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NONLOCAL BOUNDARY-VALUE PROBLEMS FOR N-TH
ORDER ORDINARY DIFFERENTIAL EQUATIONS BY

MATCHING SOLUTIONS

XUEYAN LIU

Abstract. We are concerned with the existence and uniqueness of solutions
to nonlocal boundary-value problems on an interval [a, c] for the differential

equation y(n) = f(x, y, y′, . . . , y(n−1)), where n ≥ 3. We use the method of
matching solutions, with some monotonicity conditions on f .

1. Introduction

In this article, we are concerned with the existence and uniqueness of solutions
of boundary-value problems (BVP’s) for the differential equation

y(n)(x) = f(x, y(x), y′(x), . . . , y(n−1)(x)), n ≥ 3, x ∈ [a, c], (1.1)

y(a)−
s∑

i=1

αiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3,

t∑
j=1

βjy(ηj)− y(c) = yn,

(1.2)

where a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < · · · < ηt < c, s, t ∈ N, αi > 0 for
1 ≤ i ≤ s, βj > 0 for 1 ≤ j ≤ t,

∑s
i=1 αi = 1,

∑t
j=1 βj = 1, and y1, y2, . . . , yn ∈ R.

It is assumed throughout that f : [a, c] × Rn → R is continuous and that solu-
tions for the initial value problems (IVP’s) for (1.1) are unique and exist on [a, c].
Moreover a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < · · · < ηt < c are fixed
throughout.

Consider the following boundary conditions:

y(a)−
s∑

i=1

αiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−2)(b) = m, (1.3)

y(a)−
s∑

i=1

αiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−1)(b) = m, (1.4)
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y(i) = yi+2, 0 ≤ i ≤ n− 3, y(n−2)(b) = m,

t∑
j=1

βjy(ηj)− y(c) = yn, (1.5)

y(i) = yi+2, 0 ≤ i ≤ n− 3, y(n−1)(b) = m,

t∑
j=1

βjy(ηj)− y(c) = yn, (1.6)

where m ∈ R. We show that (1.1)-(1.2) has a unique solution by matching solutions
of the BVP’s (1.1)-(1.3) on [a, b] and (1.1)-(1.5) on [b, c], or (1.1)-(1.4) on [a, b] and
(1.1)-(1.6) on [b, c].

The method of matching solutions was first used by Bailey et al. [1]. They
considered the solutions of two-point boundary value problems for the second order
differential equation y′′ = f(x, y, y′) by matching solutions of initial value prob-
lems. After that, in 1973, Barr and Sherman [2] applied the solution matching
techniques to third order equations and generalized to equations of arbitrary order.
A monotonicity condition on f played an important role. In 1981, Rao et al. [10]
generalized the monotonicity of f of third order differential equations and intro-
duced an auxiliary monotone function g. In 1983, Henderson [4] generalized to nth
order BVP’s and considered more general boundary conditions. Since then there
has been a lot of literature dealing with solutions of third order BVP’s or higher
order BVP’s by using matching solutions; see [3, 5, 6, 7, 8, 9], etc.

In this article, we consider the n-th order BVP’s with nonlocal boundary condi-
tions (1.1)-(1.2) and use a weaker condition on the auxiliary function g. In Section
2, we give some preliminary results, and in Section 3, we prove the existence and
uniqueness of solutions of (1.1)-(1.2). In Section 4, we generalize our results to
BVP’s with more general boundary conditions:

y(τ)(a)−
s∑

i=1

αiy
(τ)(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3,

t∑
j=1

βjy
(σ)(ηj)− y(σ)(c) = yn,

(1.7)

with τ, σ ∈ {0, 1, . . . , n− 3} fixed.
We assume there is a continuous function g : [a, c] × Rn → R and that f and g

satisfy the following conditions:
(A) For u, v ∈ R, f(x, v0, v1, . . . , vn−2, v)− f(x, u0, u1, . . . , un−2, u) > g(x, v0 −

u0, v1−u1, . . . , vn−2−un−2, v−u) when x ∈ (a, b], (−1)n−ivi ≥ (−1)n−iui,
0 ≤ i ≤ n− 3, and vn−2 > un−2; or when x ∈ [b, c), vi ≥ ui, 0 ≤ i ≤ n− 3,
and vn−2 > un−2.

(B) There exists δ1 > 0, such that for all 0 < δ < δ1, the IVP

z(n) = g(x, z, z′, . . . , z(n−1)), (1.8)

z(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= n− 2, z(n−2)(b) = δ (1.9)

has a solution z on [a, c] such that z(n−2)(x) ≥ 0 on [a, c].
(C) There exists δ2 > 0, such that for all 0 < δ < δ2, the IVP

z(n) = g(x, z, z′, . . . , z(n−1)), (1.10)

z(i)(b) = 0, 0 ≤ i ≤ n− 2, z(n−1)(b) = δ, (−δ) (1.11)
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has a solution z on [b, c] ([a, b]) such that z(n−2)(x) ≥ 0 on [b, c], (z(n−2)(x) ≥
0 on [a, b]).

(D) For each w ∈ R, g(x, v0, v1, . . . , vn−2, w) ≥ g(x, u0, u1, . . . , un−2, w) when
x ∈ (a, b], (−1)n−i(vi − ui) ≥ 0, i = 0, 1, . . . , n − 3, and vn−2 > un−2 ≥ 0,
or when x ∈ [b, c), vi ≥ ui, i = 0, 1, . . . , n− 3, and vn−2 > un−2 ≥ 0.

2. Preliminaries

In this section, we give two lemmas which show the relationship between the
value of the n − 2nd order and the n − 1st order of two solutions of (1.1) at b
that satisfy the boundary conditions (2), respectively, on the interval [a, b] and the
interval [b, c]. All of the results in Section 3 are based on two lemmas. We basically
prove the lemmas by using contradiction.

Lemma 2.1. Suppose p and q are solutions of (1.1) on [a, b] and w = p−q satisfies
the following boundary conditions:

w(a)−
s∑

i=1

αiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ n− 3.

Then, w(n−2)(b) = 0 if and only if w(n−1)(b) = 0. Also, w(n−2)(b) > 0 if and only
if w(n−1)(b) > 0.

Proof. (⇒) The necessity of the first part. Suppose w(n−2)(b) = 0 and w(n−1)(b) 6=
0. Without loss of generosity, we assume w(n−1)(b) < 0.

Since 0 = w(a) −
∑s

i=1 αiw(ξi) =
∑s

i=1 αi(w(a) − w(ξi)) and αi > 0, for some
i1, w(a) ≥ w(ξi1), and for some i2, w(a) ≤ w(ξi2). Hence, there exists r1 ∈ (a, b)
such that w′(r1) = 0 and (−1)n−1w′(x) > 0 on (r1, b).

By repeated applications of Rolle’s Theorem, there exists r2 ∈ (r1, b) such that
w(n−2)(r2) = 0 and w(n−2)(x) > 0, for x ∈ (r2, b). Hence, (−1)n−jw(j)(x) > 0, for
j = 0, 1, . . . , n− 2, on (r2, b).

Let δ ∈ R with 0 < δ < min{δ2,−w(n−1)(b)}. Then, by Condition (C), we
have a solution z of (1.10)-(1.11) on [a, b], such that z(i)(b) = 0, 0 ≤ i ≤ n − 2,
z(n−1)(b) = −δ, and z(n−2)(x) ≥ 0 on [a, b].

Let h = w − z. Then, we have

h(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1))− g(x, z, z′, . . . , z(n−1)),

h(i)(b) = 0, 0 ≤ i ≤ n− 2, h(n−1)(b) = w(n−1)(b)− z(n−1)(b) < 0.

Notice h(n−2)(r2) = w(n−2)(r2)− z(n−2)(r2) ≤ 0, h(n−2)(b) = 0 and h(n−1)(b) <
0. So there exists r3 ∈ [r2, b) such that h(n−2)(r3) = 0 and h(n−2)(x) > 0 for
x ∈ (r3, b). Then, it follows that (−1)n−jh(j)(x) > 0 on (r3, b), for j = 0, 1, . . . , n−2.
Therefore, by Rolle’s Theorem, there is r4 ∈ (r3, b) such that h(n−1)(r4) = 0. Since
h(n−1)(b) < 0, there is r5 ∈ [r4, b) such that h(n−1)(r5) = 0 and h(n−1)(x) < 0 for
x ∈ (r5, b). Then,

h(n)(r5) = lim
x→r+

5

h(n−1)(x)− h(n−1)(r5)
x− r5

≤ 0,

whereas by Conditions (A) and (D), (note that [r5, b) ⊂ (r3, b) ⊂ (r2, b)),

h(n)(r5) = f(r5, p, p′, . . . , p(n−1))− f(r5, q, q
′, . . . , q(n−1))− g(r5, z, z′, . . . , z(n−1))

> g(r5, w, w′, . . . , w(n−1))− g(r5, z, z′, . . . , z(n−1)) ≥ 0,
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which is a contradiction. Therefore, w(n−1)(b) = 0.
(⇐) The sufficiency of the first part. Suppose w(n−1)(b) = 0 and w(n−2)(b) 6= 0.

Without loss of generality, we assume w(n−2)(b) > 0.
Since 0 = w(a)−

∑s
i=1 αiw(ξi) =

∑s
i=1 αi(w(a)−w(ξi)) and αi > 0, there exists

r1 ∈ (a, b) such that w′(r1) = 0, and (−1)n−1w′(x) > 0 on (r1, b).
By repeated applications of Rolle’s Theorem, there exists r2 ∈ (r1, b) such that

w(n−2)(r2) = 0 and w(n−2)(x) > 0 for x ∈ (r2, b). Hence, (−1)n−jw(j)(x) > 0, for
j = 0, 1, . . . , n− 2, on (r2, b).

Now let 0 < δ < min{δ1, w
(n−2)(b)}, and let z be a solution of (1.8)-(1.9)

satisfying Condition (B) and z(n−2)(x) ≥ 0 on [a, b]. Let h = w − z. Then,

h(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1))− g(x, z, z′, . . . , z(n−1)),

h(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= n− 2, h(n−2)(b) = w(n−2)(b)− z(n−2)(b) > 0.

Note that h(n−2)(r2) = w(n−2)(r2)− z(n−2)(r2) ≤ 0. Hence, there is r3 ∈ [r2, b)
such that h(n−2)(r3) = 0, h(n−2)(x) > 0 on (r3, b). By Rolle’s Theorem, there
is r4 ∈ (r3, b) such that h(n−1)(r4) > 0 and (−1)n−jh(j)(x) > 0 on (r4, b), for
j = 0, 1, . . . , n− 2.

By Conditions (A) and (D),

h(n)(b) = f(b, p, p′, . . . , p(n−1))− f(b, q, q′, . . . , q(n−1))− g(b, z, z′, . . . , z(n−1))

> g(b, w, w′, . . . , w(n−1))− g(b, z, z′, . . . , z(n−1)) ≥ 0.

Together with h(n−1)(b) = 0, we have that h(n−1)(x) < 0 on a left neighborhood
of b. Since h(n−1)(r4) > 0, there is r5 ∈ (r4, b) such that h(n−1)(r5) = 0 and
h(n−1)(x) < 0 on (r5, b). Hence, h(n)(r5) ≤ 0.

However, (note that [r5, b) ⊂ (r4, b) ⊂ (r2, b)),

h(n)(r5) = f(r5, p, p′, . . . , p(n−1))− f(r5, q, q
′, . . . , q(n−1))− g(r5, z, z′, . . . , z(n−1))

> g(r5, w, w′, . . . , w(n−1))− g(r5, z, z′, . . . , z(n−1)) ≥ 0,

which is a contradiction. Hence, our assumption is false.
(⇒) The necessity of the second part. Assume w(n−1)(b) < 0 and w(n−2)(b) > 0.

Similar to the proof of the first part, we have r1 ∈ (a, b) such that w(n−2)(r1) = 0
and w(n−2)(x) > 0, for x ∈ (r1, b) and (−1)n−jw(j)(x) > 0 on (r1, b), for j =
0, 1, . . . , n− 2.

Now let 0 < δ < min{δ1, w
(n−2)(b)}, and let z be a solution of (1.8)-(1.9)

satisfying Condition (B) and z(n−2)(x) ≥ 0 on [a, b]. Let h = w − z. Then,

h(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1))− g(x, z, z′, . . . , z(n−1)),

h(i)(b) = 0, 0 ≤ i ≤ n− 3, h(n−2)(b) = w(n−2)(b)− z(n−2)(b) > 0.

Note that h(n−1)(b) = w(n−1)(b) − z(n−1)(b) = w(n−1)(b) < 0, h(n−2)(b) > 0
and h(n−2)(r1) = w(n−2)(r1) − z(n−2)(r1) = −z(n−2)(r1) ≤ 0. So there exists
r2 ∈ [r1, b) such that h(n−2)(r2) = 0, h(n−2)(x) > 0, for x ∈ (r2, b). It follows that
(−1)n−jh(j)(x) > 0 on (r2, b), for j = 0, 1, . . . , n− 2.

By Rolle’s Theorem and h(n−1)(b) < 0, there is r3 ∈ (r2, b) such that h(n−1)(r3) =
0 and h(n−1)(x) < 0 on (r3, b). Therefore, h(n)(r3) ≤ 0, whereas by Conditions (A)
and (D), (note that [r3, b) ⊂ (r2, b) ⊂ (r1, b)),

h(n)(r3) = f(r3, p, p′, . . . , p(n−1))− f(r3, q, q
′, . . . , q(n−1))− g(r3, z, z′, . . . , z(n−1))
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> g(r3, w, w′, . . . , w(n−1))− g(r3, z, z′, . . . , z(n−1)) ≥ 0,

which is a contradiction.
(⇐) The sufficiency of the second part. We assume that w(n−1)(b) > 0 and

w(n−2)(b) < 0. Then, we get the same situation as the proof of necessity with op-
posite signs of w(n−1)(b) and w(n−2)(b), which also implies a contradiction. Hence,
the sufficiency is true. �

Lemma 2.2. Suppose p and q are solutions of (1.1) on [b, c] and w = p−q satisfies
the following boundary conditions:

w(i)(b) = 0, 0 ≤ i ≤ n− 3,

t∑
j=1

βjw(ηj)− w(c) = 0.

Then, w(n−2)(b) = 0 if and only if w(n−1)(b) = 0. Also, w(n−2)(b) > 0 if and only
if w(n−1)(b) < 0.

Proof. (⇒) The necessity of the first part. Assume w(n−2)(b) = 0 and for contra-
diction, without loss of generality, we assume w(n−1)(b) > 0.

By
∑t

j=1 βjw(ηj) − w(c) = 0, there exists r1 ∈ (b, c) such that w′(r1) = 0.
By repeated applications of Rolle’s Theorem, there exists r2 ∈ (b, r1) such that
w(n−2)(r2) = 0 and w(n−2)(x) > 0 on (b, r2). It follows that w(j)(x) > 0 on (b, r2),
for j = 0, 1, . . . , n− 2.

Let 0 < δ < min{δ2, w
(n−1)(b)}. Then, by Condition (C), we have a solution z

of (1.10)-(1.11) on [b, c] such that z(i)(b) = 0, 0 ≤ i ≤ n − 2, z(n−1)(b) = δ, and
z(n−2)(x) ≥ 0 on [b, c]. Then, z(j)(x) ≥ 0, for j = 0, 1, . . . , n− 2, on [b, c].

Let h = w − z. Then,

h(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1))− g(x, z, z′, . . . , z(n−1)),

h(i)(b) = 0, 0 ≤ i ≤ n− 2, h(n−1)(b) = w(n−1)(b)− z(n−1)(b) > 0.

Note that h(n−2)(r2) = w(n−2)(r2)− z(n−2)(r2) ≤ 0. Hence, there is r3 ∈ (b, r2]
such that h(n−2)(r3) = 0, h(n−2)(x) > 0 on (b, r3), and hence, h(j)(x) > 0, for
j = 0, 1, . . . , n−2 on (b, r3). By h(n−2)(b) = 0, Rolle’s Theorem, and h(n−1)(b) > 0,
there exists r4 ∈ (b, r3) such that h(n−1)(r4) = 0 and h(n−1)(x) > 0 on (b, r4).
Hence, h(n)(r4) ≤ 0, but by Conditions (A) and (D) and (b, r4] ⊂ (b, r3) ⊂ (b, r2),
we have

h(n)(r4) = f(r4, p, p′, . . . , p(n−1))− f(r4, q, q
′, . . . , q(n−1))− g(r4, z, z′, . . . , z(n−1))

> g(r4, w, w′, . . . , w(n−1))− g(r4, z, z′, . . . , z(n−1)) ≥ 0,

which is a contradiction.
(⇐) The sufficiency of the first part. Suppose w(n−1)(b) = 0 and w(n−2)(b) > 0.

Similar to the above, we have r1 ∈ (b, c) such that w(n−2)(r1) = 0 and w(j)(x) > 0
on (b, r1) for j = 0, 1, . . . , n− 2.

Let 0 < δ < min{δ1, w
(n−2)(b)}. Then, by Condition (B), we have a solution z

of (1.8)-(1.9) on [b, c] such that z(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= n− 2, z(n−2)(b) = δ,
and z(n−2)(x) ≥ 0 on [b, c]. Then, z(j)(x) ≥ 0, for j = 0, 1, . . . , n− 2, on [b, c].

Let h = w − z. Then,

h(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1))− g(x, z, z′, . . . , z(n−1))

h(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= n− 1, h(n−2)(b) = w(n−2)(b)− z(n−2)(b) > 0.
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Note that h(n−2)(r1) = w(n−2)(r1) − z(n−2)(r1) = −z(n−2)(r1) ≤ 0. So there
is r2 ∈ (b, r1] such that h(n−2)(r2) = 0 and h(n−2)(x) > 0, for x ∈ (b, r2), and
h(j)(x) > 0 on (b, r2), for j = 0, 1, . . . , n−2. By Rolle’s Theorem, there is r3 ∈ (b, r2)
such that h(n−1)(r3) < 0.

Note that

h(n)(b) = f(b, p, p′, . . . , p(n−1))− f(b, q, q′, . . . , q(n−1))− g(b, z, z′, . . . , z(n−1))

> g(b, w, w′, . . . , w(n−1))− g(b, z, z′, . . . , z(n−1)) ≥ 0.

Hence, there is r4 ∈ (b, r3) such that h(n−1)(r4) = 0 and h(n−1)(x) > 0 on (b, r4),
which implies h(n)(r4) ≤ 0. But by (b, r4] ⊂ (b, r2) ⊂ (b, r1) and Conditions (A)
and (D), we have that

h(n)(r4) = f(r4, p, p′, . . . , p(n−1))− f(r4, q, q
′, . . . , q(n−1))− g(r4, z, z′, . . . , z(n−1))

> g(r4, w, w′, . . . , w(n−1))− g(r4, z, z′, . . . , z(n−1)) ≥ 0,

which is a contradiction.
(⇒) The necessity of the second part. Suppose w(n−2)(b) > 0 and w(n−1)(b) > 0.

Similar to the proof of the necessity of the first part, we also can get a contradiction.
Hence, we omit the proof. Therefore, if w(n−2)(b) > 0, then w(n−1)(b) < 0.

(⇐) The sufficiency of the second part. Suppose w(n−1)(b) < 0. If w(n−2)(b) <
0, then similar to the proof of necessity, we can get w(n−1)(b) > 0, which is a
contradiction. Hence, the sufficiency is also true. �

3. Existence and uniqueness of solutions to (1.1)-(1.2)

Before discussing existence and uniqueness for (1.1)-(1.2), we consider the unique-
ness of solutions to each of the BVP’s for (1.1) satisfying any of (1.3), (1.4), (1.5),
or (1.6).

Lemma 3.1. Let y1, y2, . . . , yn ∈ R be given and assume Conditions (A)–(D) are
satisfied. Then, given m ∈ R, each of the BVP’s for (1.1) satisfying any of condi-
tions (1.3), (1.4), (1.5), or (1.6) has at most one solution.

Proof. The case of (1.1)-(1.3): Suppose there are two distinct solutions p(x) and
q(x) for some m ∈ R. Let w = p− q. Then, w satisfies

w(n) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1)),

w(a)−
s∑

i=1

αiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ n− 2.

By Lemma 2.1, we can get that w(n−1)(b) = 0. Then, by the uniqueness of solutions
of IVP’s for (1.1), we can conclude that p ≡ q on [a, b]. Hence, (1.1)-(1.3) has at
most one solution on [a, b].

The other cases: By using similar ideas and Lemma 2.1 and Lemma 2.2, we
resolve the other cases. �

Lemma 3.2. Let y1, y2, . . . , yn ∈ R be given. Assume Conditions (A)-(D) are
satisfied. Then, the BVP (1.1)-(1.2) has at most one solution.

Proof. We argue by contradiction. Suppose for some values y1, y2, . . . , yn ∈ R,
there exist distinct solutions p and q of (1.1)-(1.2). Also, let w = p− q. Then, from
Lemma 2.1 and Lemma 2.2, we get w(n−2)(b) 6= 0, w(n−1)(b) 6= 0.
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Without loss of generality, we suppose w(n−2)(b) > 0. Then, by Lemma 2.1,
w(n−1)(b) > 0. But by Lemma 2.2, w(n−1)(b) < 0. This is a contradiction. Hence,
p ≡ q on [a, c]. �

Next, we show that solutions of (1.1) satisfying each of (1.3), (1.4), (1.5), or
(1.6) respectively are monotone functions of m at b. For notation purposes, given
any m ∈ R, let α(x,m), u(x,m), β(x,m), v(x,m) denote the solutions, when they
exist, of the boundary value problems of (1.1) satisfying (1.3), (1.4), (1.5), or (1.6),
respectively.

Lemma 3.3. Suppose that (A)–(D) are satisfied and that for each m ∈ R, there
exist solutions of (1.1) satisfying each of the conditions (1.3), (1.4), (1.5), (1.6), re-
spectively. Then, α(n−1)(b, m) and β(n−1)(b, m) are, respectively, strictly increasing
and strictly decreasing functions of m with ranges all of R.

Proof. The proof of {α(n−1)(b, m)|m ∈ R} = R is the same as that in [4, Theorem
2.4]. We omit it here. �

Similarly, we obtain monotonicity conditions on u(n−2)(b, m) and v(n−2)(b, m).

Lemma 3.4. Under the assumption of Lemma 3.3, the functions u(n−2)(b, m) and
v(n−2)(b, m) are, respectively, strictly increasing and strictly decreasing functions of
m, with ranges all R.

Finally, we arrive at our existence result for (1.1)-(1.2), which is obtained by
solution matching.

Theorem 3.5. Assume the hypotheses of Lemma 3.3. Then, (1.1)-(1.2) has a
unique solution.

Proof. We prove the existence from either Lemma 3.3 or Lemma 3.4. Making use of
Lemma 3.4, there exists a unique m0 ∈ R such that u(n−2)(b, m0) = v(n−2)(b, m0).
Then,

y(x) =

{
u(x,m0), a ≤ x ≤ b,

v(x,m0), b ≤ x ≤ c,

is a solution of (1.1)-(1.2) and by Lemma 3.2, y(x) is the unique solution. �

4. Existence and uniqueness of solutions to (1.1)-(1.7)

We can obtain analogous results to those of Section 3 for (1.1)-(1.7) with τ, σ ∈
{0, 1, . . . , n − 3} fixed. We obtain solutions to (1.1)-(1.7) by matching solutions
satisfying the following types of boundary conditions:

y(τ)(a)−
s∑

i=1

αiy
(τ)(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−2)(b) = m,

(4.1)

y(τ)(a)−
s∑

i=1

αiy
(τ)(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−1)(b) = m,

(4.2)

y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−2)(b) = m,

t∑
j=1

βjy
(σ)(ηj)− y(σ)(c) = yn,

(4.3)
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y(i)(b) = yi+2, 0 ≤ i ≤ n− 3, y(n−1)(b) = m,

t∑
j=1

βjy
(σ)(ηj)− y(σ)(c) = yn,

(4.4)

where m ∈ R, a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < · · · < ηt < c, s, t ∈ N,
αi > 0 for 1 ≤ i ≤ s, βj > 0 for 1 ≤ j ≤ t,

∑s
i=1 αi = 1,

∑t
j=1 βj = 1 and

y1, y2, . . . , yn ∈ R.
We omit the proofs of the following results since they are essentially the same

as those presented in Section 2 with only small modifications.

Lemma 4.1. Let y1, y2, . . . , yn ∈ R be given and assume conditions (A)–(D) are
satisfied. Then, given m ∈ R, each of the BVP’s for (1.1) satisfying any of condi-
tions (4.1), (4.2), (4.3), or (4.4) has at most one solution.

Lemma 4.2. Let y1, y2, . . . , yn ∈ R be given and assume conditions (A)-(D) are
satisfied. Then (1.1)-(1.7) has at most one solution.

Now, given any m ∈ R, let θ(x,m), l(x,m), ϑ(x,m), o(x,m) denote the solutions,
when they exist, of the boundary value problems of (1.1) satisfying (4.1), (4.2),
(4.3), (4.4), respectively.

Lemma 4.3. Suppose that (A)–(D) are satisfied and that for each m ∈ R, there
exist solutions of (1.1) satisfying each of the conditions (4.1), (4.2), (4.3), (4.4).
Then, θ(n−1)(b, m) and ϑ(n−1)(b, m) are respectively strictly increasing and strictly
decreasing functions of m with ranges all of R. Also, l(n−2)(b, m) and o(n−2)(b, m)
are respectively strictly increasing and strictly decreasing functions of m with ranges
all of R.

Theorem 4.4. Assume the hypotheses of Lemma 4.3. Then (1.1)-(1.7) has a
unique solution.
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