fluid
flows or materials, where the shear stress ~τ and the velocity gradient ∇u of the
fluid are related in the manner ~τ(x) = r(x)|∇u|p−2∇u. When p = 2, ∆p = ∆ is the
Laplacian operator whose wide applications are well-known and typical in the study
of Newtonian/Darcian fluid/material. When p 6= 2, the p-Laplacian operator has a
variety of applications in physical fields and theoretical study as well, such as in the
study of Non-Newtonian/Darcian fluid/material. For example, the fluid/material
is called pseudo plastic if p < 2 and dilatant if p > 2. The p-Laplacian operator
also appears in the study of flow in a porous media (p = 3/2), nonlinear elasticity
(p > 2) and glaciology (p ∈ (1, 4/3)) [5].

It is quite natural for researchers to carry out parallel study of the p-Hénon
equation to the path of successful study of the Hénon equation. Since u = 0 is
always a trivial solution to (1.1), people are interested in knowing the existence
or non-existence of nontrivial solutions, the number of solutions as well as their
structures in terms of qualitative properties such as the geometric, symmetric and
nodal (peak) properties in different energy levels.

Mathematically it is known that the Hénon and the p-Hénon equation belong to
two classes of partial differential equations with different complexities. The former
is of semilinear elliptic BVP since its derivative term is linear and can be handled
in a Hilbert space setting. While the later is of quasilinear elliptic BVP since its
derivative term is nonlinear. It has to be handled in a Banach space setting and
thus much tougher to analysis. Consequently the regularity of solutions to the p-
Hénon equation is weaker. Due to its Banach space setting, even numerically the
p-Hénon equation is much more difficult to solve, see [9, 10, 11].

Though great progress has been made still many important open questions re-
main unsettled. For instance, as one of many significant differences between ∆ and
∆p, the authors numerically showed in [11] that on a square the second eigenvalue
of −∆p splits from a double eigenvalue into two simple eigenvalues when p moves
from 2 to 6= 2. Such an interesting difference has not yet been theoretically verified.

Symmetry is one of the important characteristics to understand solution struc-
tures. When p = 2 and r = 0, the well-known Gidas-Ni-Nirenberg [1] theorem
states that if Ω is the unit ball in Rn, then it implies that the positive ground state
of (1.1) is radial. When p = 2 and r > 0, the equation (1.1) has an explicit depen-
dence on x. Although radial symmetry is still kept to (1.1), the Gidas-Ni-Nirenberg
theorem cannot be applied and the radial positive solution may give up its ground
state to new radially asymmetric positive solutions. Such a phenomenon is called
a symmetry breaking phenomenon (SBP) and was first numerically observed in [4].
It immediately draws attentions. Several researchers have theoretically verified the
existence of such phenomenon [8] and obtained results on asymptotic behavior of
the ground states [2, 3, 7] when r → ∞ and p, q are fixed. Researchers have also
tried to study SBP for the p-Hénon equation (1.1) (p 6= 2) on the unit ball Ω = Bn

in Rn. But results are very limited to the value of p. For example, Theorem 8.2 in
[8] shows that if n > p and n ≥ 2, then, for any p < q < p∗, SBP must occur when r
exceeds certain number; in [2, 3, 7], when p = 2, q is fixed and r →∞, asymptotic
behavior of the ground states of (1.1) is discussed. As the results in the literature
are under the assumption p = 2 or p < n, it is quite natural to ask if SBP to (1.1)
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will take place when p 6= 2, in particular, when n ≤ p (p > 2 corresponds to dila-
tant fluid/material) and to study asymptotic behavior of the ground states when
p 6= 2. So far no theoretical answer is available. When p = 2, r = 0 and Ω is a non-
radial domain, the Berestycki-Nirenberg theorem [1], a beautiful generalization of
the Gidas-Ni-Nirenberg theorem, says that if Ω is symmetric about a hyperplane in
Rn, then the positive ground state of (1.1) is also symmetric about the hyperplane.
Similar to the Gidas-Ni-Nirenberg theorem, the Berestycki-Nirenberg theorem does
not work to (1.1) with r > 0, although, to (1.1), symmetry about any hyperplane
passing through the origin is still there. In other words, the positive ground states
may be asymmetric about a hyperplane passing through the origin although the
domain Ω is symmetric about it. This phenomenon is also called SBP. On sym-
metry of the positive ground states of (1.1) with r > 0 on a non-radial domain Ω,
little research is done. As the first step, we would like to investigate (1.1) on simple
non-radial domains which are symmetric about some hyperplanes passing through
the origin to see if the positive ground states have same symmetry or not. Among
these domains, the hypercubic domains (−a, a)n, a > 0, are good candidates. They
have simple structure and symmetry about every coordinate hyperplane. Due to
the form of (1.1), if u1 is a solution on (−a1, a1)n, a1 > 0, then u2(x) = ku1(a1

a2
x)

is a solution on (−a2, a2)n, a2 > 0, where k = (a1
a2

)
p+r
q−p . Hence, the value of a has

no influence on symmetry. Similarly, the value of radius has no influence on radial
symmetry in the study of solutions to (1.1) on a ball of center at the origin. In
Theorem 2.1 and Theorem 2.4, we will draw conclusions on general domains about
asymptotic behavior of the positive ground states to (1.1) by observing numerical
results on B2 and (−1, 1)2. So, in this paper, the minimax method developed by
the authors in [9, 10] is applied to carry out a series of numerical investigations
of the p-Hénon equation on the disk B2 and the square (−1, 1)2 about SBP and
asymptotic behavior of its positive ground states. Through numerical computa-
tion and visualization, we try to figure out a possible answer to stimulate further
theoretical study.

The corresponding energy functional of (1.1) is

J(u) =
∫

Ω

[1
p
|∇u(x)|p − 1

q
|x|r|u(x)|q

]
dx, ∀u ∈ W 1,p

0 (Ω). (1.2)

Then, for each v ∈ W 1,p
0 (Ω),

〈∇J(u), v〉 =
d

ds
J(u + sv)

∣∣∣
s=0

=
∫

Ω

[
|∇u(x)|p−2∇u(x) · ∇v(x)− |x|r|u(x)|q−2u(x)v(x)

]
dx

=
∫

Ω

[
−∇(|∇u(x)|p−2∇u(x))v(x)− |x|r|u(x)|q−2u(x)v(x)

]
dx

=
∫

Ω

[
−∆pu(x)− |x|r|u(x)|q−2u(x)

]
v(x)dx.

Thus it is clear that weak solutions of (1.1) coincide with critical points of J ,
i.e., ∇J(u) = 0. The first candidates of critical points are the local extrema.
Traditional calculus of variation and numerical methods focus on finding such stable
solutions. As for J in (1.2), the only local extremum is the local minimum, the
trivial solution u ≡ 0. Critical points that are not local extrema are unstable and
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called saddle points. Numerically computing those saddle points in a stable way
is very challenging due to their instability and multiplicity. A numerical minimax
method is developed by the authors in [9] for finding multiple saddle points in a
Banach space following a sequential order. Its convergence is established in [10].
By this method, we could carry out efficient and reliable numerical experiments on
(1.1). Since for p > 2, the regularity of solutions to (1.1) is weaker, for possible
weak solutions u, the peak height has to be defined by the essential supremum
(ess. sup) of |u| instead of maximum (max) of |u| and the peak point is then defined
to be the set of all points whose any neighborhoods have the essential supremum
of |u| equal to the peak height.

In our numerical experiments, the Sobolev norm ‖∇J(u)‖ < 0.005 is used to
terminate an iteration in our local minimax method. On both domains, SBP are
found in our numerical experiments when r is large. The peak point and peak
height of the ground state are carefully calculated, which provides us with some
information on their asymptotic behavior as the parameter r → +∞. Through
our numerical computation on a square, we captured a peak breaking phenomenon
(PBP), i.e., the 1-peak positive solution, which is symmetric about the lines x = 0,
y = 0 and y = ±x, breaks its peak from one to four when r increases and exceeds a
certain value; we also numerically found 1-peak non-ground state solutions, which
is only symmetric about the line x = 0 or y = 0, by enforcing this symmetry in the
computation. Finally we make some mathematical analysis and conjectures based
on our numerical observations.

At the end of this section, we attach the flow chart of our minimax algorithm
for numerically finding multiple solutions of p-Laplacian equation in [9, 10]. In
Step 3, the descent direction is calculated by ∇J . This is a computing technique
developed by us [9, 10] for p-Laplacian equation. Assume that u1, u2, . . . , un−1

are found critical points of J ∈ C1(W 1,p̄
0 (Ω), R), L = [u1, u2, . . . , un−1], i.e., the

subspace of W 1,p̄
0 (Ω) spanned by u1, u2, . . . , un−1, Ω ⊂ Rn is an open, bounded set

and 1
p̄ + 1

q̄ = 1, p̄, q̄ > 0. We denote ‖ · ‖r̄ as ‖ · ‖W 1,r̄
0 (Ω) for r̄ > 1. ε > 0 is a

small number and 0 < λ < 1 is a constant. The following is the flow chart of the
algorithm.

Step 1: Let v1
n ∈ SL⊥ .

Step 2: Set k = 1 and solve for

uk
n = P (vk

n) = tk0vk
n + tk1u1 + · · ·+ tkn−1un−1

= arg max{J(t0vk
n + t1u1 + · · ·+ tn−1un−1)|ti ∈ R, i = 0, 1, . . . , n− 1}.

Step 3: Find a descent direction wk
n = −sign(tk0)∇J(uk

n) at uk
n = P (vk

n).
Step 4: If ‖∇J(uk

n)‖q̄ < ε, then output uk
n, stop. Otherwise, do Step 5.

Step 5: For each s > 0, let

vk
n(s) =

vk
n + swk

n

‖vk
n + swk

n‖p̄

and use the initial point (tk0 , tk1 , . . . , tkn−1) to solve for

P (vk
n(s)) = arg max

{
J(t0vk

n(s) +
n−1∑
i=1

tiui)|ti ∈ R, i = 0, 1, . . . , n− 1
}

,
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then set vk+1
n = vk

n(sk
n) and uk+1

n = P (vk+1
n ) = tk+1

0 vk+1
n + tk+1

1 u1 + · · · +
tk+1
n−1un−1, where sk

n satisfies

sk
n = max{s =

λ

2m
|m ∈ N, J(P (vk

n(s)))− J(P (vk
n)) ≤ −1

4
|tk0 |s‖∇J(uk

n)‖2
2}.

Step 6: Update k = k + 1 and go to Step 3.

Remark 1.1. As 1 < p̄ < 2, we assume that u1, u2, . . . , un−1 are nice; i.e., L ⊂
W 1,q̄

0 (Ω) and SL⊥ = {u ∈ W 1,p̄
0 (Ω)|〈u, ui〉 = 0, i = 1, . . . , n − 1 and ‖u‖p̄ = 1} for

p̄ > 1 in the algorithm.

2. Numerical and Analytic Results

2.1. On the Unit Disk in R2. Let us first consider the p-Hénon equation (1.1)
on the unit ball Ω = Bn ⊂ Rn. Numerically we choose the unit disk Ω = B2 ⊂ R2.
To maintain sufficient accuracy, over 105 triangle elements are used on B2 in our
numerical experiment. We will focus on computing ground states to see if SBP
occurs. By our computation, we notice that the 1-peak positive radial solution
always exists. The contours of these numerical radial solutions are presented in
Fig. 1 and in (c) and (f) of Figs. 2-5. In the computation to capture the ground
state, we always use a positive non-radial initial guess. If a numerical solution is
radially symmetric, then our numerical experiment does not support SBP. Thus in
(a) and (d) of Figs. 2-5, once a contour plot of the radially symmetric numerical
solution is presented, it means that for the values of p, q, r, SBP does not occur.
Otherwise, the contours of a non-radial numerical solution will be presented in (b)
and (e) of Figs. 2-5. By Figs. 4 and 5, it can be concluded that SBP to (1.1) on the
unit disk Ω = B2 will take place when r increases and exceeds a certain number
rb for p = 2.5, 3.0. Since 2 = n ≤ p = 2.5, 3.0, it is reasonable to conjecture that
SBP to (1.1) on the unit disk Ω = B2 will take place when r increases and exceed
a certain number rb for every p > 2. On the other hand, as we mentioned before,
Theorem 8.2 in [8] shows that if n > p and n ≥ 2, then, for any p < q < p∗, SBP
must occur when r increases and exceeds a certain number rb. Hence, indeed we
conjecture that SBP to (1.1) on the unit disk Ω = B2 will take place for every
p 6= 2 when r increases and exceeds a certain number rb. Generally, we would like
to conjecture that SBP to (1.1) with p 6= 2 on the unit ball Ω = Bn in Rn will
always occur when r increases and exceeds a certain number rb. In Table 3, we give
information on the location of rb from our numerical experiment.

In Figures 2-5, if we compare (a) with (c) and (d) with (f), we can see that the
top of the 1-peak radial solution becomes flatter as r increases. Next, we carry
out more numerical experiments to investigate asymptotic behavior of the peak
point and peak height to a positive ground state of (1.1) as r → +∞. To (p, q) =
(a)(1.75, 7.75), (b)(1.75, 9.25), (c)(2.0, 8.0), (d)(2.0, 9.5), (e)(2.5, 8.5), (e)(2.5, 10.0),
(g)(3.0, 9.0), (h)(3.0, 10.5), we list our numerical results in Tables 1 and 2. From
Table 1, it is quit natural to conclude that the peak point (α(r), 0) → (1, 0) as
r → ∞. From Table 2, we can see that the peak height β(r) is monotonously
increasing in r when p and q are fixed. Based on this numerical observation, we
prove limr→+∞ β(r) = +∞.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Ground states for r = 0: From (a) to (f) (p, q) =
(1.75, 7.75), (1.75, 9.25), (2.5, 8.5), (2.5, 10.0), (3.0, 9.0), (3.0, 10.5).

(a) (b) (c)

(d) (e) (f)

Figure 2. p = 1.75: (a) q = 7.75, r = 0.001; (b)(c) q = 7.75,
r = 1.4; (d) q = 9.25, r = 0.001; (e)(f) q = 9.25, r = 1.4.
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(a) (b) (c)

(d) (e) (f)

Figure 3. p = 2.0: (a) q = 8.0, r = 0.001; (b)(c) q = 8.0, r = 1.4;
(d) q = 9.5, r = 0.001; (e)(f) q = 9.5, r = 1.4.

(a) (b) (c)

(d) (e) (f)

Figure 4. p = 2.5: (a) q = 8.5, r = 0.001; (b)(c) q = 8.5, r = 1.4;
(d) q = 10.0, r = 0.001; (e)(f) q = 10.0, r = 1.4.
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(a) (b) (c)

(d) (e) (f)

Figure 5. p = 3.0: (a) q = 9.0, r = 0.001; (b)(c) q = 9.0, r = 1.4;
(d) q = 10.5, r = 0.001; (e)(f) q = 10.5, r = 1.4.

Table 1. Values for α in Equation (1.1) with (α, 0) as peak
point of its ground state and (p, q): (a)(1.75,7.75), (b)(1.75,9.25),
(c)(2.0,8.0), (d)(2.0,9.5), (e)(2.5,8.5), (f)(2.5,10.0), (g)(3.0,9.0),
(h)(3.0,10.5)

r (a) (b) (c) (d) (e) (f) (g) (h)
1 0.5694 0.473 0.4563 0.4526 0.3238 0.3158 0.2567 0.2505
10 0.9100 0.9327 0.8475 0.8434 0.7389 0.7253 0.6673 0.6554
20 0.9469 0.9397 0.9125 0.9100 0.8382 0.8319 0.7862 0.7764
30 0.9585 0.9580 0.9366 0.9356 0.8880 0.8787 0.8444 0.8382
40 0.9667 0.9698 0.9523 0.9514 0.9097 0.9055 0.8772 0.8697
50 0.9780 0.9745 0.9605 0.9598 0.9253 0.9222 0.8974 0.8912
60 0.9812 0.9782 0.9651 0.9630 0.9356 0.9344 0.9113 0.9071
70 0.9815 0.9814 0.9682 0.9682 0.9461 0.9408 0.9249 0.9197
80 0.9846 0.9835 0.9741 0.9734 0.9503 0.9492 0.9312 0.9260
90 0.9757 0.9757 0.9576 0.9549 0.9385 0.9368
100 0.9603 0.9576 0.9447 0.9409
110 0.9489 0.9472
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Table 2. Values for β in Equation (1.1) with β as peak height
of its ground state and (p, q): (a)(1.75,7.75), (b)(1.75,9.25),
(c)(2.0,8.0), (d)(2.0,9.5), (e)(2.5,8.5), (f)(2.5,10.0), (g)(3.0,9.0),
(h)(3.0,10.5)

r (a) (b) (c) (d) (e) (f) (g) (h)
1 2.7014 2.6771 2.3321 2.1732 2.2658 2.0618 2.2963 2.0698
10 3.8074 3.6796 3.5306 3.0597 3.8002 3.1791 4.2536 3.4725
20 4.2279 4.0109 4.1718 3.5142 4.7398 3.8162 5.5682 4.3602
30 4.6128 4.2008 4.6094 3.8119 5.4016 4.2661 6.5753 4.9885
40 5.0197 4.2456 4.9304 4.0266 5.9826 4.6180 7.4031 5.5313
50 5.1745 4.4020 5.1998 4.2301 6.4534 4.9311 8.0722 5.9702
60 5.2685 4.4032 5.3939 4.3527 6.8090 5.1067 8.7009 6.3522
70 5.4229 4.5602 5.6626 4.4925 7.2276 5.3267 9.2710 6.6541
80 5.5110 4.6427 5.9859 4.5949 7.4819 5.5139 9.7939 6.9534
90 6.0895 4.6753 7.8675 5.7908 10.3577 7.3044
100 8.1275 5.9344 10.8145 7.5803
110 11.2683 7.8350

Table 3. rb ∈ (r1, r2) for (p, q): (a)(1.75,7.75), (b)(1.75,9.25),
(c)(2.0,8.0), (d)(2.0,9.5), (e)(2.5,8.5), (f)(2.5,10.0), (g)(3.0,9.0),
(h)(3.0,10.5)

(a) (b) (c) (d)
(r1, r2) (0.0027,0.0054) (0.0012,0.0024) (0.0245,0.0272) (0.0082,0.0109)

(e) (f) (g) (h)
(r1, r2) (0.0490,0.0531) (0.0218,0.0245) (0.1147,0.1530) (0.0764,0.0792)

Theorem 2.1.

h(r) ≥ C(
r + n

n
)1/q

where h(r) = inf{ess. supx∈Ω |u(x)|: u is a nontrivial solution to (1.1)on Ω ⊆ Bn},
Ω is an open set with Lipschitz boundary and C > 0 is a constant independent of
r.

Proof. If u is a nontrivial solution to (1.1) on Ω, we have

−
∫

Ω

|∇u|pdx +
∫

Ω

|x|r|u|qdx =
∫

Ω

(∆pu + |x|r|u|q−2u)udx = 0;

i.e., ∫
Ω

|∇u|pdx =
∫

Ω

|x|r|u|qdx.
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Then, by the hyperspherical coordinates,∫
Ω

|x|r|u|qdx =
∫

Bn

|x|r|uB |qdx

≤ (ess. supx∈Ω |u(x)|)q

×
∫ 1

0

ρr+n−1dρ

∫ 2π

0

∫ π
2

−π
2

. . .

∫ π
2

−π
2

F (φ, θ1, . . . , θn−2)dφdθ1 . . . dθn−2

= (ess. supx∈Ω |u(x)|)q nVn

r + n
;

i.e.,

ess. supx∈Ω |u(x)| ≥ (
r + n

nVn
)1/q(

∫
Ω

|∇u|pdx)1/q, (2.1)

where F (φ, θ1, . . . , θn−2) = |det(J(φ, θ1, . . . , θn−2))|, J(φ, θ1, . . . , θn−2) is the Jaco-
bian matrix to the coordinate system transformation between the Cartesian coor-
dinate system and the hyperspherical coordinate system, Vn is the volume of the
unit ball Bn and

uB(x) =

{
u(x), x ∈ Ω,

0, x /∈ Ω.

On the other hand, by the Sobolev imbedding theorem,∫
Ω

|∇u|pdx =
∫

Ω

|x|r|u|qdx ≤
∫

Ω

|u|qdx ≤ c
( ∫

Ω

|∇u|pdx
)q/p

,

i.e., ∫
Ω

|∇u|pdx ≥ cp/(p−q), (2.2)

where c > 0 is a constant independent of r. Thus, from (2.1) and (2.2), for every
nontrivial solution u to (1.1) on Ω ⊆ Bn,

ess. supx∈Ω |u(x)| ≥ (
r + n

nVn
)1/qc

p
q(p−q) ;

i.e.,

h(r) ≥ C(
r + n

n
)1/q,

where C = c
p

q(p−q) V
− 1

q
n is a constant independent of r. �

Corollary 2.2.

lim
r→+∞

β(r) = +∞.

where β(r) = {ess. supx∈Ω |u(x)||u is the ground state to (1.1) on an open set Ω ⊆
Bn with Lipschitz boundary.}.

Remark 2.3. (1) From the above proof, it is clear that we have actually proved
that the peak height of any nontrivial solution to p-Hénon equation (1.1) on an
open set Ω ⊆ Bn with Lipschitz boundary goes to +∞ as r → +∞.
(2) Ω = Bn is a special case.
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2.2. On a Square Domain in R2. Consider the p-Hénon equation (1.1) on the
hypercubic domain Ω = (−1, 1)n. Numerically, we set n = 2. If a solution of
(1.1) is symmetric about the lines x = 0, y = 0 and y = ±x, we say it is BN
(Berestycki-Nirenberg) symmetric. Until now, theoretically, little is known about
SBP and asymptotic behavior of its ground states. For numerical investigation, to
maintain sufficient accuracy, over 106 square elements are used on Ω = (−1, 1)2 in
our numerical computation. From many numerical results we obtained, we notice
that the p-Hénon equation (1.1) on a square has much richer breaking phenomena
than its counterpart on the unit disk due to the corner affect. First we notice that
the positive BN symmetric solution always exists. On this solution, our numerical
results for r = 0 have been presented in [9] and the contours of our numerical results
for r > 0 are presented in (c) and (e) of Figs. 6-13. Due to the explicit dependence
of the equation on x, SBP may occur. In this case, the positive BN symmetric
solution gives up its ground state to some positive BN asymmetric solutions. It
causes (1) SBP and (2) a peak breaking phenomenon (PBP), more specifically,
when r increases and exceeds a certain value, the 1-peak BN symmetric positive
solution becomes the 4-peak BN symmetric positive solution.

To investigate (1), SBP, we always use a BN asymmetric initial guess to start
with the algorithm for capturing the ground state. If the numerically captured
solution is BN symmetric, then our numerical experiment does not support SBP.
In this case, we put the contours of BN symmetric numerical solutions in (a) of
Figs. 6-13 as the contours of the ground states. Otherwise, the contours of BN
asymmetric numerical solutions are presented in (b) and (d) of Figs. 6-13 as the
contours of the ground states. The corresponding BN symmetric positive solution
has higher energy level. Our minimax method is used to capture it. The contours of
the BN symmetric numerical solutions are listed in (c) and (e) of Figs. 6-13. By our
numerical results, we conclude that to the p-Hénon equation (1.1) on (−1, 1)2, SBP
always takes place when r increases and exceeds a certain value rb1 . By (b) and (d),
when SBP occurs, the BN asymmetric ground state is only symmetric about the
line y = x or y = −x passing through the peak point. Generally, we would like to
conjecture that to the p-Hénon equation (1.1) on the hypercubic domain (−1, 1)n,
SBP always occurs when r increases and exceeds a certain value rb1 . In Table 6,
we give information on the location of rb1 from our numerical experiment. By (c)
and (e), when r increases and exceeds a certain value rb2 , the 1-peak BN symmetric
positive solution in (c) becomes the 4-peak BN symmetric positive solution in (e),
i.e., (2), PBP, takes place. In Table 7, we give information on the location of rb2

from our numerical experiment.
Similar to the disk domain, more numerical experiments are carried out to inves-

tigate asymptotic behavior of the peak point and peak height of the positive ground
state to (1.1) as r → +∞. For (p, q) = (a)(1.75, 4.75), (b)(1.75, 6.25), (c)(2.0, 5.0),
(d)(2.0, 6.5), (e)(2.5, 5.5), (f)(2.5, 7.0), (g)(3.0, 6.0), (h)(3.0, 7.5), our numerical re-
sults on the peak points and peak heights are listed in Tables 4 and 5. From Table
4, it is quite natural to conclude that the peak point is of the form (α(r), α(r))
and α(r) → 1 as r → ∞. Since the peak heights β(r) listed in Table 5 are not
monotone in r, we plot those β(r) values in Fig. 14 from which one can see that
for the ground states to the p-Hénon equation (1.1) on the square domain (−1, 1)2,
their peak heights, β(r) → 0 as r →∞.
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(a) (b) (c)

(d) (e)

Figure 6. p = 1.75, q = 4.75: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 4.6, a ground
state; (e) a 4-peak BN symmetric solution

(a) (b) (c)

(d) (e)

Figure 7. p = 2.0, q = 5.0: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.0, a ground
state; (e) a 4-peak BN symmetric solution
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(a) (b) (c)

(d) (e)

Figure 8. p = 2.5, q = 5.5: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.0, a ground
state; (e) a 4-peak BN symmetric solution

(a) (b) (c)

(d) (e)

Figure 9. p = 3.0, q = 6.0: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.3, a ground
state; (e) a 4-peak BN symmetric solution
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(a) (b) (c)

(d) (e)

Figure 10. p = 1.75, q = 6.25: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 4.6, a ground
state; (e) a 4-peak BN symmetric solution

(a) (b) (c)

(d) (e)

Figure 11. p = 2.0, q = 6.5: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.0, a ground
state; (e) a 4-peak BN symmetric solution
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(a) (b) (c)

(d) (e)

Figure 12. p = 2.5, q = 7.0: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.0, a ground
state; (e) a 4-peak BN symmetric solution

(a) (b) (c)

(d) (e)

Figure 13. p = 3.0, q = 7.5: (a) r = 0.01; (b) r = 1.0, a ground
state; (c) a 1-peak BN symmetric solution; (d) r = 5.3, a ground
state; (e) a 4-peak BN symmetric solution
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Table 4. Values for α in Equation (1.1) with (α, α) as peak point
of its ground state and (p, q): (a) (1.75,4.75), (b) (1.75,6.25), (c)
(2.0,5.0), (d) (2.0,6.5), (e) (2.5,5.5), (f) (2.5,7.0), (g) (3.0,6.0), (h)
(3.0,7.5)

r (a) (b) (c) (d) (e) (f) (g) (h)
1 0.473 0.486 0.374 0.386 0.259 0.273 0.190 0.210
10 0.887 0.905 0.833 0.831 0.758 0.743 0.700 0.679
20 0.938 0.951 0.909 0.908 0.862 0.852 0.824 0.809
30 0.958 0.967 0.936 0.937 0.903 0.896 0.876 0.865
40 0.965 0.975 0.952 0.952 0.926 0.919 0.914 0.895
50 0.971 0.982 0.961 0.961 0.940 0.935 0.922 0.914
60 0.976 0.987 0.967 0.967 0.950 0.945 0.934 0.927
70 0.982 0.991 0.972 0.972 0.957 0.952 0.943 0.937
80 0.984 0.993 0.975 0.974 0.962 0.958 0.950 0.944

Table 5. Values for β in Equation (1.1) with β as peak height
of its ground state and (p, q): (a) (1.75,4.75), (b) (1.75,6.25), (c)
(2.0,5.0), (d) (2.0,6.5), (e) (2.5,5.5), (f) (2.5,7.0), (g) (3.0,6.0), (h)
(3.0,7.5)

r (a) (b) (c) (d) (e) (f) (g) (h)
1 3.6277 2.8676 3.6791 2.7576 3.9439 2.8144 4.2204 2.9194
10 3.6149 2.9320 4.0596 2.9330 5.4975 3.5136 7.3453 4.2542
20 1.6608 1.7568 1.9677 1.8104 2.9495 2.3255 4.3500 3.0147
30 0.6560 0.9509 0.8034 0.9964 1.2828 1.3361 2.0116 1.8052
40 0.2510 0.4869 0.3050 0.5269 0.5091 0.7234 0.8359 1.0066
50 0.0861 0.2421 0.1111 0.2666 0.1920 0.3773 0.3269 0.5392
60 0.0301 0.1250 0.0395 0.1338 0.0704 0.1929 0.1230 0.2807
70 0.0105 0.0659 0.0138 0.0663 0.0252 0.0972 0.0451 0.1441
80 0.0036 0.0348 0.0048 0.0325 0.0089 0.0485 0.0162 0.0728

Table 6. rb1 ∈ (r1, r2) for (p, q): (a) (1.75,4.75), (b) (1.75,6.25),
(c) (2.0,5.0), (d) (2.0,6.5), (e) (2.5,5.5), (f) (2.5,7.0), (g) (3.0,6.0),
(h) (3.0,7.5)

(a) (b) (c) (d)
(r1, r2) (0.1055,0.1094) (0.0313,0.0352) (0.1406,0.1445) (0.1012,0.1058)

(e) (f) (g) (h)
(r1, r2) (0.3006,0.3046) (0.1367,0.1406) (0.4572,0.461) (0.2376,0.2411)
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Table 7. rb2 ∈ (r1, r2) for (p, q) = (a)(1.75, 4.75), (b)(1.75, 6.25),
(c)(2.0, 5.0), (d)(2.0, 6.5), (e)(2.5, 5.5), (f)(2.5, 7.0), (g)(3.0, 6.0),
(h)(3.0, 7.5)

(a) (b) (c) (d)
(r1, r2) (1.7461,1.75) (2.2461,2.25) (1.7695,1.7734) (3.3789,3.3828)

(e) (f) (g) (h)
(r1, r2) (3.3867,3.3906) (3.707,3.7109) (3.4375,3.4399) (3.8125,3.8164)

Figure 14. β(r) curves for (p, q): (a) (1.75,4.75), (b) (1.75,6.25),
(c) (2.0,5.0), (d) (2.0,6.5), (e)(2.5,5.5), (f) (2.5,7.0), (g) (3.0,6.0),
(h) (3.0,7.5) in r-β coordinate system. All β(r) curves approach
zero as r → +∞

Theorem 2.4. Assume the bounded open domain Ω ⊂ Rn satisfies maxx∈Ω|x| > 1
where |x| = (

∑n
k=1 x2

k)
1
2 and r > 0, 1 < p < q < p∗ in (1.1). If u∗r is a ground state

of (1.1), then u∗r → 0 as r →∞.

Proof. We have

J(u) =
∫

Ω

[1
p
|∇u(x)|p − |x|r

q
|u(x)|q

]
dx. (2.3)

First by our minimax characterization of solutions in [9], for each fixed r > 0
and each vr ∈ W 1,p

0 (Ω) with ‖vr‖ =
∫
Ω
|∇vr(x)|pdx = 1, p(vr) = trvr where

tr = arg d
dtJ(tvr) = 0 or

tr = (
∫

Ω

|x|r|vr(x)|qdx)
1

p−q . (2.4)
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Since we have ûr = p(v̂r) = t̂rv̂r for every nontrivial solution ûr of (1.1) where
v̂r(x) = ûr(x)

‖ûr‖ and

t̂r = ‖ûr‖ = (
∫

Ω

|x|r|v̂r(x)|qdx)
1

p−q ,

a ground state is of the form u∗r = p(v∗r ) where

v∗r = arg min
vr∈W 1,p

0 (Ω),‖vr‖=1
J(p(vr)). (2.5)

By plugging tr in (2.4) into J(trvr) in (2.3), we obtain

J(trvr) =
tpr
p
− tqr

q

∫
Ω

|x|r|vr(x)|q dx = tpr(
1
p
− 1

q
)

=
[∫

Ω

|x|r|vr(x)|q dx

]p/(p−q)

(
1
p
− 1

q
).

(2.6)

Thus u∗r = p(v∗r ) = t∗rv
∗
r where v∗r ∈ W 1,p

0 (Ω) with ‖v∗r‖ = 1 and

t∗(p−q)
r =

∫
Ω

|x|r|v∗r (x)|qdx. (2.7)

Since the bounded open domain Ω satisfies maxx∈Ω|x| > 1, there exists x̄ ∈ Ω such
that the ball of center at x̄ = (x̄1, . . . , x̄n) and radius r̄ > 0, B(x̄, r̄) ⊂ Ω \Bn. Let

v̄(x) =

{
(r̄2 −

∑n
k=1(xk − x̄k)2)2, x = (x1, . . . , xn) ∈ B(x̄, r̄),

0, x = (x1, . . . , xn) ∈ Ω \B(x̄, r̄).

Denote

I(r) =
∫

Ω\Bn

|x|rcq
0|v̄(x)|qdx → +∞ as r → +∞,

where c0 = ‖v̄‖−1. By (2.5) for each fixed r > 0, we have

J(t∗rv
∗
r ) =

[ ∫
Ω

|x|r|v∗r (x)|q dx
]p/(p−q)

(
1
p
− 1

q
) ≤ J(p(v))

=
[ ∫

Ω

|x|r|v(x)|q dx
]p/(p−q)

(
1
p
− 1

q
)

for any v ∈ W 1,p
0 (Ω) with ‖v‖ = 1. In particular, if we note 1 < p < q, we have

J(t∗rv
∗
r ) = t∗pr (

1
p
− 1

q
)

≤
[ ∫

Ω

|x|rcq
0|v̄(x)|qdx

]p/(p−q)

(
1
p
− 1

q
) ≤ I(r)p/(p−q)(

1
p
− 1

q
) → 0.

Thus t∗r → 0; i.e., u∗r = t∗rv
∗
r → 0 as r → +∞ since ‖v∗r‖ = 1. �

Remark 2.5. (1) By Remark 2.3, to the peak height βa(r) of the ground states of
(1.1) on Ω = (−a, a)n, a ≤ 1√

n
, we have

lim
r→∞

βa(r) = +∞.

(2) To the ground states ua(r) of (1.1) on Ω = (−a, a)n, a > 1√
n
, we have

lim
r→∞

ua(r) = 0.

Ω = (−1, 1)n is a special case.
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(3) The conclusion u(r) → 0 in the theorem is a little different from β(r) → 0
suggested by Table 4. On any bounded open domain Ω ⊂ Rn with maxx∈Ω|x| =
(
∑n

k=1 x2
k)

1
2 > 1, we would like to conjecture

β(r) → 0,

where β(r) is the peak height of the ground states of (1.1).

2.3. More on 1-peak BN asymmetric positive solutions. In the last subsec-
tion, our numerical results suggest that to the p-Hénon equation (1.1) on the square
domain Ω = (−1, 1)2, when SBP occurs, the BN asymmetric ground states are only
symmetric about the line y = x or y = −x passing through the peak point. Then,
it is interesting to ask if there exist 1-peak BN asymmetric positive solutions which
are symmetric about x = 0 or y = 0.

Such a solution was numerically captured first by accident then on purpose by
enforcing an even-symmetry about the x-axis. By the symmetry of the p-Hénon
equation on the square, it is clear that there are actually four such solutions. Ac-
cording to our numerical computation, such a solution has higher energy than the
ground state. So they are more unstable than the ground states. In Figs. 15-18,
the contours of numerical results for such solutions are listed in the second row;
the contours of numerical results for ground states are displayed in the first row;
corresponding solution energies J and p, q, r values are given in the captions.

We also did numerical experiments to investigate (1.1) on Ω = (−1, 1), a two-
point boundary value problem. The profiles of these numerical results are presented
in the third row of Figs. 15-18 with associated p, q, r values in the captions.

(a) (b) (c) (d)

Figure 15. r = 1.0: (a) p = 1.75, q = 3.75, J = 9.30, 9.92;
(b) p = 2.0, q = 4.0, J = 12.31, 12.84; (c) p = 2.5, q = 4.5,
J = 21.70, 22.10; (d) p = 3.0, q = 5.0, J = 40.38, 40.71
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(a) (b) (c) (d)

Figure 16. (a) p = 1.75, q = 3.75, r = 2.0, J = 10.91, 13.47; (b)
p = 2.0, q = 4.0, r = 3.0, J = 19.44, 27.40; (c) p = 2.5, q = 4.5,
r = 3.0, J = 54.97, 73.31; (d) p = 3.0, q = 5.0, r = 2.0, J =
94.63, 103.86

(a) (b) (c) (d)

Figure 17. r = 1.0: (a) p = 1.75, q = 4.75, J = 6.25, 6.62;
(b) p = 2.0, q = 5.0, J = 7.84, 8.16; (c) p = 2.5, q = 5.5, J =
11.88, 12.15; (d) p = 3.0, q = 6.0, J = 18.61, 18.86
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(a) (b) (c) (d)

Figure 18. (a) p = 1.75, q = 4.75, r = 2.0, J = 6.91, 8.21; (b)
p = 2.0, q = 5.0, r = 3.0, J = 11.01, 14.43; (c) p = 2.5, q = 5.5,
r = 3.0, J = 24.48, 30.96; (d) p = 3.0, q = 6.0, r = 2.0, J =
35.85, 39.17

3. Conclusions and Conjectures

Many numerical experiments are carried out for 1-peak positive solutions to the
p-Hénon equation (1.1) on the unit disk B2 and the square Ω2 = (−1, 1)2. From
our numerical results and Theorem 2.1, for fixed 1 < p < q < p∗, we have the
following conclusions.

Conclusion I. As a bifurcation phenomenon, SBP always occurs when r increases
and exceeds a certain value, on both B2 and Ω2. When SBP takes place, the ground
states are 1-peak solutions on B2 and 1-peak solutions with peak point (a1, a2),
where |a1| = |a2| > 0, on Ω2.

Conclusion II. On B2, the peak point of the ground state goes to the boundary
of B2 and its peak height tends to +∞ as r → +∞. On the other hand, the top of
the 1-peak radially symmetric solution becomes flatter as r increases and its peak
height tends to +∞ as r → +∞.

Conclusion III. On Ω2, when SBP occurs, 1-peak BN asymmetric ground state
is only symmetric about the line y = x or y = −x passing through its peak point.
The peak point of the ground state goes to a corner of Ω2 and its peak height tends
to 0 as r → +∞. When r increases and exceeds a certain value, PBP takes place,
i.e., the 1-peak BN symmetric solution becomes a 4-peak BN symmetric solution.
Clearly PBP is not a bifurcation phenomenon since the old solution is only replaced
by a new solution.

Conclusion IV. On Ω2, when r increased, there is 1-peak, BN asymmetric, non-
ground state, positive solution with its peak point (xp, 0), xp > 0 or (0, yp), yp > 0
which is symmetric about the line y = 0 or x = 0.
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Based on our numerical results which are still unique in the literature, Theorem
2.1 and Theorem 2.4, for each fixed 1 < p < q < p∗, we have the following con-
clusions and conjectures for the p-Hénon equation (1.1) in Rn. On the hypercubic
domain Ωn = (−1, 1)n, if Ωn is symmetric about a hyperplane passing through the
origin, then a solution is also symmetric about it. We say such a solution is a BN
symmetric solution.

Conclusion I. On any bounded open set Ω ⊆ Bn with Lipschitz boundary, the
peak height of the solutions is proved in Theorem 2.1 to tend to +∞ as r → +∞.

Conclusion II. On any bounded open domain Ω ⊂ Rn with

max
x∈Ω

|x| = (
n∑

k=1

x2
k)

1
2 > 1,

the ground states, as proved in Theorem 2.4 , tend to 0 as r → +∞.
Conjecture I. On the unit ball Bn, the top of the radial positive solution becomes

flatter as r increases. As a bifurcation of the 1-peak radial solution in r, a 1-peak
non-radial positive ground state solution exists, i.e., SBP occurs, when r increases
and exceeds a certain value. Its peak point goes to the boundary.

Conjecture II. On the hypercube Ωn = (−1, 1)n, as a bifurcation of the BN
symmetric positive solution in r, a 1-peak BN asymmetric positive ground state
solution exists, i.e., SBP occurs, when r increases and exceeds a certain value. The
peak point of the ground state is (a1, . . . , an), where ai = a or −a, i = 1, . . . , n and
0 < a < 1 is some number. If Ωn is symmetric about a hyperplane passing through
the origin and the peak point, the ground state keeps this symmetry and if Ωn is
symmetric about a hyperplane only passing through the origin, the ground state
loses this symmetry. The peak point of the ground state goes to a vertex of Ωn.

Conjecture III. On any open bounded domain Ω ⊂ Rn with maxx∈Ω|x| =
(
∑n

k=1 x2
k)

1
2 > 1, the peak height of the ground states goes to 0 as r → +∞.

Conjecture IV. On the hypercube Ωn = (−1, 1)n, when r increases and exceeds
a certain value, the peak of the 1-peak BN symmetric positive solution breaks into
2n peaks and when r increases, 1-peak positive solutions with their peak points
(x1, . . . , xn) satisfying one of the followings, (1) x1 = · · · = xn > 0, (2) x1 = · · · =
xn−1 > 0, xn = 0,. . . , (n) x1 > 0, x2 = · · · = xn = 0, will show up.

We hope that our numerical evidences can stimulate further analytic verifications
of those new phenomena.
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