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EXISTENCE OF PULLBACK ATTRACTORS FOR THE
COUPLED SUSPENSION BRIDGE EQUATIONS

QIAOZHEN MA, BINLI WANG

Abstract. In this article, we study the existence of pullback D-attractors for
the non-autonomous coupled suspension bridge equations with hinged ends
and clamped ends, respectively.

1. Introduction

In this paper, we consider the following nonlinear problems which describes a
vibrating beam equation coupled with a vibrating string equation

utt + αuxxxx + δ1ut + k(u− v)+ + fB(u) = hB(x, t), x ∈ [0, L],

vtt − βvxx + δ2vt − k(u− v)+ + fS(v) = hS(x, t), x ∈ [0, L]
(1.1)

with the simply supported boundary-value conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, v(0, t) = v(L, t) = 0, t ≥ τ, (1.2)

and the initial-value conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x), x ∈ [0, L], (1.3)

v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ [0, L]. (1.4)

Where k > 0 denotes the spring constant of the ties, α > 0 and β > 0 are the flexural
rigidity of the structure and coefficient of tensile strength of the cable, respectively.
δ1, δ2 > 0 are constants, the force term hB , hS ∈ L2

loc(R;L2(0, L)). The nonlinear
functions fB(u), fS(v) ∈ C2(R, R) satisfies the following assumptions:

(F1) lim inf |r|→∞
FB(r)

r2 ≥ 0, lim inf |r|→∞
FS(r)

r2 ≥ 0, ∀r ∈ R;
(F2) |fB(r)|, |fS(r)| ≤ C0(1 + |r|p), for all p ≥ 1, ∀r ∈ R;
(F3) lim inf |r|→∞

rfB(r)−C1FB(r)
r2 ≥ 0, lim inf |r|→∞

rfS(r)−C1FS(r)
r2 ≥ 0, ∀r ∈ R,

where C0, C1 are positive constants, FB(r) =
∫ r

0
fB(ζ)dζ, FS(r) =

∫ r

0
fS(ζ)dζ.

For the mathematical model of suspension bridge, there are many references
to study the existence and asymptotic behavior of solutions, see [1, 4, 5, 6, 7,
8, 9, 11, 17] and references therein. For instance, Lazer and McKenna studied
the nonlinear oscillation problems in a suspension bridge, and presented a (one-
dimensional) mathematical model for a suspension bridge as a new problem of
nonlinear analysis in [5]. Ahmed and Harbi continued to discuss this problem in
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[1], and pointed out that the system (1.1) is conservative and asymptotically stable
with respect to the rest state for k > 0, fB(u) ≡ 0 ≡ fS(v), and furthermore showed
that the corresponding Cauchy problem has at least one weak solution. Holubová
and Matas considered the more general nonlinear string-beam system in [4] and
arrived at the existence and uniqueness of the weak solution by the Faedo-Galerkin
methods. In 2004, Litcanu proved the existence of weak T -periodic solutions of
(1.1) and obtained a regularity result when k(u−v)+ = φ(u, v), fB(u) ≡ fS(v) ≡ 0
in [6]. Similar models have also been investigated by Malik in [11]. However, our
aim is to study the longtime behavior of solutions for the suspension bridge model.
In 2005, we achieved first the existence of global attractors of a weak solution for
the autonomous coupled suspension bridge equations in [7]; i.e., in (1.1), hB(x, t)
and hS(x, t) do not depend on the time t explicitly. In the sequel, the existence
of the strong solutions and the compact global attractor have also been obtained
for the autonomous coupled suspension bridge equations and the single one which
the motion of the main cable is neglected, respectively, see [8, 17]. For the limit of
our knowledge, the existence of the pullback attractors of (1.1) has no any results,
while it is just our concern. For a good survey of the literatures dedicated to the
existence of attractors for the dynamical systems we would like to mention some
monograph [3, 13, 14] and so on.

About the existence of pullback attractors for the dynamical systems, it has been
developed for both non-autonomous and random dynamical systems. In 2006, Cara-
ballo et al. presented the concept of the pullback D-attractors in [2], and obtained
the abstract results verifying the existence of pullback D-attractors, moreover, they
applied their abstract results into the non-autonomous Navier-Stokes equation in
an unbounded domain. Zhong [17] and Wang [16] also established some sufficient
conditions for the existence of the pullback D-attractors by using the methods
introduced in [10], and achieved the existence of pullback D-attractors for non-
autonomous Sine-Gordon equations and wave equations with critical exponent, re-
spectively. The existence of pullback D− attractors for the single suspension bridge
equation was showed in [12]. Motivated by [2, 12, 15, 16], in this paper, we focus
our attention on the existence of pullback D-attractors for (1.1). Our main results
are Theorem 3.4 and 3.5.

2. Preliminaries

With the usual notation, let Y0 = L2(0, L), Y1 = H1
0 (0, L), Y2 = D(A) =

H2(0, L) ∩ H1
0 (0, L), where A = − ∂2

∂x2 , A2 = ∂4

∂x4 , and endow Y0 with the stan-
dard scalar product and norm (·, ·), | · |. Meanwhile, we denote ‖ · ‖, |Au| be
the norm of Y1, Y2, respectively. In addition, let λ1 be the first eigenvalue of
Au = λu, x ∈ [0, L];u(0) = u(L) = 0, the corresponding eigenfunctions φ1(x) is
positive on [0, L]. It’s easy to know that λ2

1 is the first eigenvalue of A2u = λ2u, x ∈
[0, L], u(0) = u(L) = uxx(0) = uxx(L) = 0. Choosing λ = min{λ1, λ

2
1}, by the

Poincaré inequality, we have

‖u‖2 ≥ λ|u|2, ∀u ∈ Y1; |Au|2 ≥ λ‖u‖2, ∀u ∈ Y2. (2.1)

Next we iterate some definitions and abstract results concerning the pullback at-
tractor, which is necessary to obtain our main results, please refer the reader to see
[2, 15] for more details. Let (E, d) be a complete metric space, (Q, ρ) be a met-
ric space which will be called the parameter space. We define a non-autonomous
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dynamical system by a cocycle mapping φ : R+ × Q × E which is driven by an
autonomous dynamical system θ acting on a parameter space Q. Specifically,
θ = {θt}t∈R is a dynamical system on Q with the properties that

(1) θ0(q) = q, for all q ∈ Q;
(2) θt+τ (q) = θt(θτ (q)), for all q ∈ Q, t, τ ∈ R;
(3) the mapping (t,q)→ θt(q) is continuous.

Definition 2.1. A mapping φ is said to be a cocycle on E with respect to group
θ if

(1) φ(0, q, x) = x, for all (q, x) ∈ Q× E;
(2) φ(t + s, q, x) = φ(s, θt(q), φ(t, q, x)), for all s, t ∈ R+ and all (q, x) ∈ Q×E.

Let P(E) denote the family of all nonempty subsets of E, B(E) be the set of all
bounded subsets of E, and K be the class of all families D̂ = {Dq}q∈Q ⊂ P(E).
We consider a given nonempty subclass D ⊂ K.

Definition 2.2. A family B̂ = {Bq}q∈Q ∈ K is said to be pullback D-absorbing if
for each q ∈ Q and D̂ ∈ D , there exists t0(q, D̂) ≥ 0 such that φ(t, θ−t(q), Dθ−t(q)) ⊂
Bq, for all t ≥ t0(q, D̂).

Definition 2.3. Let (θ, φ) be a non-autonomous dynamical system on Q×E. (θ, φ)
is said to be satisfying pullback D-condition (C) if for any q ∈ Q, Ĉ ∈ D and any
ε > 0, there exists a t0 = t0(q, Ĉ, ε) ≥ 0 and a finite dimensional subspace E1 of E
such that

(i) P (
⋃

t≥t0
φ(t, θ−t(q), Dθ−t(q))) is bounded; and

(ii) ‖(I − P )φ(t, θ−t(q), Dθ−t(q))‖E ≤ ε, where P : E → E1 is a bounded
projector.

Theorem 2.4. Let (θ, φ) be a non-autonomous dynamical system on Q×E. (θ, φ)
possesses a global pullback D-attractor Â = {Aq}q∈Q satisfying Aq = Λ(D̂, q) =⋂

s≥0

⋃
t≥s φ(t, θ−t(q), Dθ−t(q)) if

(1) it has a pullback D-absorbing set B̂ = {Bq}q∈Q ∈ D ;
(2) it satisfies pullback D-Condition (C).

3. Pullback D-attractors in E0

For brevity, we write E0 = Y2 × Y0 × Y1 × Y0, y0 = (u0, u1, v0, v1), y = y(t) =
(u(t), ut(t), v(t), vt(t)). We need the following results.

Theorem 3.1 ([1, 8, 9]). Suppose that y0 ∈ E0, hB , hS ∈ L2
loc(R, Y0), then (1.1)-

(1.4) has a unique solution
y ∈ C(Rτ , E0), (3.1)

where Rτ = [τ,+∞). Furthermore, y0 7→ y is continuous in E0.

As in [2, 15], we denote by E0 the space of vector function y(x) with finite
energy norm ‖y‖2E0

= |Au|2 + ‖v‖2 + |ut|2 + |vt|2. Then we can construct the
non-autonomous dynamical system generated by problem (1.1) − (1.4) in E0. We
consider Q = R, θt(τ) = t + τ , and define

φ(t, τ, y0) = y(t + τ ; τ, y0) =
(
u(t + τ), ut(t + τ), v(t + τ), vt(t + τ)

)
, (3.2)

τ ∈ R, t ≥ 0, y0 ∈ E0. Thus, thanks to Theorem 3.1, we have φ(t + s, τ, y0) =
φ(t, s + τ, φ(s, τ, y0)), for τ ∈ R, s, t ≥ 0, and the mapping φ(t, τ, ·) : E0 → E0
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defined by (3.2) is continuous. Therefore, the mapping φ defined by (3.2) is a
continuous cocycle on E0. Now we assume that hB , hS ∈ L2

loc(R;Y0) with∫ t

−∞
eδs|hB(x, s)|2ds < ∞, ∀t ∈ R, (3.3)∫ t

−∞
eδs|hS(x, s)|2ds < ∞, ∀t ∈ R, (3.4)

where δ is a positive constant which will be characterized later. Let Rδ be the set
of all function r : R → (0,+∞) satisfying

lim
t→−∞

eδtr2(t) = 0. (3.5)

Here Dδ,E0 denotes the class of all families D̂ = {D(t); t ∈ R} ⊂ P(E0) with
D(t) ⊂ B̄(0, rD̂(t)) for some rD̂(t) ∈ Rδ, where B̄(0, rD̂(t)) is the closed ball in E0

centered at 0 with radius rD̂(t). We also need the following lemmas.

Lemma 3.2 ([15]). Suppose that the family {ωi}i∈N and {χi}i∈N be an orthonormal
basis of Y2 and Y1, respectively, which consist of the eigenvectors of A2 and A,
hB , hS ∈ L2

loc(R, Y0) satisfy (3.3)-(3.4). Then

lim
m→∞

∫ t

−∞
eσs|(I − Pm)hB(x, s)|2ds = 0, ∀t ∈ R, (3.6)

lim
m→∞

∫ t

−∞
eσs|(I −Qm)hS(x, s)|2ds = 0,∀t ∈ R, (3.7)

where Pm : Y2 → span{ω1, ω2, . . . ωm}, Qm : Y1 → span{χ1, χ2, . . . χm} are the
orthogonal projector.

Lemma 3.3 ([8, 9]). Assume that fB(u), fS(v) ∈ C2(R, R) satisfies (F2), moreover,
fB(0) = fS(0) = 0. Then (fB , fS) : Y2×Y1 → Y0×Y0 are continuous and compact.

Theorem 3.4. Suppose that (F1)-(F3) hold, hB , hS ∈ L2
loc(R, Y0) with (3.3)–(3.4).

Then there exists a pullback Dδ,E0-absorbing set in E0 for the non-autonomous
dynamical system (θ, φ) associated with (1.1)-(1.4).

Proof. Let t ∈ R, τ ≥ 0, and y0 ∈ E0 be fixed. Choose 0 < ε < ε0, where

ε0 = min{δ1

4
,
δ2

4
,
αλ2

2δ1
,
βλ2

2δ2
}. (3.8)

Taking the scalar product in Y0 for the first equation of (1.1) with φ = ut + εu and
the second equation with ϕ = vt + εv, we have

1
2

d

dt
(|φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2) + εα|Au|2 + (δ1 − ε)|φ|2

− ε(δ1 − ε)(u, φ) + βε‖v‖2 + (δ2 − ε)|ϕ|2 − ε(δ2 − ε)(v, ϕ)

+ k((u− v)+, φ− ϕ) + (fB(u), φ) + (fS(v), ϕ)

= (hB(t), φ) + (hS(t), ϕ).

(3.9)

Using Hölder and Young inequalities and (3.8), we conclude

εα|Au|2 + (δ1 − ε)|φ|2 − ε(δ1 − ε)(u, φ) + βε‖v‖2 + (δ2 − ε)|ϕ|2 − ε(δ2 − ε)(v, ϕ)

≥ εα

2
|Au|2 +

εβ

2
‖v‖2 +

δ1

2
|φ|2 +

δ2

2
|ϕ|2;

(3.10)
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k((u− v)+, φ− ϕ) =
1
2

d

dt
k|(u− v)+|2 + εk|(u− v)+|2. (3.11)

Due to (F3) it follows that∫ L

0

ufB(u)dx− C1

∫ L

0

FB(u)dx +
ε

4
|Au|2 ≥ −K2, ∀u ∈ Y2,∫ L

0

vfS(v)dx− C1

∫ L

0

FS(v)dx +
ε

4
‖v‖2 ≥ −K2, ∀v ∈ Y1,

where C1,K2 are positive constants. Then

(fB(u), φ) ≥ d

dt

∫ L

0

FB(u)dx + εC1

∫ L

0

FB(u)dx− ε2

4
|Au|2 − εK2, (3.12)

(fS(v), ϕ) ≥ d

dt

∫ L

0

FS(v)dx + εC1

∫ L

0

FS(v)dx− ε2

4
‖v‖2 − εK2. (3.13)

Together with (3.10)-(3.13), from (3.9), it leads to

d

dt
(|φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2 + k|(u− v)+|2 + 2

∫ L

0

FB(u)dx + 2
∫ L

0

FS(v)dx)

+ ε(α− ε

2
)|Au|2 + ε(β − ε

2
)‖v‖2 +

δ1

2
|φ|2 +

δ2

2
|ϕ|2 + 2εk|(u− v)+|2

+ 2εC1

∫ L

0

FB(u)dx + 2εC1

∫ L

0

FS(v)dx

≤ 4εK2 +
2
δ1
|hB(t)|2 +

2
δ2
|hS(t)|2.

(3.14)
Provided ε is small enough such that α− ε

2 > α
2 , β− ε

2 > β
2 , and set δ = min{ ε

2 , εC1},
we deduce
d

dt
(|φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2 + k|(u− v)+|2 + 2

∫ L

0

FB(u)dx + 2
∫ L

0

FS(v)dx)

+ δ(|φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2 + k|(u− v)+|2 + 2
∫ L

0

FB(u)dx + 2
∫ L

0

FS(v)dx)

≤ 4εK2 +
2
δ1
|hB(t)|2 +

2
δ2
|hS(t)|2.

By (F1) we know that there exists a positive constant K1 such that∫ L

0

FB(u)dx +
α

8
|Au|2 ≥ −K1, ∀u ∈ Y2, (3.15)∫ L

0

FS(v)dx +
β

8
‖v‖2 ≥ −K1, ∀v ∈ Y1. (3.16)

Therefore, by (3.15)-(3.16) it follows that

E(t) = |φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2 + k|(u− v)+|2

+ 2
∫ L

0

FB(u)dx + 2
∫ L

0

FS(v)dx + 4K1 ≥ 0,

and
d

dt
E(t) + δE(t) ≤ 4εK2 + 4δK1 +

2
δ1
|hB(t)|2 +

2
δ2
|hS(t)|2.
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Furthermore,
d

dt
(eδtE(t)) ≤ eδt(4εK2 + 4δK1 +

2
δ1
|hB(t)|2 +

2
δ2
|hS(t)|2).

Integrating the above inequality from t− τ to t yields

E(t) ≤ e−δτE(t− τ) +
4(εK2 + δK1)

δ
+

2
δ1

e−δt

∫ t

t−τ

eδs|hB(s)|2ds

+
2
δ2

e−δt

∫ t

t−τ

eδs|hS(s)|2ds

≤ e−δτE(t− τ) +
4(εK2 + δK1)

δ
+

2
δ1

e−δt

∫ t

−∞
eδs|hB(s)|2ds

+
2
δ2

e−δt

∫ t

−∞
eδs|hS(s)|2ds.

For any D̂ ∈ Dδ,E0 , y0 ∈ D(t − τ), by (F2),
∫ L

0
FB(u0)dx and

∫ L

0
FS(v0)dx are

bounded. Hence

sup
y0∈D(t−τ)

E(t− τ)

= sup
y0∈D(t−τ)

{
|u1 + εu0|2 + α|Au0|2 + β‖v0‖2 + |v1 + εv0|2 + k|(u0 − v0)+|2

+ 2
∫ L

0

FB(u0)dx + 2
∫ L

0

FS(v0)dx
}

< ∞.

Using (3.15) and (3.16) again, we arrive at

E(t) = |φ|2 + α|Au|2 + β‖v‖2 + |ϕ|2 + k|(u− v)+|2

+ 2
∫ L

0

FB(u)dx + 2
∫ L

0

FS(v)dx + 4K1

≥ |φ|2 +
3α

4
|Au|2 +

3β

4
‖v‖2 + |ϕ|2.

Therefore, if we let δ0 = min{ 3α
4 , 3β

4 , 1}, K = 4(εK2 + δK1), then

|φ|2 + |Au|2 + |ϕ|2 + ‖v‖2

≤ 1
δ0

(e−δτE(t− τ) +
K

δ
+

2
δ1

e−δt

∫ t

−∞
eδs|hB(s)|2ds

+
2
δ2

e−δt

∫ t

−∞
eδs|hS(s)|2ds),

(3.17)

namely, ‖φ(τ, t − τ, y0)‖2E0
is bounded by the above expression for all y0 ∈ D(t −

τ), t ∈ R and τ ≥ 0. Set

(Rδ(t))2 =
2
δ0

(K

δ
+

2
δ1

e−δt

∫ t

−∞
eδs|hB(s)|2ds+

2
δ2

e−δt

∫ t

−∞
eδs|hS(s)|2ds

)
, (3.18)

and consider the family B̂δ,E0 of close balls in E0 defined by

Bδ(t) = {y ∈ E0 : ‖y‖2E0
≤ (Rδ(t))2}. (3.19)

Thus from (3.3), (3.4) we know that B̂δ,E0 is a pullback Dδ,E0 absorbing for the
cocyle φ. �
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Theorem 3.5. Suppose that hB , hS ∈ L2
loc(R, Y0) and fB , fS satisfies (F1)− (F3),

then there exists a global pullback Dδ,E0-attractor in E0 for the non-autonomous
dynamical system (θ, φ) defined by (3.2).

Proof. Using Theorem 2.4, it is only enough to verify pullback D−condition (C).
If {ωi}∞i=1 is orthonormal basis of Y2, which consists of eigenvectors of A2, it is also
orthonormal basis of Y1, Y0. The corresponding eigenvalues are denoted by

0 < ν1 < ν2 ≤ ν3 ≤ . . . , νi →∞, i →∞,

and A2ωi = νiωi for all i ∈ N. We write Vm = span{ω1, ω2, . . . , ωm}, Pm : Y2 → Vm

is orthogonal projector. In addition, let {χi}∞i=1 be an orthonormal basis of Y1 which
consists of eigenvectors of A, the corresponding eigenvalue are denoted by

0 < λ1 < λ2 ≤ λ3 ≤ . . . , λi →∞, i →∞,

and Aχi = λiχi for all i ∈ N. In fact, by the boundary value conditions (1.2), ωi =
χi, νi = λ2

i , i = 1, 2, . . . . We write Gm = span{χ1, χ2, . . . , χm}, Qm : Y1 → Gm is
orthogonal projector. Then for all u ∈ Y2, v ∈ Y1, we make the decomposition

u = Pmu + (I − Pm)u , u1 + u2, v = Qmv + (I −Qm)v , v1 + v2. (3.20)

Taking the scalar product in Y0 for the first equation of (1.1) with φ2 = u2t + εu2

and for the second equation with ϕ2 = v2t + εv2, respectively, after a computation,
we find

1
2

d

dt
(|φ2|2 + α|Au2|2 + β‖v2‖2 + |ϕ2|2) + εα|Au2|2

+ (δ1 − ε)|φ2|2 − ε(δ1 − ε)(u2, φ2) + βε|ϕ2|2 + (δ2 − ε)|ϕ2|2 − ε(δ2 − ε)(v2, ϕ2)

+ k((u− v)+, φ2 − ϕ2) + ((I − Pm)fB(u), φ2) + ((I −Qm)fS(v), ϕ2)

= ((I − Pm)hB(t), φ2) + ((I −Qm)hS(t), ϕ2).
(3.21)

Similar to the estimates of (3.10), it follows that

εα|Au2|2 + (δ1 − ε)|φ2|2 − ε(δ1 − ε)(u2, φ2) + βε|ϕ2|2

+ (δ2 − ε)|ϕ2|2 − ε(δ2 − ε)(v2, ϕ2)

≥ εα

2
|Au2|2 +

εβ

2
‖v2‖2 +

δ1

2
|φ2|2 +

δ2

2
|ϕ2|2.

(3.22)

Using the Hölder, Young and Poincaré inequalities, there exists a positive constant
c, such that

k((u− v)+, φ2 − ϕ2) ≤ k|(u− v)2| · |φ2 − ϕ2| ≤ k(|u2|+ |v2|)(|φ2|+ |ϕ2|)

≤ ck2

δ1νm+1
|Au2|2 +

ck2

δ2λm+1
‖v2‖2 +

δ1

4
|φ2|2 +

δ2

4
|ϕ2|2.

(3.23)
Together with (3.22)-(3.23), from (3.21), yields

1
2

d

dt
(|φ2|2 + α|Au2|2 + β‖v2‖2 + |ϕ2|2)

+ (
εα

2
− ck2

δ1νm+1
)|Au2|2 + (

εβ

2
− ck2

δ2λm+1
)‖v2‖2 +

δ1

4
|φ2|2 +

δ2

4
|ϕ2|2

+ ((I − Pm)fB(u), φ2) + ((I −Qm)fS(v), ϕ2)

≤ ((I − Pm)hB(t), φ2) + ((I −Qm)hS(t), ϕ2).

(3.24)
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Taking m large enough, such that εα
2 − ck2

δ1νm+1
≥ εα

4 , εβ
2 − ck2

δ2λm+1
≥ εβ

4 , we have

1
2

d

dt
(|φ2|2 + α|Au2|2 + β‖v2‖2 + |ϕ2|2) +

εα

4
|Au2|2 +

εβ

4
‖v2‖2

+
δ1

4
|φ2|2 +

δ2

4
|ϕ2|2 + ((I − Pm)fB(u), φ2) + ((I −Qm)fS(v), ϕ2)

≤ ((I − Pm)hB(t), φ2) + ((I −Qm)hS(t), ϕ2).

Furthermore, there holds

d

dt
(|φ2|2 + α|Au2|2 + β‖v2‖2 + |ϕ2|2) +

εα

2
|Au2|2 +

εβ

2
‖v2‖2 +

δ1

4
|φ2|2 +

δ2

4
|ϕ2|2

≤ 8
δ1
|(I − Pm)hB(t)|2 +

8
δ2
|(I −Qm)hS(t)|2 +

8
δ1
|(I − Pm)fB(u)|2

+
8
δ2
|(I −Qm)fS(v)|2

Set ξ = min{ε, δ1
4 , δ2

4 }, and χ(t) = |φ2|2 + α|Au2|2 + β‖v2‖2 + |ϕ2|2 > 0. Then

d

dt
χ(t) + ξχ(t) ≤ 8

δ1
|(I − Pm)hB(t)|2 +

8
δ2
|(I −Qm)hS(t)|2 +

8
δ1
|(I − Pm)fB(u)|2

+
8
δ2
|(I −Qm)fS(v)|2.

(3.25)
Multiplying both sides of (3.17) with eξt, we obtain

d

dt
(eξtχ(t)) ≤ eξt(

8
δ1
|(I − Pm)hB(t)|2 +

8
δ2
|(I −Qm)hS(t)|2

+
8
δ1
|(I − Pm)fB(u)|2 +

8
δ2
|(I −Qm)fS(v)|2).

Integrating over [t− τ, t], it leads to

χ(t) ≤ e−ξτχ(t− τ) +
8
δ1

e−ξt

∫ t

t−τ

eξs|(I − Pm)hB(s)|2ds

+
8
δ2

e−ξt

∫ t

t−τ

eξs|(I −Qm)hS(s)|2ds +
8
δ1

e−ξt

∫ t

t−τ

eξs|(I − Pm)fB(u)|2ds

+
8
δ2

e−ξt

∫ t

t−τ

eξs|(I −Qm)fS(v)|2ds.

(3.26)
Firstly, for any t ∈ R, any ε > 0, there exist t1 ∈ (t − τ, t) and τ1 > 0 such

that u(s) = u(s, t − τ, y0) ∈ Bδ(s), v(s) = v(s, t − τ, y0) ∈ Bδ(s), for τ ≥ τ1, any
s ∈ [t− τ, t1], any y0 ∈ D(t− τ). Also for all τ ≥ τ1,∫ t1

t−τ

e−ξ(t−s)|(I − Pm)fB(u)|2ds ≤ δ1ε

40
,

∫ t1

t−τ

e−ξ(t−s)|(I −Qm)fS(v)|2ds ≤ δ1ε

40
.

Secondly, we set R̂ = maxs∈[t1,t] Rδ(s) < ∞, then

|Au(s)| = |Au(s; t− τ, u0)| ≤ R̂, ‖v(s)‖ = ‖v(s; t− τ, v0)‖ ≤ R̂



EJDE-2011/16 EXISTENCE OF PULLBACK ATTRACTORS 9

for any s ∈ [t1, t] and any y0 ∈ D(t − τ). In line with Lemma 3.3, for any ε > 0,
any m ≥ m1, τ ≥ τ1, we have∫ t

t1

e−ξ(t−s)|(I − Pm)fB(u)|2ds ≤ δ1ε

40
,

∫ t

t1

e−ξ(t−s)|(I −Qm)fS(v)|2ds ≤ δ2ε

40
.

(3.27)
Thirdly, by Lemma 3.2, we can choose m larger enough, such that∫ t

t−τ

e−ξ(t−s)|(I − Pm)hB(s)|2ds ≤ δ1ε

20
,∫ t

t−τ

e−ξ(t−s)|(I −Qm)hS(s)|2ds ≤ δ2ε

20
.

Finally, using (3.5), there exists τ2 ≥ 0 such that

e−ξτχ(t− τ) ≤ ε

5
, ∀τ ≥ τ2, y0 ∈ D(t− τ). (3.28)

Now let τ0 = max{τ1, τ2}, from (3.26)-(3.28) yields χ(t) ≤ ε. Therefore, it is easy
to see that

‖φ2(τ, t− τ, y0)‖2E0
≤ ε, ∀τ ≥ τ0, y0 ∈ D(t− τ).

The proof is complete. �

We remark that our main results is also true for (1.1) with fixed boundary-value
conditions ends:

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0, v(0, t) = v(L, t) = 0, t ≥ τ.

In this case, we put Y2 = H2
0 (0, L). Theorem 3.4 and 3.5, as well as their proofs,

are remain valid without any changes.
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