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DETERMINISTIC MODEL FOR THE ROLE OF ANTIVIRALS IN
CONTROLLING THE SPREAD OF THE H1N1 INFLUENZA

PANDEMIC

MUDASSAR IMRAN, MOHAMMAD T. MALIK, SALISU M. GARBA

Abstract. A deterministic model is designed and used to theoretically assess
the impact of antiviral drugs in controlling the spread of the 2009 swine in-
fluenza pandemic. In particular, the model considers the administration of the
antivirals both as a preventive as well as a therapeutic agent. Rigorous analysis
of the model reveals that its disease-free equilibrium is globally-asymptotically
stable under certain conditions involving having the associated reproduction
number less than unity. Furthermore, the model has a unique endemic equi-
librium if the reproduction threshold exceeds unity. The model provides a
reasonable fit to the observed H1N1 pandemic data for the Canadian province
of Manitoba. Numerical simulations of the model suggest that the singular
use of antivirals as preventive agents only makes a limited population-level
impact in reducing the burden of the disease in the population (except if the
effectiveness level of this “prevention-only” strategy is high). On the other
hand, the combined use of the antivirals (both as preventive and therapeu-
tic agents) resulted in a dramatic reduction in disease burden. Based on the
parameter values used in these simulations, even a moderately-effective com-
bined treatment-prevention antiviral strategy will be sufficient to eliminate the
H1N1 pandemic from the province.

1. Introduction

Since its emergence in the Spring of 2009, the H1N1 Influenza A pandemic (also
known as the Swine Influenza) continues to pose significant challenges to public
health around the world [11, 15, 17, 41, 42, 43]. For instance, the H1N1 pandemic
has accounted for 33,494 cases [31] (8,669 hospitalized cases including 1,472 ad-
mitted to ICU) and 429 deaths in Canada (over 16,000 people have died globally
[45]). The H1N1 pandemic is believed to have resulted from a genetic reassortment
involving swine influenza virus lineages [30]. Several chronic conditions and behav-
ioral and other factors have been associated with increased risk of disease severity
among H1N1-infected individuals. Infants and pregnant women (especially in the
third trimester) are at increased risk of hospitalization and intensive care unit (ICU)
admission [10, 23, 37, 44]. Furthermore, some studies have shown that people with
pre-existing chronic conditions (such as asthma and other chronic lung diseases,
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chronic kidney and heart diseases, obesity and conditions associated with immune
suppression) are prone to increased risk of death and ICU admission [25, 38]. In
the Canadian province of Manitoba, Aboriginals and people residing in remote and
isolated communities are at increased risk of severe illness due to the pandemic
H1N1 infection [40].

Like in the case of seasonal flu, the H1N1 pandemic is believed to be spreading
mainly through coughs and sneezes of people who are infected with the pandemic
and touching of contaminated objects. H1N1 infection has been reported to cause
a wide range of flu-like symptoms, including fever, cough, sore throat, body aches,
headache, chills and fatigue. Additionally, many have reported nausea, vomiting
and/or diarrhea [9]. The second wave of H1N1 started around early October 2009
in Canada [7] and data [27] suggests that it has diminished by the end of January
2010 (after peaking in November 2009).

The pandemic H1N1 is being controlled using various measures including social
exclusion (e.g., closure of schools, banning large public gatherings, etc.), mass vac-
cination (the limited supply of the H1N1 vaccine, in the early stage of the second
wave, has forced its prioritization to high-risk groups, such as children under the
age of six, pregnant women, people with weakened immune systems, etc.) and the
use of antiviral drugs (notably, oseltamivir (Tamiflu) and zanamivir (Relenza)). It
should be mentioned that a rare occurrence of antiviral resistance (specifically to
the use of Tamilflu) has been reported [8].

Some mathematical modeling studies have been carried out, aimed at gaining
insight into the transmission dynamics and control of the H1N1 pandemic (see, for
instance, [3, 18, 30, 1, 4, 12, 22, 32]). In particular, Sharomi et al. [32] presented a
model for the spread of H1N1 that incorporates an imperfect vaccine and antiviral
drugs administered to infected individuals with disease symptoms (the model in [32]
stratifies the infected population in terms of their risk of developing severe illness).
The purpose of the current study is to complement the aforementioned studies by
designing a new model for assessing the impact of singular use of the antiviral drugs,
administered as a preventive agents only (i.e., given to susceptible individuals) or, as
a therapeutic agent (i.e., given to individuals with symptoms of the pandemic H1N1
infection in the early stage of illness), in curtailing or mitigating the burden of the
H1N1 pandemic in a population. An additional special feature of the model to be
designed is that it stratifies the susceptible population according to risk of infection.
The model is used to theoretically compare the potential impact of the targeted
administration of the available antivirals (as a preventive agent alone, or their
combined use as both preventive and therapeutic agent combined) in combatting
the spread of the H1N1 pandemic in the Canadian province of Manitoba.

The paper is organized as follows. The model is formulated in Section 2 and
rigorously analysed in Section 3. Numerical simulations are reported in Section 4.

2. Model Formulation

The total human population at time t, denoted by N(t), is sub-divided into
ten mutually-exclusive sub-populations of low-risk susceptible individuals (SL(t)),
high-risk susceptible individuals (SH(t)), susceptible individuals who were given
antiviral drugs (P (t)), latent individuals (L(t)), infectious individuals who show no
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Figure 1. Schematic diagram of the model (2.1))

disease symptoms (A(t)), symptomatic individuals at early stage (I1(t)), sympto-
matic individuals at later stage (I2(t)), hospitalized individuals (H1(t)), hospital-
ized individuals at ICU (H2(t)), treated individuals (T (t)) and recovered individuals
(R(t)), so that

N(t) = SL(t)+SH(t)+P (t)+L(t)+A(t)+I1(t)+I2(t)+H1(t)+H2(t)+T (t)+R(t).



4 M. IMRAN, T. M. MALIK, S. M. GARBA EJDE-2011/155

The high-risk susceptible population includes pregnant women, children, health-
care workers and providers (including all front-line workers), the elderly and other
immuno-compromised individuals. The rest of the susceptible population is consid-
ered to be of low-risk of acquiring H1N1 infection. The model to be considered in
this study is given by the following deterministic system of non-linear differential
equations (a schematic diagram of the model is given in Figure 1, and the associated
variables and parameters are described in Table 1):

dSL
dt

= Π(1− p)− λSL − σLSL − µSL,

dSH
dt

= Πp− θHλSH − σHSH − µSH ,

dP

dt
= σLSL + σHSH − θPλP − µP,

dL

dt
= λ(SL + θHSH + θPP )− (α1 + µ)L,

dA

dt
= α1(1− f)L− (φ1 + µ− δ)A,

dI1
dt

= α1fL− (τ1 + γ1 + µ)I1,

dI2
dt

= γ1I1 − (τ2 + ψ1 + φ2 + µ+ δ)I2,

dH1

dt
= ψ1I2 − (ψ2 + φ3 + µ+ θ1δ)H1,

dH2

dt
= ψ2H1 − (φ4 + µ+ θ2δ)H2,

dT

dt
= τ1I1 + τ2I2 − (φ5 + µ)T,

dR

dt
= φ1A+ φ2I2 + φ3H1 + φ4H2 + φ5T − µR.

(2.1)

Here, the parameter Π represents the recruitment rate into the population (all
recruited individuals are assumed to be susceptible) and p is the fraction of re-
cruited individuals who are at high-risk of acquiring infection. low-risk susceptible
individuals acquire infection at a rate λ, given by

λ =
β(η1L+ η2A+ I1 + η3I2 + η4H1 + η5H2 + η6T )

N
,

where β is the effective contact rate, ηi (i = 1, . . . , 6) are the modification parame-
ters accounting for relative infectiousness of individuals in the L,A, I2,H1,H2 and
T classes in comparison with those in the I1 class. high-risk susceptible individ-
uals acquire infection at a rate θHλ, where θH > 1 accounts for the assumption
that high-risk susceptible individuals are more likely to get infected in comparison
to low-risk susceptible individuals. Low (high) risk susceptible individuals receive
antivirals at a rate σL (σH), and individuals in all epidemiological classes suffer
natural death at a rate µ (it is assumed, in this study, that individuals in the latent
class can transit infection).

Susceptible individuals who received prophylaxis (P ) can become infected at a
reduced rate θPλ, where 1 − θP (with 0 < θP < 1) is the efficacy of the antiviral
drugs in preventing infection. Individuals in the latent class become infectious at a
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Table 1. Description and nominal values of the model parameters

Description Value Ref
Π birth rate 1119583/80*365

1/µ average human lifespan 80*365
β probability for transmitting swine flu 0.9 assumed
σL antiviral coverage rate for low-risk susceptible individuals 1/25 assumed
σH antiviral coverage rate for high-risk susceptible individuals 1/25 assumed
α1 rate at which latent individuals become infectious 0.35 assumed
f fraction of latent individuals that progress to the 0.2 [28]

symptomatic class
τ1 treatment rate for individuals in the early stage of infection 0.5 assumed
τ2 treatment rate for individuals in the later stage of infection 0.5 assumed
φ1 recovery rate for asymptomatic infectious individuals 1/5 [28]
φ2 recovery rate for symptomatic infectious individuals in the 1/5 [28]

later stage
φ3 recovery rate for hospitalized individuals 1/5 [28]
φ4 recovery rate for individuals in ICU 1/7 assumed
φ5 recovery rate treated individuals 1/7 assumed
η1 modification parameter (see text) 0.1 [28]
η2 modification parameter (see text) 1/2 [28]
η3 modification parameter (see text) 1.2 [28]
η4 modification parameter (see text) 1 [28]
η5 modification parameter (see text) 0.01 [28]
η6 modification parameter (see text) 0.2 [28]
θH modification parameter for infection rate of high-risk ≥ 1 assumed

susceptible individuals
1− θP drug efficacy in preventing infection [0,1] assumed
ψ1 hospitalization rate of individuals in I2 class 0.5 [28]
ψ2 rate of ICU admission of hospitalized individuals 0.8 [28]
γ1 progression rate from I1 to I2 classes 0.06 [28]
δ disease-induced death rate of individuals in I2 class 1/100 [28]
θ1δ disease-induced death rate for hospitalized individuals 1/100 [28]
θ2δ disease-induced death rate for individuals in ICU 1/100 [28]

rate α1. A fraction, f , of these individuals display clinical symptoms of the disease
and the remaining fraction, 1−f , does not show disease symptoms (and are moved
to the class A). Infectious individuals that show no disease symptoms recover at a
rate φ1 and die due to the disease at a rate δ. Individuals in the I1 class receive
antiviral treatment at a rate τ1. These individuals progress to the later infectious
class (I2) at a rate γ1. Similarly, individuals in the I2 class are treated (at a rate
τ2), hospitalized (at a rate ψ1), recover (at a rate φ2) and suffer disease induced
death (at a rate δ). Hospitalized individuals (not currently in ICU) are admitted
into ICU (at a rate ψ2). Hospitalized individuals recover (at a rate φ3) and suffer
disease-induced death (at a reduced rate θ1δ, where 0 < θ1 < 1 accounts for the
assumption that hospitalized individuals, in the H1 class, are less likely to die than
unhospitalized infectious individuals in the I2 class).

Individuals in ICU recover (at a rate φ4) and die due to the H1N1 pandemic
(at an increased rate θ2δ, where θ2 > 1 accounts for the assumption that those in
ICU are more likely to die than those in the I2 class). Finally, treated individuals
recover (at a rate φ5). It is assumed that recovery confers permanent immunity
against re-infection with H1N1.

The model (2.1) is an extension of the model presented by Sharomi et al. [32]
by:

(i) administering antivirals to susceptible individuals (only individuals with
clinical symptoms of the disease are given antivirals in [32]);

(ii) stratifying the susceptible population based on their risk of acquiring in-
fection.
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The basic qualitative properties of the model (2.1) will now be analyzed.

2.1. Basic properties of the model.

Theorem 2.1. The variables of the model (2.1) are non-negative for all time t > 0.
In other words, the solutions of the model (2.1) with positive initial data will remain
positive for all t > 0.

Proof. Let,

t1 = sup
{
t > 0 : SL > 0, SH > 0, P > 0, L > 0, A > 0,

I1 > 0, I2 > 0, H1 > 0, H2 > 0, T > 0, R > 0
}
.

Thus, t1 > 0. The first equation of the model (2.1) can be rewritten as

d

dt

{
SL(t) exp

[
(σ + µ)t+

∫ t

0

λ(ψ)dψ
]}

= Π(1− p) exp
[
(σ + µ)t+

∫ t

0

λ(ψ)dψ
]
,

so that

SL(t1)exp
[
(σ + µ)t1 +

∫ t1

0

λ(ψ)dψ
]
− SL(0)

=
∫ t1

0

[
Π(1− p)exp

(
(σ + µ)y +

∫ y

0

λdψ
)]
dy.

Therefore,

SL(t1) ≥ SL(0)exp
[
− (σ + µ)t1 −

∫ t1

0

λdψ
]
+ exp

[
− (σ + µ)t1 −

∫ t1

0

λdψ
]

×
∫ t1

0

{
Π(1− p)exp

[
(σ + µ)y +

∫ y

0

λdψ
]}
dy > 0.

Similarly, it can be shown that SH(t) > 0, P (t) > 0, L(t) > 0, A(t) > 0, I1(t) > 0,
I2(t) > 0, H1(t) > 0, H2(t) > 0, T (t) > 0, R(t) > 0 for all t > 0. �

Theorem 2.1 can also be proven by applying a result from Appendix A of [36].
Adding all the equations in the system (2.1) gives

dN

dt
= Π− µN − δ(I2 + θ1H1 + θ2H2), (2.2)

so that,
dN

dt
≤ Π− µN. (2.3)

Since N(t) ≥ 0, it follows, using Gronwall inequality, that

N(t) ≤ N(0)e−µt +
Π
µ

(1− e−µt).

Hence,
N(t) ≤ Π/µ if N(0) ≤ Π/µ. (2.4)

This result is summarized below.

Lemma 2.2. The following biologically-feasible region of model (2.1) is positively-
invariant:

D =
{

(SL, SH , P, L,A, I1, I2,H1,H2, T,R) ∈ R11
+ :

SL + SH + P + L+A+ I1 + I2 +H1 +H2 + T +R ≤ Π
µ

}
.
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Thus, in the region D, the model is well-posed epidemiologically and mathemat-
ically [21]. Hence, it is sufficient to study the qualitative dynamics of the model
(2.1) in D.

3. Existence and Stability of Equilibria

3.1. Local stability of disease-free equilibrium (DFE). The model (2.1) has
a DFE, given by

E0 = (S∗L, S
∗
H , P

∗, L∗, A∗, I∗1 , I
∗
2 ,H

∗
1 ,H

∗
2 , T

∗, R∗)

=
(
S∗L, S

∗
H ,

σLS
∗
L + σHS

∗
H

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
,

with

S∗L =
Π(1− p)
σL + µ

, S∗H =
Πp

σH + µ
.

Following [13], the linear stability of E0 can be established using the next generation
operator method on system (2.1). The matrices F (for the new infection terms)
and V (of the transition terms) are given, respectively, by

F =



βη1Ω βη2Ω βΩ βη3Ω βη4Ω βη5Ω βη6Ω
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

V =



K1 0 0 0 0 0 0
−α1(1− f) K2 0 0 0 0 0
−α1f 0 K3 0 0 0 0

0 0 −γ1 K4 0 0 0
0 0 0 −ψ1 K5 0 0
0 0 0 0 −ψ2 K6 0
0 0 −τ1 −τ2 0 0 K7


,

where, Ω = (S∗L+θHS∗H+θPP ∗)/N∗, K1 = α1+µ, K2 = φ1+µ+δ, K3 = τ1+γ1+µ,
K4 = τ2 +ψ1 +φ2 +µ+ δ, K5 = ψ2 +φ3 +µ+ θ1δ, K6 = φ4 +µ+ θ2δ, K7 = φ5 +µ
and N∗ = Π

µ .
It follows then that the control reproduction number, denoted by Rc, is given by

Rc = ρ(FV −1)

=
βΩ
K1

{
η1 +

{α1η2(1− f)
K2

+
α1f

K3K4

[
K4 + η3γ1 +

η6
K7

(τ1K4 + τ2γ1) +Q
]}}

,

(3.1)

where, Q = (ψ1γ1(K6η4 + ψ2η5))/(K5K6) and ρ is the spectral radius (dominant
eigenvalue in magnitude) of the next generation matrix FV −1. Hence, using [13,
Theorem 2], the following result is established.

Lemma 3.1. The DFE, E0, of the model (2.1), is locally asymptotically stable
(LAS) if Rc < 1, and unstable if Rc > 1.
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Figure 2. Simulations of the model (2.1) showing the total num-
ber of infected individuals as a function of time, using various
initial conditions. Parameter values used are as in Table 1 with
p = 0.5, θH = 1, θP = 0, f = 0.5, φ4 = 1/7, φ5 = 1/7, c = 1,
β = 0.4, η1 = 0.1 (so that, Rc = 0.004 < 1)

The epidemiological significance of the control reproduction number, Rc, which
represents the average number of new cases generated by a primary infectious indi-
vidual in a population where some susceptible individuals receive antiviral prophy-
laxis, is that the H1N1 pandemic can be effectively controlled if the use of antiviral
can bring the threshold quantity (Rc) to a value less than unity. Biologically-
speaking, Lemma 3.1 implies that the H1N1 pandemic can be eliminated from the
population (when Rc < 1) if the initial sizes of the sub-populations in various com-
partments of the model are in the basin of attraction of the DFE (E0). To ensure
that disease elimination is independent of the initial sizes of the sub-populations of
the model, it is necessary to show that the DFE is globally asymptotically stable
(GAS). This is considered below, for a special case.

It is convenient to define the following quantities

RP = Rc

∣∣
τ1=τ2=0

=
βΩ
K1

{
η1 +

{α1η2(1− f)
K2

+
α1f

K3K4
[K4 + η3γ1 +Q]

}}
,

RT = Rc

∣∣
σL=σH=0

=
βω

N∗K1

{
η1 +

{α1η2(1− f)
K2

+
α1f

K3K4
[K4 + η3γ1 +

η6
K7

(τ1K4 + τ2γ1) +Q]
}}
.

(3.2)

The quantities, RP and RT , represent the control reproduction numbers associated
with the singular prophylactic (RP ) or therapeutic (RT ) use of antivirals in the
community, respectively.

3.2. Global stability of DFE. The GAS property of the DFE (E0) of the model
is considered for the special case where all the susceptible individuals (i.e., there
is no stratification of the susceptible individuals based on risk of infection) are
equally likely to acquire infection (i.e., θH = 1) and the susceptible individuals
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who received antivirals are fully protected against infection (i.e., θP = 0). Define
R̃c = Rc

∣∣
θH=1,θP=0

. We claim the following result.

Theorem 3.2. The DFE, E0, of the model (2.1) with θH = 1 and θP = 0, is GAS
in D if R̃c ≤ 1.

Proof. Consider the model (2.1) with θH = 1 and θP = 0. Further, consider the
Lyapunov function

F = g1L+ g2A+ g3I1 + g4I2 + g5H1 + g6H2 + g7T,

where
g1 = η1K2K3K4K5K6K7 + η2α1K3K4K5K6K7(1− f) + α1fK2K4K5K6K7

+ η3γ1α1fK2K5K6K7 + η4γ1ψ1α1fK2K6K7 + η5ψ1ψ2γ1α1fK2K7

+ η6α1τ1fK2K4K5K6 + η6α1τ2γ1fK2K5K6,

g2 = η2K1K3K4K5K6K7,

g3 = K1K2(K4K5K6K7 + η3γ1K5K6K7 + η4ψ1γ1K6K7 + η5ψ1ψ2γ1K7

+ η6τ1K4K5K6 + η6τ2γ1K5K6),

g4 = K1K2K3(η3K5K6K7 + η4ψ1K6K7 + η5ψ1ψ2K7 + η6τ2K5K6),

g5 = K1K2K3K4K7(η4K6 + η5ψ2),
g6 = η5K1K2K3K4K5K7,

g7 = η6K1K2K3K4K5K6.

The Lyapunov derivative is given by (where a dot represents differentiation with
respect to t)

Ḟ = g1L̇+ g2Ȧ+ g3İ1 + g4İ2 + g5Ḣ1 + g6Ḣ2 + g7Ṫ

= g1[λ(SL + SH + θPP )− (α1 + µ)L] + g2[α1(1− f)L− (φ1 + µ)A]

+ g3[α1fL− (τ1 + γ1 + µ)I1] + g4[γ1I1 − (τ2 + ψ1 + φ2 + µ+ δ)I2]

+ g5[ψ1I2 − (ψ2 + φ3 + µ+ θ1δ)H1] + g6[ψ2H1 − (φ4 + µ+ θ2δ)H2]

+ g7[τ1I1 + τ2I2 − (φ5 + µ)T ],

so that

Ḟ = g1λ[SL(t) + SH(t)]−K1K2K3K4K5K6K7

(
η1L+ η2A+ I1 + η3I2

+ η4H1 + η5H2

)
= g1λ[SL(t) + SH(t)]−K1K2K3K4K5K6K7

λN

β

≤ g1λN −K1K2K3K4K5K6K7
λN

β
,

since SL(t) + SH(t) ≤ N(t) in D.
It can be shown that g1 = β

K 1
K2K3K4K5K6K7. Hence,

Ḟ ≤ R̃c

β
K1K2K3K4K5K6K7λN −K1K2K3K4K5K6K7

λN

β

= K1K2K3K4K5K6K7
λN

β
(R̃c − 1).
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Thus, Ḟ ≤ 0 if R̃c ≤ 1 with Ḟ = 0 if and only if L = A = I1 = I2 = H1 = H2 = T =
0. Further, the largest compact invariant set in {(SL, SH , P, L,A, I1, I2,H1,H2, T,

R) ∈ D : Ḟ = 0} is the singleton {E0}. It follows from the LaSalle Invariance
Principle ([26, Chapter 2, Theorem 6.4]) that every solution to the equations in
(2.1) with θH = 1 and θP = 0 and with initial conditions in D converge to DFE, E0,
as t→∞. That is, [L(t), A(t), I1(t), I2(t),H1(t),H2(t), T (t)] → (0, 0, 0, 0, 0, 0, 0) as
t → ∞. Substituting L = A = I1 = I2 = H1 = H2 = T = 0 into the first three
equations of the model (2.1) gives SL(t) → S∗L, SH(t) → S∗H and P (t) → P ∗ as
t →∞. Thus, [SL(t), SH(t), P (t), L(t), A(t), I1(t), I2(t),H1(t),H2(t), T (t), R(t)] →
(S∗L, S

∗
H , P

∗, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞ for R̃c ≤ 1, so that the DFE, E0, is GAS
in D if R̃c ≤ 1. �

Theorem 3.2 shows that the H1N1 pandemic can be eliminated from the comunity
if the use of antivirals can lead to R̃c ≤ 1 for the case when θH = 1 and θp = 0.
This result is illustrated in Figure 2.

3.3. Existence and stability of an endemic equilibrium point (EEP). In
order to find endemic equilibria of the basic model (2.1) (that is, equilibria where
the infected components of the model (2.1) are non-zero), the following steps are
taken. Let

E1 = (S∗∗L , S
∗∗
H , P

∗∗, L∗∗, A∗∗, I∗∗1 , I∗∗2 ,H∗∗
1 ,H∗∗

2 , T ∗∗, R∗∗)

represents an arbitrary endemic equilibrium of the model (2.1). Further, let

λ∗∗ =
β(η1L∗∗ + η2A

∗∗ + I∗∗1 + η3I
∗∗
2 + η4H

∗∗
1 + η5H

∗∗
2 + η6T

∗∗)
N∗∗ ,

be the associated force of infection at steady-state. Solving the equations of the
model at steady-state gives

S∗∗L =
Π(1− p)

λ∗∗ + σL + µ
, S∗∗H =

Πp
λ∗∗ + σH + µ

,

P ∗∗ =
Π{[σL(1− p) + σHp](λ∗∗ + µ) + σLσH}

(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)µ
,

L∗∗ =
λ∗∗Π[σH(1− p) + σL + λ∗∗ + µ]
K1(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

A∗∗ =
λ∗∗Πα1(1− f)[σH(1− p) + σL + λ∗∗ + µ]
K1K2(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

I∗∗1 =
λ∗∗Πα1f [σH(1− p) + σL + λ∗∗ + µ]
K1K3(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

I∗∗2 =
λ∗∗Πα1fγ1[σH(1− p) + σL + λ∗∗ + µ]
K1K3K4(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

H∗∗
1 =

λ∗∗Πα1fγ1ψ1[σH(1− p) + σL + λ∗∗ + µ]
K1K3K4K5(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

H∗∗
2 =

λ∗∗Πα1fγ1ψ1ψ2[σH(1− p) + σL + λ∗∗ + µ]
K1K3K4K5K6(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)

,

T ∗∗ =
λ∗∗Πα1f(K4τ1 + γ1τ2)[σH(1− p) + σL + λ∗∗ + µ]

K1K3K4K7(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)
,
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R∗∗ =
λ∗∗Πα1[σH(1− p) + σL + λ∗∗ + µ]X

µK1K2K3K4K5K6K7(λ∗∗ + σH + µ)(λ∗∗ + σL + µ)
, (3.3)

where

X = K5K6[K7K3K4φ1(1 − f ) +K2φ5f(K4τ1 + γ1τ2)]

− fk2γ1K7(ψ2φ4ψ1 +K6φ3ψ1 +K6φ2K5).

It can be shown that the non-zero equilibria of the model satisfy the following
quadratic (in terms of λ∗∗):

a0(λ∗∗)2 + b0λ
∗∗ + c0 = 0, (3.4)

where,

a0 = µK2K6K5K4K3K7 + α1(1 − f )K7K3K4K5K6µ+ α1K7ψ1γ1fk2K6φ3

+ ψ1γ1α1fk7K6K2µ+ α1K5K6K2φ5K4τ1f + α1fk5K6K2µγ1τ2

+ α1fk7K4K5K6K2µ+ α1K7K3K4K5K6φ1(1 − f ) + ψ2ψ1γ1α1fk7K2µ

+ α1K5K6K2φ5fγ1τ2 + α1K7ψ1γ1fk2φ4ψ2 + γ1α1fk7K5K6K2µ

+ α1K7γ1fk2K6φ2K5 + α1fk5K6K2µK4τ1,

b0 = K6K7K5K4K3K1K2µ− µβη1K2K3K4K5K6K7

− µβη2α1(1− f)K3K4K5K6K7 − µβα1fK2K4K5K6K7

− µβη3γ1α1fK2K5K6K7 − µβη4ψ1γ1α1fK2K6K7 − µβη5ψ2ψ1γ1α1fK2K7

− µβη6α1fK2K5K6τ2γ1 + µK2K3K4K5K7K6σlp− µβη6α1fK2K5K6τ1K4

+K2K1K3K4K5K7K6σl +K6K7K5K4K3K2µ
2

+K2K1K3K4K5K7K6σhp−K2K1K3K4K5K7K6σlp

− α1(1− f)µK3K4K5K7K6σhp− µK2K3K4K5K7K6σhp

+ µK2K3K4K5K7K6σh + α1(1− f)µK3K4K5K7K6σlp

+ α1(1− f)µK3K4K5K7K6σh + α1fµK2K4K5K7K6σlp

+ ψ2ψ1γ1α1fµK2K7σh + α1(1− f)µ2K3K4K5K7K6 + γ1α1fµK2K5K7K6σh

− γ1α1fµK2K5K7K6σhp+ α1fµK2K4K5K7K6σh − α1fµK2K4K5K7K6σhp

+ α1fµ
2K2K4K5K7K6 + α1φ4K2K7ψ2ψ1γ1fσh − α1φ5K2K5fτ2γ1σhpK6

− ψ2ψ1γ1α1fµK2K7σhp+ ψ2ψ1γ1α1fµ
2K2K7 + γ1α1fµ

2K2K5K7K6

+ γ1α1fµK2K5K7K6σlp+ ψ1γ1α1fµK2K7K6σh − ψ1γ1α1fµK2K7K6σhp

+ ψ1γ1α1fµ
2K2K7K6 + ψ1γ1α1fµK2K7K6σlp+ α1φ2K2γ1fµK5K7K6

+ α1φ2K2γ1fσhK5K7K6 + α1φ2K2γ1fσlpK5K7K6 + α1φ5K2K5fτ2γ1σhK6

+ α1φ4K2K7ψ2ψ1γ1fµ+ α1φ4K2K7ψ2ψ1γ1fσlp+ ψ2ψ1γ1α1fµK2K7σlp

+ α1fµK2K5K6τ2γ1σh − α1fµK2K5K6τ2γ1σhp+ α1fµ
2K2K5K6τ2γ1

+ α1fµK2K5K6τ2γ1σlp+ α1fµK2K5K6τ1σhK4 − α1fµK2K5K6τ1σhpK4

+ α1fµ
2K2K5K6τ1K4 + α1fµK2K5K6τ1σlpK4 + α1φ5K2K5fτ1σlpK4K6

+ α1φ5K2K5fτ2γ1µK6 + α1φ5K2K5fτ2γ1σlpK6

+ α1φ1(1− f)µK3K4K5K7K6 − α1φ1(1− f)σhpK3K4K5K7K6

− α1φ2K2γ1fσhpK5K7K6 + α1φ1(1− f)σhK3K4K5K7K6
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+ α1φ3K2ψ1γ1fσhK7K6 − α1φ3K2ψ1γ1fσhpK7K6

+ α1φ3K2ψ1γ1fµK7K6 + α1φ5K2K5fτ1σhK4K6

− α1φ5K2K5fτ1σhpK4K6 + α1φ5K2K5fτ1µK4K6

+ α1φ3K2ψ1γ1fσlpK7K6 + α1φ1(1− f)σlpK3K4K5K7K6

− α1φ4K2K7ψ2ψ1γ1fσhp,

c0 = K1K2K3K4K5K6K7(µ+ σl)(µ+ σh)(1−Rc).
The positive endemic equilibria of the model (2.1) are then obtained by solving

for λ∗∗ from the quadratic (3.4) and substituting the results (positive values of
λ∗∗) into (3.3). The coefficient a0, of (3.4), is always positive, and c0 is positive
(negative) if Rc is less than (greater than) unity, respectively. Thus, the following
result is established.

Theorem 3.3. The model (2.1) has:
(i) a unique endemic equilibrium if c0 < 0 ⇔ Rc > 1;
(ii) a unique endemic equilibrium if b0 < 0, and c0 = 0 or b20 − 4a0c0 = 0;
(iii) two endemic equilibrium if c0 > 0, b0 < 0 and b20 − 4a0c0 > 0;
(iv) no endemic equilibrium otherwise.

It is clear from Theorem 3.3 (Case (i)) that the model has a unique endemic
equilibrium whenever Rc > 1. Case (iii) of Theorem 3.3 suggests the possibility
of backward bifurcation in the model (2.1) (where a stable DFE co-exists with a
stable EEP when Rc < 1). This phenomenon is not considered in detail in the
current study (the reader may refer to [2, 5, 6, 14, 16, 19, 24, 29, 32, 33, 34, 35, 39],
and some of the references therein for discussions on backward bifurcation).

Global Stability of EEP: Special Case (θH = 1 and θP = 0). Consider, again, the
model (2.1) subject to the special case where all the susceptible individuals (from
both risk groups) are equally likely to acquire infection (so that, θH = 1) and the
use of antiviral prophylaxis gives perfect protection against infection (i.e., θP = 0).
Further, let

sign(SL − S∗∗L ) = sign(SH − S∗H) = sign(P − P ∗∗)

= sign(L− L∗∗) = sign(A−A∗∗) = sign(I1 − I∗∗1 )

= sign(I2 − I∗∗2 ) = sign(H1 −H∗∗
1 ) = sign(H2 −H∗∗

2 )

= sign(T − T ∗∗) = sign(R−R∗∗)}.

(3.5)

It is convenient to define the region:

D0 = {(SL, SH , P, L,A, I1, I2,H1,H2, T,R) ∈ D :

L = A = I1 = I2 = H1 = H2 = T = R = 0}.
We claim the following result.

Theorem 3.4. The associated unique endemic equilibrium of the model (2.1), with
θH = 1 and θP = 0, is GAS in D \ D0 whenever R̃c > 1 and equation (3.5) holds.

Proof. Consider the model (2.1) with θH = 1 and θP = 0. Further, let R̃c > 1
(so that the model (2.1) has a unique EEP, as guaranteed by Theorem 3.3). Fur-
thermore, let the relations in equation (3.5) hold. Consider the Lyapunov function
(Lyapunov functions of this type have been used in the literature, such as in [46])

F = |SL − S∗∗L |+ |SH − S∗∗H |+ |P − P ∗∗|+ |L− L∗∗|+ |A−A∗∗|+ |I1 − I∗∗1 |
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+ |I2 − I∗∗2 |+ |H1 −H∗∗
1 |+ |H2 −H∗∗

2 |+ |T − T ∗∗|+ |R−R∗∗|.

It follows that the right derivative, D+F , of F , along the solutions of (2.1) with
θH = 1 and θP = 0, is given by:

D+F
= sign(SL − S∗∗L )

{
(1− p)Π− λSL − σLSL − µSL − [(1− p)Π− λ∗∗S∗∗L

− σLS
∗∗
L − µSL

∗∗]
}

+ sign(SH − S∗∗H )
{
pΠ− λSH − σHSH − µSH

− [pΠ− λ∗∗S∗∗H − σHS
∗∗
H − µSH

∗∗]
}

+ sign(P − P ∗∗)[σLSL + σHSH − µP − (σLS∗∗L + σHS
∗∗
H − µP ∗∗)]

+ sign(L− L∗∗)
{
[λ(SL + SH)− (α1 + µ)L]−

[
λ∗∗(S∗∗L + S∗∗H )

− (α1 + µ)L∗∗
]}

+ sign(A−A∗∗){α1(1− f)L− (φ1 + µ)A− [α1(1− f)L∗∗ − (φ1 + µ)A∗∗]}
+ sign(I1 − I∗∗1 ){α1fL− (τ1 + γ1 + µ)I1 − [α1fL

∗∗ − (τ1 + γ1 + µ)I∗∗1 ]}
+ sign(I2 − I∗∗2 ){γ1I1 − (τ2 + ψ1 + φ2 + µ+ δ)I2
− [γ1I

∗∗
1 − (τ2 + ψ1 + φ2 + µ+ δ)I∗∗2 ]}

+ sign(H1 −H∗∗
1 ){ψ1I2 − (ψ2 + φ3 + µ+ θ1δ)H1

− [ψ1I
∗∗
2 − (ψ2 + φ3 + µ+ θ1δ)H∗∗

1 ]}
+ sign(H2 −H∗∗

2 ){ψ2H1 − (φ4 + µ+ θ2δ)H2

− [ψ2H
∗∗
1 − (φ4 + µ+ θ2δ)H∗∗

2 ]}
+ sign(T − T ∗∗){τ1I1 + τ2I2 − (φ5 + µ)T − [τ1I∗∗1 + τ2I

∗∗
2 − (φ5 + µ)T ∗∗]}

+ sign(R−R∗∗)[φ1A+ φ2I2 + φ3H1 + φ4H2 + φ5T − µR

− (φ1A
∗∗ + φ2I

∗∗
2 + φ3H

∗∗
1 + φ4H

∗∗
2 + φ5T

∗∗ − µR∗∗)]

= sign(SL − S∗∗L ){(1− p)Π− λ∗∗(SL − S∗∗L )− σL(SL − S∗∗L )− µ(SL − S∗∗L )}
+ sign(SH − S∗∗H ){pΠ− λ∗∗(SH − S∗∗H )− σH(SH − S∗∗H )− µ(SH − S∗∗H )}
+ sign(P − P ∗∗){σL(SL − S∗∗L ) + σH(SH − S∗∗H )− µ(P − P ∗∗)}
+ sign(L− L∗∗){λ∗∗[(SL − S∗∗L ) + (SH − S∗∗H )]− (α1 + µ)(L− L∗∗)}
+ sign(A−A∗∗){α1(1− f)(L− L∗∗)− (φ1 + µ)(A−A∗∗)}
+ sign(I1 − I∗∗1 ){α1f(L− L∗∗)− (τ1 + γ1 + µ)(I1 − I∗∗1 )}
+ sign(I2 − I∗∗2 ){γ1(I1 − I∗∗1 )− (τ2 + ψ1 + φ2 + µ+ δ)(I2 − I∗∗2 )}
+ sign(H1 −H∗∗

1 ){ψ1(I2 − I∗∗2 )− (ψ2 + φ3 + µ+ θ1δ)(H1 −H∗∗
1 )}

+ sign(H2 −H∗∗
2 ){ψ2(H1 −H∗∗

1 )− (φ4 + µ+ θ2δ)(H2 −H∗∗
2 )}

+ sign(T − T ∗∗){τ1(I1 − I∗∗1 ) + τ2(I2 − I∗∗2 )− (φ5 + µ)(T − T ∗∗)}
+ sign(R−R∗∗){φ1(A−A∗∗) + φ2(I2 − I∗∗2 ) + φ3(H1 −H∗∗

1 )

+ φ4(H2 −H∗∗
2 ) + φ5(T − T ∗∗)− µ(R−R∗∗)},

= −µ|SL − S∗∗L | − µ|SH − S∗∗H | − µ|P − P ∗∗| − µ|L− L∗∗| − µ|I1 − I∗∗1 |
− (µ+ δ)|I2 − I∗∗2 | − (µ+ θ1δ)|H1 −H∗∗

1 | − (µ+ θ2δ)|H2 −H∗∗
2 |

− µ|R−R∗∗|
≤ −µ|SL − S∗∗L | − µ|SH − S∗∗H | − µ|P − P ∗∗| − µ|L− L∗∗| − µ|I1 − I∗∗1 |
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Figure 3. Simulations of (2.1) showing the total number of in-
fected individuals as a function of time, using various initial con-
ditions. Parameter values used are as in Table 1 with p = 0.5,
θH = 1.2, θP = 0.9, α1 = 0.3, f = 0.5, φ4 = φ5 = 1/7, c = 1,
β = 0.4, η1 = 0.1 (so that Rc = 1.15 > 1)

− µ|I2 − I∗∗2 | − µ|H1 −H∗∗
1 | − µ|H2 −H∗∗

2 | − µ|R−R∗∗|
= −µF .

Thus, D+F ≤ 0. Hence, F is a Lyapunov function on D \ D0. It follows, by the
LaSalle’s Invariance Principle [20], that every solution to the equations of the model
(2.1), with θH = 1 and θP = 0, with initial conditions in D \ D0 approaches the
associated unique endemic equilibrium of the model (2.1), with θP = 0 and θH = 1,
as t→∞ if R̃c > 1 and equation (3.5) holds. �

The sensitivity analysis of variables of the model (2) using the sensitivity func-
tions, ∂X/∂q, (where X represents a variable, and q represents a parameter), with
respect to selective parameters (given the size of the parameter space) was car-
ried out. The sensitivity analysis reveals that the sensitivity function of low risk
susceptible individuals, SL, decreases (taking negative values) with β, σL, α1, and
f initially, attaining a minimum value in around 10 days. It then increases, and
finally becomes insensitive to the respective parameter. On the other hand, SL
increases with τ1 first, with a peak within first 10 days. It then decreases, and
finally becomes insensitive to τ1. Similarly, the number of infectious symptomatic
individuals at early stage of infection (I1) is insensitive to π, ηi, β, and σL. However
I1 increases initially with α1, and f , attaining a peak in less than 10 days, then
decreases before becoming insensitive asymptotically. On the other hand, it first
decreases (taking negative values), then increases with τ1 and γ1, and then becomes
insensitive to the corresponding parameter. It should be noted that the sensitivity
functions of state variables take the maximum magnitudes during transient time
interval. However, they become insensitive asymptotically. It should be mentioned
that this univariate approach does not account for a possible influence of correlation
between parameter estimates.
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Figure 4. Simulations of model (2.1) showing the time series for
the number of infected cases per day and its fit with the actual
confirmed new daily cases in Manitoba. (A): First Wave. The
first wave was assumed to begin in April and end in early August.
Here, we used θP = 0.6, α1 = 5 and β = .609 in the beginning
and it is assumed that the combined use of antivirals (prophylaxis
and therapeutic) takes effect around the middle of June, (with
θP = 0.7, α1 = 0.4, β = 0.2). Other parameter values are as
in Table 1. (B): Second Wave. The second wave began in early
October and ended at the end of December. Here, θP = 0.6,
α1 = 3, β = 0.6061 in the beginning of the wave

Figure 3 depicts the numerical simulation results obtained for the case when
R̃c > 1, from which it is clear that all initial solutions converged to the unique
endemic equilibrium (in line with Theorem 3.4).

4. Numerical Simulations

The model (2.1) is further simulated using the parameter values in Table 1
(unless otherwise stated) to quantitatively assess the role of antivirals in curtailing
the spread of the H1N1 pandemic. First of all, the model’s output is compared with
the pandemic H1N1 data obtained from the province of Manitoba. The results
obtained, depicted in Figure 4, show that the model fits the observed data (for
both the first and second waves of the pandemic) reasonably well. It should be
mentioned that the model simulations for the first wave (Figure 4A) were based
on the assumptions that 30% of Manitobans are in the high-risk (of infection)
category, and that the antivirals are available at the beginning of the pandemic.
For the second wave plot (Figure 4B), it is additionally assumed that 20% of the
Manitoban population have pre-existing immunity against the H1N1 infection (due
to their assumed H1N1 infection during the first wave). We also point out that
insufficient H1N1 data at this point hinders the definition of realistic ranges for the
parameters, and a thorough sensitivity analysis is not feasible.

The model is further simulated to assess the targeted use of the antivirals as a
preventive agent only (i.e., the drugs are only given to susceptible individuals, and
not to infected individuals with disease symptoms), under the assumptions that all
susceptible individuals are equally likely to acquire the H1N1 infection (θH = 1) and
that all those who received prophylaxis are completely protected against infection
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Figure 5. Simulations of model (2.1) in the absence of antiviral
treatment (τ1 = τ2 = 0) showing the cumulative number of new
cases of infection for different effectiveness levels of the prevention-
only strategy. (A) Low effectiveness level: σL = σH = 0.005,
β = 0.9, θP = 0, θH = 1, f = 0.5, α1 = 0.9 (so that RP = 0.0741);
(B) Moderate effectiveness level: σL = σH = 0.02, β = 0.9, θP = 0,
θH = 1, f = 0.5, α1 = 0.9 (so that RP = 0.0186), (C) High
effectiveness level: σL = σH = 0.08, β = 0.9, θP = 0, θH = 1,
f = 0.5, α1 = 0.9 (so tha, RP = 0.0047). Other parameter values
are as in Table 1

(θP = 0). It should be recalled that, in such a case, Theorem 3.2 guarantees that
the disease will be eliminated if R̃c ≤ 1.

We consider three different levels of effectiveness for this prevention-only targeted
strategy, namely:

(i) Low effectiveness level of the prevention-only strategy (σL = σH = 0.005,
τ1 = τ2 = 0, θH = 1, θP = 0; so that RP = R̃c|τ1=τ2=0 = 0.0741);

(ii) Moderate effectiveness level of the prevention-only strategy (σL = σH =
0.02, τ1 = τ2 = 0, θH = 1, θP = 0; so that RP = R̃c|τ1=τ2=0 = 0.0186);

(iii) High effectiveness level of the prevention-only strategy (σL = σH = 0.08,
τ1 = τ2 = 0, θH = 1, θP = 0; so that RP = R̃c|τ1=τ2=0 = 0.0047).

In other words, the moderate effectiveness level of the prevention-only strategy is
assumed to be four times more effective than the low effectiveness prevention-only
strategy. Similarly, the high effectiveness prevention-only strategy is assumed to be
four times more effective than the moderate effectiveness prevention-only strategy.
These effectiveness levels are chosen arbitrarily. The total cumulative number of
new cases of infection is computed over a span of one year. The results obtained,
depicted in Figure 5, show a decrease in the cumulative number of new cases of
infection with increasing effectiveness level of the prevention-only strategy. While
the low effectiveness strategy resulted in close to a million cumulative cases over
one year (Figure 5A), the moderate effectiveness level resulted in a decrease to
about 425,000 cases (Figure 5B). Furthermore, the high effectiveness level strategy,
which is assumed to be sixteen times more effective than the low effectiveness strat-
egy, resulted in only about 120 new cases over the same time period (Figure 5C).
Thus, these simulations suggest that the singular use of antivirals as prophylaxis
would have limited population-level impact (in reducing disease burden) except if
its effectiveness level is very high.

Additional simulations are carried out to assess the effect of the combined use of
the antivirals (both as prophylaxis and therapeutic agents), under the assumptions
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Figure 6. Simulations of model (2.1) showing the cumulative
number of new cases of infection for different effectiveness levels
of the prevention-treatment combined strategy. (A) Low effective-
ness level: σL = σH = 0.001, τ1 = τ2 = 0.005, β = 0.14, θP = 0,
θH = 1, f = 0.5, α1 = 0.9 (so that R̃c = 0.0522); (B) Moderate
effectiveness level: σL = σH = 0.002, τ1 = τ2 = 0.01, β = 0.14,
θP = 0, θH = 1, f = 0.5, α1 = 0.9 (so that R̃c = 0.0248), (C) High
effectiveness level: σL = σH = 0.003, τ1 = τ2 = 0.015, β = 0.14,
θP = 0, θH = 1, f = 0.5, α1 = 0.9 (so that R̃c = 0.0157). Other
parameter values used are as given in Table 1

that all susceptible individuals are equally likely to acquire the H1N1 infection and
that all those who received prophylaxis are completely protected against infection.
Here, too, three effectiveness levels (of the universal strategy) are considered as
below:

(i) Low effectiveness level of the universal strategy (σL = σH = 0.001, τ1 =
τ2 = 0.005, θH = 1, θP = 0; so that R̃c = 0.0522);

(ii) Moderate effectiveness level of the universal strategy (σL = σH = 0.002,
τ1 = τ2 = 0.01, θH = 1, θP = 0; so that R̃c = 0.0248);

(iii) High effectiveness level of the universal strategy (σL = σH = 0.003, τ1 =
τ2 = 0.015, θH = 1, θP = 0; so that R̃c = 0.0157).

The moderate effectiveness level of the universal strategy is assumed to be twice
more effective than the low effectiveness level. Similarly, the high effectiveness
level is assumed to be three times more effective than the low effectiveness level (it
should be noted that, in all these cases of the universal strategy, the associated re-
production number R̃c < 1 (so that, by Theorem 3.2, the disease will be eliminated
from the community). The simulations show that while the low effectiveness level
results in about 2800 cases (Figures 6A), the moderate and high effectiveness levels
of the universal strategy resulted in about 75 and 15 cases, respectively (Figures
6B, C). Thus, even the moderate effectiveness level of the universal strategy will be
extremely effective in curtailing the spread of the disease. Figure 7 shows the time
to disease elimination using the three effectiveness levels of the universal strategy.
As depicted in Figure 7A, the disease can be eliminated in about 150 days using the
high effectiveness level of the universal strategy. The time to eliminate the disease
increases with decreasing effectiveness level of the universal strategy (Figures 7B,
C).

In summary, this study suggests that the use of antivirals as both prophylaxis
and therapeutic agents is more effective than their targeted use as prophylaxis only.
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Figure 7. Simulations of model (2.1) showing the time needed
to eliminate the disease for different effectiveness levels of the
prevention-treatment combined strategy. (A) High effectiveness
level: σL = σH = 0.003, τ1 = τ2 = 0.015, β = 0.14, θP = 0,
θH = 1, f = 0.2 (so that R̃c = 0.0087). (B) Moderate effective-
ness level: σL = σH = 0.002, τ1 = τ2 = 0.01, β = 0.14, θP = 0,
θH = 1, f = 0.2 (so that R̃c = 0.0136), (C) Low effectiveness level:
σL = σH = 0.001, τ1 = τ2 = 0.005, β = 0.14, θP = 0, θH = 1,
f = 0.2 (so that R̃c = 0.0281); Other parameter values used are
as given in Table 1

In other words, the prospect of disease elimination from the community is greatly
enhanced if the universal strategy is used.

Conclusions. A deterministic model is designed and rigorously analyzed to assess
the impact of antiviral drugs in curtailing the spread of disease of the 2009 swine
influenza pandemic. The analysis of the model, which consists of eleven mutually-
exclusive epidemiological compartments, shows the following:

(i) The disease-free equilibrium of the model is shown to be globally-asymp-
totically stable under the following conditions:
(a) the associated reproduction number R̃c ≤ 1;
(b) all susceptible individuals are equally likely to acquire infection (so

that, θH = 1);
(c) susceptible individuals who received antivirals are fully protected (so

that, θP = 0).
(ii) The model has a unique endemic equilibrium when the associated repro-

duction threshold (Rc) exceeds unity. The unique endemic equilibrium is
shown to be globally-asymptotically stable for the special case where all
susceptible individuals are equally likely to acquire infection and the use of
antiviral prophylaxis gives perfect protection against infection.

Numerical simulations of the model, suggest the following:

(a) The singular use of antivirals, as a preventive agent, has limited population-
level impact in reducing disease burden, except if its effectiveness level is
very high;

(b) The combined use of the antivirals, as preventive and therapeutic agents,
offers great reduction in disease burden, and will result in disease elimina-
tion.
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[1] Boëlle, P. Y., Bernillon, P. and Desenclos, J. C. (2000). A preliminary estimation of the
reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico. Euro Surveill.
14(19): pii=19205.

[2] Brauer, F. (2004). Backward bifurcations in simple vaccination models. J. Math. Anal. Appl.
298(2): 418-431.

[3] Brian, J. C., Bradley, G. W. and Blower, S. (2009). Modeling influenza epidemics and pan-
demics: insights into the future of swine flu (H1N1). BMC Medicine doi:10.1186/1741-7015-
7-30.

[4] Carlos-Chavez, F., Peter, C. and Jose, P. (2009). The first influenza pandemic in the new
millennium: lessons learned hitherto for current control efforts and overall pandemic pre-
paredness. Journal of Immune Based Therapies and Vaccines. doi:10.1186/1476-8518-7-2.

[5] Carr, J. (1981). Applications Centre Manifold Theory. Springer-Verlag, New York.
[6] Castillo-Chavez, C. and Baojun, S. (2004). Dynamical models of tuberculosis and their ap-

plications. Mathematical Biosci. and Engrg. 1(2): 361-404.
[7] CBC News - Health - Canada Enters 2nd Wave of H1N1 (2009). (acc. Nov. 4, 2009) http:

//www.cbc.ca/health/story/2009/10/23/h1n1-second-wave-canada.html.
[8] Centers for Disease Control and Prevention (2009). Three reports of oseltamivir resistant

novel influenza A (H1N1) viruses. http://www.cdc.gov/h1n1flu/HAN/070909.htm. (acc. Jan.
23, 2010).

[9] Centers for Disease Control and Prevention (2009). (acc. Oct. 27, 2009).
http://www.cdc.gov/h1n1flu/background.htm.

[10] Centers for Disease Control and Prevention (2009). (acc. Oct. 27, 2009).
http://www.cdc.gov/media/pressrel/2009/r090729b.htm.

[11] Centers for Disease Control and Prevention (CDC) (2009). Outbreak of swine-origin influenza
A (H1N1) virus infection-Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep. 58
(Dispatch):1-3.

[12] Christophe, F., et al (2009). Pandemic potential of a strain of influenza A (H1N1): Early
findings. Science. 324 (5934): 1557-1561.

[13] van den Driessche, P and Watmough, J. (2002). Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Mathematical Bio-
sciences. 180: 29-48.

[14] Elbasha, E. H. and Gumel, A. B. (2006). Theoretical assessment of public health impact
of imperfect prophylactic HIV-1 vaccines with therapeutic benefits. Bull. Math. Biol. 68:
577-614.

[15] El Universal (2009). (acc. Oct. 27, 2009).
http://www.eluniversal.com.mx/hemeroteca/edicion impresa 20090406.html.

[16] Feng, Z., Castillo-Chavez, C. and Capurro, F. (2000). A model for tuberculosis with exogenous
reinfection. Theor. Pop. Biol. 57: 235-247.

[17] Gen Bank Sequences From 2009 H1N1 Influenza Outbreak (2009). (acc. Oct. 27, 2009).
http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html.

[18] Gojovic, M. Z., Sanders, B., MEcDev, R. N., Fisman, D., Krahn, M.D., and
Bauch, C.T. (2009). Modelling mitigation strategies for pandemic (H1N1). CMAJ.
DOI:10.1503/cmaj.091641.

[19] Gomez-Acevedo, H. and Li, M. (2005). Backward bifurcation in a model for HTLV-I infection
of CD4+ T cells. Bull. Math. Biol. 67(1): 101-114.

[20] Hale, J. K. (1969). Ordinary Differential Equations. John Wiley and Sons, New York.
[21] Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review. 42: 599-653.

http://www.cbc.ca/health/story/2009/10/23/h1n1-second-wave-canada.html
http://www.cbc.ca/health/story/2009/10/23/h1n1-second-wave-canada.html
http://www.cdc.gov/h1n1flu/HAN/070909.htm
http://www.cdc.gov/h1n1flu/background.htm
http://www.cdc.gov/media/pressrel/2009/r090729b.htm
http://www.eluniversal.com.mx/hemeroteca/edicion_impresa_20090406.html
http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html


20 M. IMRAN, T. M. MALIK, S. M. GARBA EJDE-2011/155

[22] Hiroshi, N., Don, K., Mick, R. and Johan, A. P. H. (2009). Early Epidemiological Assessment
of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza Pandemic.
PLoS ONE. 4(8) :e 6852.

[23] Jamieson, D. J., Honein M. A., Rasmussen, S. A. et al. (2009). H1N1 2009 influenza virus
infection during pregnancy in the USA. Lancet. 374 (9688): 451-458.

[24] Kribs-Zaleta, C. and Valesco-Hernandez, J. (2000). A simple vaccination model with multiple
endemic states. Math Biosci. 164: 183-201.

[25] Kumar, A, Zarychanski, R, Pinto, R, et al. (2009). Critically ill patients with 2009 influenza
A(H1N1) infection in Canada. JAMA. 302(17): 1872-1879.

[26] LaSalle, J.P. (1976). The Stability of Dynamical Systems. Regional Conference Series in
Applied Mathematics, SIAM, Philadelphia.

[27] Manitoba Health: Confirmed Cases of H1N1 Flu in Manitoba. (acc. Dec. 31, 2009). http:
//www.gov.mb.ca/health/publichealth/sri/stats1.html.

[28] Nuno, M., Chowell, G. and Gumel, A. B. (2007). Assessing transmission control measures,
antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK, and the
Netherlands. Proceedings of the Royal Society Interface. 4(14): 505-521.

[29] Podder, C. N. and Gumel, A. B. (2009). Qualitative dynamics of a vaccination model for
HSV-2. IMA Journal of Applied Mathematics. 302: 75-107.

[30] Pourbohloul et al. (2009). Initial human transmission dynamics of the pandemic (H1N1) 2009
virus in North America. Influenza and Other Respiratory Viruses. 3(5): 215-222.

[31] Public Health Agency of Canada (Week 10). (2010). (acc. Mar. 23, 2010). http://www.

phac-aspc.gc.ca/fluwatch/09-10.
[32] Sharomi, O., Podder, C. N., Gumel, A. B., Mahmud, S. M. and, E. Rubinstein. Modelling the

Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic.
Bull. Math. Biol. To appear.

[33] Sharomi, O and Gumel, A. B. (2009). Re-infection-induced backward bifurcation in the trans-
mission dynamics of Chlamydia trachomatis. J. Math. Anal. Appl. 356: 96-118.

[34] Sharomi, O., Podder, C.N., Gumel, A. B., Elbasha, E. H. and Watmough, J. (2007). Role of
incidence function in vaccine-induced backward bifurcation in some HIV models. Mathemat-
ical Biosciences. 210: 436-463.

[35] Sharomi, O., Podder, C.N., Gumel, A.B., and Song, B. (2008). Mathematical analysis of the
transmission dynamics of HIV/TB co-infection in the presence of treatment. Math. Biosci.
Engrg. 5(1): 145-174.

[36] Thieme, H. R. (2003). Mathematics in Popluation Biology. Princeton University Press.
[37] United States Centers for Disease Control and Prevention (2009). Pregnant women and novel

influenza A (H1N1): Considerations for clinicians. (acc. Nov. 5, 2009). http://www.cdc.gov/
h1n1flu/clinician pregnant.htm.

[38] United States Centers for Disease Control (2009). Information on people at high-risk of de-
veloping flu-related complications. http://www.cdc.gov/h1n1flu/highrisk.htm. (acc. Nov.
5, 2009).

[39] Wang, W. and Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models
in periodic environments. J. Dyn. Diff. Equat. 20: 699-717.

[40] Winnipeg Regional Health Authority Report (2009). Outbreak of novel H1N1 influenza A
virus in the Winnipeg Health Region. http://www.wrha.mb.ca/. (acc. Nov. 4, 2009).

[41] World Health Organization (2009). Pandemic (H1N1) (2009)-update 71. (acc. Oct. 27, 2009).
http://www.who.int/csr/don/2009 10 23/en/index.html.

[42] World Health Organization (2009). Influenza A (H1N1)-update 49. Global Alert and Response
(GAR). http://www.who.int/csr/don/2009 06 15/en/index.html. (acc. Oct. 27, 2009).

[43] World Health Organization (2009). Statement by Director-General. June 11, 2009.
[44] World Health Organization (2009). Human infection with new influenza A (H1N1) virus:

clinical observations from Mexico and other affected countries. Weekly epidemiological record,
May 2009; 84:185. http://www.who.int/wer/2009/wer8421.pdf. (acc. Nov. 5, 2009).

[45] World Health Organization (2009). Pandemic (H1N1) 2009 - update 81 (acc. Mar. 5, 2010).
http://www.who.int/csr/don/2010 03 05/en/index.html.

[46] Yang, Y. and Xiao, Y. (2010). Threshold dynamics for an HIV model in periodic environment.
JMAA. 361(1): 59-68

http://www.gov.mb.ca/health/publichealth/sri/stats1.html
http://www.gov.mb.ca/health/publichealth/sri/stats1.html
http://www.phac-aspc.gc.ca/fluwatch/09-10
http://www.phac-aspc.gc.ca/fluwatch/09-10
http://www.cdc.gov/h1n1flu/clinician_pregnant.htm
http://www.cdc.gov/h1n1flu/clinician_pregnant.htm
http://www.cdc.gov/h1n1flu/highrisk.htm.
http://www.wrha.mb.ca/
http://www.who.int/csr/don/2009_10_23/en/index.html
http://www.who.int/csr/don/2009_06_15/en/index.html
http://www.who.int/wer/2009/wer8421.pdf
http://www.who.int/csr/don/2010_03_05/en/index.html


EJDE-2011/155 H1N1 INFLUENZA PANDEMIC 21

Mudassar Imran
Department of Mathematics, Lahore University of Management Sciences, Lahore, Pak-
istan

E-mail address: mudassar.imran@gmail.com

Mohammad Tufail Malik
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2,
Canada

E-mail address: malik@cc.umanitoba.ca http://home.cc.umanitoba.ca/∼malik/

Salisu M. Garba
Department of Mathematics and Applied Mathematics, University of Pretoria, Preto-
ria 0002, South Africa

E-mail address: Salisu.Garba@up.ac.za

http://home.cc.umanitoba.ca/~malik/

	1. Introduction
	2. Model Formulation
	2.1. Basic properties of the model

	3. Existence and Stability of Equilibria
	3.1. Local stability of disease-free equilibrium (DFE)
	3.2. Global stability of DFE
	3.3. Existence and stability of an endemic equilibrium point (EEP)

	4. Numerical Simulations
	Conclusions
	Acknowledgments

	References

