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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR
SYSTEMS OF SECOND-ORDER DIFFERENTIAL EQUATIONS
WITH INTEGRAL BOUNDARY CONDITIONS ON AN INFINITE
INTERVAL IN BANACH SPACES

XU CHEN, XINGQIU ZHANG

ABSTRACT. The article shows the existence of positive solutions for systems
of nonlinear singular differential equations with integral boundary conditions
on an infinite interval in Banach spaces. Our main tool is the Ménch fixed
point theorem combined with a monotone iterative technique. In addition, an
explicit iterative approximation of the solution is provided.

1. INTRODUCTION

The theory of boundary-value problems with integral boundary conditions for
ordinary differential equations arises in different areas of applied mathematics and
physics. For example, heat conduction, chemical engineering,underground water
flow, thermo-elasticity, and plasma physics can be reduced to the nonlocal problems
with integral boundary conditions. There are many excellent results about the
existence of positive solutions for integral boundary value problems in scalar case
(see, for instance, [7, [0, 10, I3] and references therein). Very recently, by using
Schauder fixed point theorem, Guo [2] obtained the existence of positive solutions
for a class of nth-order nonlinear impulsive singular integro-differential equations
in a Banach space.

Recently, Zhang et al [T4], using the cone theory and monotone iterative tech-
nique, investigated the existence of minimal nonnegative solution of the following
nonlocal boundary value problems for second-order nonlinear impulsive differential
equations on an infinite interval with an infinite number of impulsive times

—2"(t) = f(t,x(t),2'(t)), teJt#t,
Ax|t:tk :Ik(l'(tk)), k:1,2,...,
A‘r/|75:75k :Tk(x(tk))’ k = 1a27"'a

z(0) = /OOO gt)z(t)dt, z'(c0) =0,
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where J = [0,4+00), f € C(J x RT x RT,RT), R* = [0,+0c0], 0 < t; < t3 <
<t < oyt — 00, Iy € O[RT,RT] T, € C[RT,RT], g(t) € C[RT,RT), with
[ g(t)dt < 1.

To the best of our knowledge, only a few authors have studied integral boundary
value problems in Banach spaces and results for systems of second-order differential
equation are rarely seen. Motivated by Zhang and Guo’s work, in this paper,
we consider the following singular integral boundary value problem on an infinite
interval in a Banach space E:

x/l(t) + f(t7 x(t)’ m/(t)v y(t)7 yl(t)) =0,
y”(t) + g(t,:l)(t), z’(t),y(t),y'(t)) =0, ted,

z(0) = /000 qt)z(t)dt, 2'(00) = oo, (1.1)

y(0) = / T h(tu(t)dt, o (00) = yoo,

where J = [0,00), J4 = (0,00), and the functions ¢(t), h(t) are in L]0, 00) with
JSa@)dt < 1, [T h(t)dt < 1 and [~ tq(t)dt < oo, [;° th(t)dt < co. a'(c0) =
lim; 00 2/ (t), ¥/ (00) = limy 00 %' (t). The nonlinear terms f(¢,x0,z1,Yo,y1) and
g(t, o, T1,Y0,y1) permit singularities at ¢ = 0 and z;,y; = 6 (i = 0,1), where
0 denotes the zero element of Banach space E. By singularity, we mean that
Ilf(t, z0, 1,0, y1)| — 00 as t — 0 or z;,y; — 6.

The main features of this article are as follows: Firstly, compared with [14], the
systems of integral boundary value problem we discussed here is in Banach spaces
and nonlinear term permits singularity not only at ¢ = 0 but also at z;,y; = 0
(i =0,1). Secondly, compared with [2], the problem we discussed here is systems
of integral boundary value problem, since the problem we discuss is the integral
boundary value problems, the construction of bounded convex closed set is different
from that in [2]. Furthermore, the relative compact conditions we used are weaker.
Finally, an iterative sequence for the solution under some normal type conditions
is established which makes it convenient in applications.

2. PRELIMINARIES

Let

FC[J,E] ={z € C|J, E] :supM < 00},
tes t+1

DC[J,E] = {x € C'[J, E] : sup =)l < oo and sup ||2’(t)]| < oo}.
teg t+1 teJ

Evidently, C*[J, E] C C[J,E] and DC'[J,E] C FC[J,E]. It is easy to see that
FCIJ, E] is a Banach space with norm

()]
z||Fp = su ,
il te? t+1

and DC'[J, E] is also a Banach space with norm
o = max{|l|F, 2]l },

where
[[#’[lx = sup [[=" (#)]].
teJ
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Let X = DC'[J, E] x DC'[J, E] with norm ||(z,y)|x = max{||z|p,|yllp}, for
(z,y) € X. Then (X, |-, ||x) is also a Banach space. The basic space using in this
paper is (X, |-, -[|x)-.

Let P be a normal cone in F with normal constant N which defines a partial
ordering in E by  <y. If z <y and = # y, we write x < y. Let P, = P\{0}. So,
x € Py if and only if z > 6. For details on cone theory, see [].

In what follows, we always assume that o > 2§, Yoo > Y5, 25, ¥5 € P+. Let
P, ={x € P:x>Xf}, Pix = {y € P:y > AyjH(A > 0). Obviously,
Pox, Piyx C Py for any A > 0. When A = 1, we write Py = Pp1, P = Pi1; ie.,
Po={zeP:x>zi}, A={yeP:y>yi}. Let P(F)={x e FC[J,E]: z(t) >
0,V te J}, and P(D) = {x € DCY[J,E] : x(t) > 0,2'(t) > 0,V t € J}. It is clear,
P(F) and P(D) are cones in FC[J, E] and DC*[J, E], respectively. A map (z,y) €
DCYJ,E)NC?[J., E) is called a positive solution of if (z,y) € P(D) x P(D)
and (z(t),y(t)) satisfies (|L.1]).

Let a,ap,ap,ax denote the Kuratowski measure of non-compactness in the
sets B, FC[J, E], DC'[J, E] and X, respectively. For details on the definition and
properties of the measure of non-compactness, the reader is referred to references
[T, 3, 4, [6]. Let

B I h(t) dt

q(t)d
S q(t) dt ) m—(HW)» (2.1)

1— [ Cqt)ydt/’
D* = max{Dy, D1}. Denote

f 0OO lq (t) di
1— [Fq(t)at’
Let us list some conditions for convenience.

(H1) f,g € C[J+ X Pox X Pox X Pix X Py, P] for any A > 0 and there exist
a;,bi,c; € LIJy, J] and z; € C[J4 x Jy x Jy x J4, J] (i =0, 1) such that

Do=(1+

Jo S th(t)dt

A = mi 0
o = min{ 1— [7 h(t)dt

1}, A7 = min{ , 1}

1F (s 20, 21, 90, y2) | < ao(t) + bo(8)zo([lolls [l ], l[oll, 1y l]),

for all t € J+,IZ‘ S PQ,\B,yi S Pl)\’l‘;

l9(t, zo, 21, Yo, y1) || < a1 (t) + ba(t)z1(llzoll, [|z1ll; [lwoll, ly1l]),
for all t € Jy,x; € Poxs,yi € Prar; and
||f(t,$07x13y07y1)”
co(t)([|zoll + lz1 |l + llyoll + llyall)

||9(t7$07$1»y0ayl)”
c1 (@) ([lzoll + llzall + llyoll + [y 1)

— 0,

— 0,

as x; € Poxg, yi € Pux; (i =0,1), |lol[+[lz1]|+[yol| +[ly2]] — oo, uniformly
for t € J;; and for i =0, 1:

/ as(t)dt = a? < oo, / bi(t)dt = b < oo, / ()1 + 1)dt = ¢ < oo.
0 0 0

(H2) For any t € Jy and countable bounded set V; C DC'[J, Pox:], W; C
DC'[J, Px:] (i = 0,1), there exist L;(t), K;(t) € L[J,J] (i = 0,1) such
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that
alf(t, Vo(t), Va(t), Wo(t ) < ZLOZ ) + Koi (1) a(Wi (1)),
a(g(taVO(t)v‘/l( ) WO < ZLM +K11( ) (Wl(t))a
with

Gi = /+Oo[(Li0(5) + Kio(s))(1+5) + Lir(s) + Kir(s)|ds < oo (i =0,1),
: G* = max{G;, G} }.
(H3) t e Jp, Ny <y < Ty, My <y <7; (1 =0,1) imply
f(t,zo,21,90,91) < f(£,%0,71,Y0: V1),  9(t o, T1, Y0, Y1) < 9(t,T0, %1, Yo, T1)-
In what follows, we write
Q1 ={xeDCJ,P|:xD(t) > Next ¥t e Ji=01},
Q2= {y e DC'[J,P]:yD(t) = Ajyg,V t € J,i = 0,1},

and Q = Q1 X Q2. Evidently, Q1,Q2 and Q are closed convex set in DC'[J, E] and
X, respectively.

We shall reduce BVP to a system of integral equations in F. To this end,
we first consider operator A defined by

A<x’y)(t) = (Al (x,y)(t),Ag(x,y) (t))’ (2'2)
where
M0 = T gt [
0
+/0 /0 q@)G(t, ) f(s,2(s),2'(s),y(s),y'(s)) ds dt} (2.3)
ttot [ G 60(6). 2 (5) (60,0 5) s,
and
Az (z,y)(t) = 1foolh(t)dt{yoo/0 th(t)dt
0
+/0 ; ht)G(t,8)g(s,x(s),2'(s),y(s),y'(s)) ds dt} (2.4)
+ Yoo + /0C>O G(t,5)g(s,z(s),2'(s),y(s),y (s)) ds,
where

Gl s) t, 0<t<s<+o0,
7S:
s, 0<s<t<+o0.

Lemma 2.1. If (H1) is satisfied, then the operator A defined by (2.2) is a contin-
uous operator from Q to Q.
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Proof. Let
. 1 1
g0 = mln{ [‘oo q(t) dt 5 [‘oo h(t) dt }3 (2.5)
8CO (1 + 120f0°0 q(t) dt) 801 (1 + 1;0f0‘” h(t) dt)
- Asllagll Atllwell }
= . 2.
r mm{ N N >0 (2.6)

By (H1), there exists a R > r such that
1t 20, 21, 90, Y1)l < €oco(®)([[xoll + 1]l + [lyoll + [ly2 1),
for all t € J4, @; € Poxg, i € Pias (i =0,1), [[2oll + [[z1]| + [lyoll + [[v1]| > R; and
£t @0, w1, 50, y1)I| < ao(t) + Mobo(2),
forallt € Jy, ; € Poxg, yi € Piar (0 =0,1), [|o|l + @1+ [lyol +[lv1 ]| < R, where
My = max{zo(ug, u1,vo,v1) : 7 < uy,v; < R (i =0,1)}.

Hence

1/ (£, 20, 21, 90, y1)I| < €oco(t)([|zoll + [zl + lyoll + [ly2 1) + ao(t) + Mobo(t), (2.7)
forall t € Jy, x; € Poxz, yi € Pias (i =0,1). Let (x,y) € Q. By we have

1f (&, 2(8), 2 (), y(2), '( ))II

[l ( ||$ Ol lly@l Iy @
<
< coeat)(1 + 1) (1 t+1 S ) o)+ Mabo(®) N
< eoco()(1 + B)([lzllr + 12711 + [yl e+ 15/ 11) + ao(t) + Mobo(t) (28)
< 2e0co(t) (1 +t)(|z][p + lyllp) + ao(t) + Mobo(t),
<Adegeo(t)(L+t)[[(z,y) || x + aolt) + Mobo(t), Vte Jg,
which together with (H1) implies the convergence of the infinite integral
/ 1£(s, 2(s), 2 (5), (), ¥/ (s)) s, (2.9)
0

which together with (2.3) and (H1) implies

A1 (, y)(t)ll

1—f0 dt // G(t,s)l| f(s,2(s), ' (s),y(s), ¥/ ()| ds dt

+||xoo||/ t)dt +t||mooH+/oo G(t,s)|1f (s, 2(s), 2'(s),y(s),5'(5)) ]| ds.
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Therefore,

A1 (2, y) (@)l
1+t

71_[0
—+menjﬁ ta(0)dt} + ol + [ 15529, (9).0(6) 0/ (5D ds

dt / / 1 f (s, 2(s),2'(5), y(5), 9/ (5))]| ds dt

§@+‘%§T?)Wmmﬁwx+%+M%} 2.10)

1— [, q(t)dt
Ftq(t)dt
o Oy
1— [ q(t)dt
fooc q(t)dt

; 1+ ——————)(ag + Mob;
ool + (14 722 o ) 06 + Mob)

Ztq(t)dt
IOT) oo -
1— [ q(t)dt
Differentiating (2.3)), we obtain

Al (z,y)( / f(s,x(s),2'(s),y(s),y'(s))ds + Too- (2.11)

+(1+

<

N | =

+(1+

Hence,

+oo
[ A% (z, ) (@) < /0 1£(s,2(s),2'(s),y(s),y'(s))lds + [[zeo|l
< Adeoch|(z,y)|lx + af + Mob + || Zoo|| (2.12)
1
< sz, y)llx + a + Mobg + [|zoo ||,  VE € J.

It follows from (2.10) and (2.12]) that

[A1(z,9)llp <

Jo q(t)dt
1— [ qt)dt
[ tq(t) dt
+@+;ﬁfﬁﬁﬁmﬁL

So, Ay(x,y) € DC[J, E]. On the other hand, it can be easily seen that

meh+@+ ) (ag + Mob)

2
(2.13)

Aq(z,y)(t) > <1—f0f> > ANo%oo 2> A5, VEEJ,
0

AL, y) (1) > Too = NyToo > N, VEEJ
50, A1(z,y) € Q1. In the same way, we can easily obtain

S h(t)dt
1— [ h(t)dt

[ th(t) dt
+ (1 + %) Yool

1 * *
|42 (e, 9)lo < S w)lx + (1+ ) (@ + Moby)

(2.14)
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and

aateo)> (i

Az, 1) (1) = Yoo = NiYoo = Ay, VEE .

)yooz Yoo = ATy, VEEJ,

where M7 = max{z(ug,u1,v9,v1) : 7 < usv; < R (i = 0,1)}. Thus, we have
proved that A maps @ to Q and we have

14 w)lx < 5l )lx +7 (215)
where
I q(t)dt . . [ tq(t) dt
Y= max{(l + W)(ao + MObO) + (1 + w onoHv

(2.16)

> h(t)d . . J th(t)d
((1 + W)(ao + Mob) + (1 + W)Ilyooﬂ}

Finally, we show that A is continuous. Let (T, Ym), (T, ¥) € Q, |[(Tm,Ym) —
(Z,9)lx — 0 (m — 00). Then {(zm,ym)} is a bounded subset of Q. Thus, there
exists r > 0 such that sup,, [|[(m,ym)||x < r for m > 1 and ||(Z,79)||x < r+ 1L

Similar to (2.10)) and (2.12), it is easy to show that
A1 (Zm, ym) — A1(T,9) || x

< /OOO 1f (85 2m (), 27 (8), Ym (8)s Yo () — £ (5,T(5), 27(5), 7(s), ¥/ (5)) [ ds
7f0®0q<t)dt - s,z (), (s s), . (s
el AN GCEMOEACEMORAAD)
— f(5,2(5),7(5),5(5), 7' (s)) || ds.
It is clear that
Ft wm (), 20, (), ym (8), v (1) — F(£,Z(), T (1), 5(), 7 (1)) (2.18)

as m — oo, for all t € J;. By , we obtain

1f(t 2m (t), 20 (8), Y (1), Y () — (£, Z(1), T'(8), 5(), 7' (1))

< 86060(t)(1 + t)?“ + 2a0(t) + 2M0b0(t) (219)

=oo(t), oo(t) € L[J,J], m=1,23,..., Vte J;.

(2.17)
+

It follows from (2.18]), (2.19)), and the dominated convergence theorem that

o0

B [ [F(s, (), @ (), 9 (5), Yin () — F(, F(5), 7 (5), (5, 7 (5))llds = 0.

m—0o0 0

It follows from the above inequality and (2.17)) that ||A1(xm, ym) — A1(Z,7)||lp — 0
as m — oo. By the same method, we have ||A2(Tm,ym) — A2(Z,7)|lp — 0 as
m — o00. Therefore, the continuity of A is proved.

Lemma 2.2. Under assumption (H1), (z,y) € Q N (C?[J4,E] x C?[J4,E]) is a
solution of if and only if (z,y) € Q is a fized point of A.
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Proof. Suppose that (x,y) € QN (C?[Jy, E] x C?[Jy, E]) is a solution of (1.1). For

t € J, integrating from 0 to ¢, we have
t
a0 +2'0) = [ fls.a(s).2/(5) s
0
t
YO+ 0 = [ glsa(9).0'(5) ds.

0

Taking the limit as t — oo, we obtain
o0
—ZToo +2/(0) = / f(s,z(s),2'(s)) ds,
0

e £ 4(0) = / " (s, 2(s), 2'(s)) ds,

Thus,

‘We obtain
2 (t) = 2o + /00 f(s,x(s),2'(s))ds — [ f(s,z(s),2'(s))ds,
0

Y () = oo + / " (s, w(s),2/()) ds — / o5, 2(s), 2 (s)) ds;

Integrating and from 0 to ¢, we obtain
o) = 0) 4 ot [ Gt F(5,0(5).(5)) s,
VO =3(0) + 1+ [ Gl S)g(0,2(5).'(5) s,
which together with the boundary-value condition implies that
2(0) = /0 Bt dt = 2(0) /0 o) dt + 2o /O Tt at
[T a0 st ) dsdr
y(0) = /OOO h(t)a(t) dt = y(0) /OOO h(£) dt + oo /OOO th(t) dt
+ /000 /000 h(t)G(t, s)g(s,z(s),2'(s)) ds dt.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Thus,
) -
2(0) = 1—f(;>°q(t)dt{m°°/0 tq(t) dt

Jo~ a (2.29)
+ / / A(0)G (1, )£ (5, 2(s), /() ds it |

1 o0
y(0) = 1_foooh(t)dt{yoo/o th(t) dt

Iyt (2.30)
+/0 /0 B(G(t, 5)g(s,(5), @' (s)) ds dt }.

Substituting (2.29) and (2.30]) in (2.26) and (2.27)),

1 o]

+ /000 /ooo a(O)G(t,5)f (s, 2(s),2/(s)) ds dt}

+ oo + /000 G(t,s)f(s,x(s),2'(s))ds,
y(t) = 1foolh(t) dt{yoo /Oooth(t)dt
0
+ /O /O h)G(t, )g(s, 2(s), ' (5)) dsdt |

+ tYoo + /000 G(t,3)g(s,z(s),2'(s)) ds.

(2.31)

Obviously, the integral fot [ f(r,2(7),2'(7),y(7),y'(7))drds and the integral

fot [ g(r,2(r), 2/ (), y(7),y'(7))drds are convergent. Therefore, (z,y) is a fixed
point of operator A. Conversely, if (z,y) is fixed point of operator A, then direct
differentiation gives the proof. O

‘ A V)(8)
Lemma 2.3. Let (H1) be satisfied, and V' be a bounded set of Q. Then ( 1+)t

and (ALV)(t) are equicontinuous on any finite subinterval of J; and for any € > 0,
there exists N = max{Ny, No} > 0 such that

Ai(z,y)(t1)  Ai(z,y)(t2)
1+t 1+t

| I<e A3z y)(t) — A, y)(t2)]| <€

uniformly with respect to (x,y) € V as t1,t2 > N.
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Proof. We only give the proof for operator A;. For (z,y) € V, ta > t1, we have
|| Al (l‘, y)(tl) _ Al ($7 y)(t2)

1+t 1+t |
| I ‘( I ta(t) at )II |
T4t 1+t \1— [[Fqt)dt oo
tl ( dt )
1
|1+t1 1+t q q(t)dt

H1+h " (st <@yw»y@»m

- 1+t2 /t2 fs,2(s),2'(s), y(s), ' (s)ds|

ty
=+ s
1

(s),2'(s), y(s),y (s)ds

_/02 1jth(s,x(s),x’(s),y(s),y/(s)dSH} (2.32)
< -l (1 2O Y+ (1 A0S

R e [ AN T O ORTO RN
+H[2#®w@%ﬁ@%M$MGM%

" F(s,2(5),2/(), 9(s), ¢/ ()ds]

!m— el / (5, 2(6),2(5), (), ()]

f@%M%MGM%}

Then, it is easy to see that by the above inequality and (H1) {All‘igt)
tinuous on any finite subinterval of J.

Since V' C @ is bounded, there exists r > 0 such that for any (z,y) in V,
[(z,y)llx <r. By (2.11)), we obtain

1A% (z, ) (1) — Ai (2, ) (E2)

=ul”fuwwxf@xmgw%@Mﬂ

3] l2
+}1+t1 1+t

} is equicon-

(2.33)
< / ) [deoreo(s)(1 + s) + ap(s) + Mobo(s)]ds.

t1
It follows from (2.33), (H1), and the absolute continuity of Lebesgue integral that
{4}V (t)} is equicontinuous on any finite subinterval of J.
We are in position to show that for any € > 0, there exists N7 > 0 such that
Al(xvy)(tl) Al(xay)(tQ) / /
— <e A (z,y)(t1) — Ay (x,y)(t2)]| <€,
2 )| <o ) ) — A ()t < ¢
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uniformly with respect to © € V as t1,t; > N;. Combining this with (2.32)), we
need only to show that for any € > 0, there exists sufficiently large N7 > 0 such
that

H / (s, 2(5), 2'(5), y(s), ¥/ (5))ds

1+t
ta
- [ (e (). w(s) s))as] <

for all z € V as t1,ta > Ny. The rest part of the proof is very similar to [8, Lemma
2.3], we omit the details.

The proof for operator As can be given in a similar way. Then the proof is
complete. O

Lemma 2.4. Let (H1) be satisfied, V be a bounded set in DC[J, E] x DC[J, E].
Then

ilelga((AiV)'(t))} (1=0,1).

(A:V) (1) ) ’

ap(A;V) = max{supa( Tt

teJ

The proof of the above lemma is similar to that of [8] Lemma 2.4], we omit it.

Lemma 2.5 (Monch Fixed-Point Theorem [IL [B]). Let Q be a closed convex set of
E and u € Q. Assume that the continuous operator F' : Q — Q has the following
property: V. C Q countable, V C co({u} U F(V)) = V is relatively compact. Then
F has a fized point in Q.

Lemma 2.6. If (H3) is satisfied, then for z,y € Q, ) < y® ¢t € J (i = 0,1)
imply (Az)® < (Ay)®, te J (i=0,1).

It is easy to see that the above lemma follows from (2.3) (2.4)) (2.11f) and condition

Lemma 2.7 ([5]). Let D and F be bounded sets in E, then
a(D x F) =max{a(D),a(F)},

where a and a denote the Kuratowski measure of non-compactness in E x E and
FE, respectively.

Lemma 2.8 ([5]). Let P be normal (fully regular) in E, P = P x P, then P is
normal (fully reqular) in E x E.

3. MAIN RESULTS

Theorem 3.1. Assume (H1), (H2) and that 2D* - G* < 1. Then (1.1)) has a posi-
tive solution (Z,y) € (DCY[J, E] N C?[J., E]) x (DC[J, E) N C?[Jy, E]) satisfying
(@)D (t) > Mg, () D () > Mg fort € J (i =0,1).

Proof. By Lemma the operator A defined by is a continuous operator
from Q to Q. By Lemma we need only to show that A has a fixed point (Z,7)
in Q. Choose R > 2vy and let Q* = {(z,y) € @ : ||[(z,y)|lx < R}. Obviously,
Q* is a bounded closed convex set in space DC[J, E] x DC[J, E]. Tt is easy to
see that Q* is not empty since ((1 + €)oo, (1 +t)yso) € Q*. It follows from
that (z,y) € Q* implies that A(z,y) € Q*; i.e., A maps Q* to Q*. Let
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V=A(xm,ym) :m=1,2,...} C Q* satisfying V' C co{{(up,vo)} U AV} for some

(ug,v0) € Q*. Then ||(zm,ym)|lx < R. By (2.3) and (2.11), we have
Al(xmyym)(t)

T —fo t)dt / / (8, 2m (), 27, (8), Ym (5), Yy (5)) ds dt

tame [ gAY}t tat [ G5 F(52m(5), (), yon(5), Y (5)) s,
/0 } / (3.1)
and
A () (1 / F(5,2m(), 20 (5), Y (5), B (5))d5 + T (3.2)
By Lemma we have

ap(A1V) = max { sup a((A1 V) (1)), sup a( (A V)t } (3.3)

teJ teJ 141
where (A1V)(t) = {A1(@m,ym) () : m = 1,2,...}, (A1V) () = {AL(@m, ym)(2) :
m=1,2,...}.

By (2.9), we know that the infinite integral [;° || f(t,z(t), 2/ (t),y(t), ' (t))||d¢t is

convergent uniformly for for m = 1,2,3,.... So, for any ¢ > 0, we can choose a
sufficiently large 7' > &; (i =1,2,...,m — 2) > 0 such that
(oo}
1t 0.9t0. 5 @)l < e (3.4)
T
Then, by Guo et al. [0, Theorem 1.2.3], , , , (H2), and Lemma
we obtain
(AV)(t)
(557
Dy T / /
<7512 | ol an®), @ (®),um(0),un(0) dt + 26}
0

<20, / " Ul (0, @ (0), g (00, (1)) i+ 22

< 2D0aX(V) /OOO(LO()(S) + K()o(S))(l + S) + (L()l (S) + K()l(S)) dt + 2e.
< 2DoGhax (V) + 2,

and

(A V) (1) <2 / A (b (), T (8), i (8), (1)) ds + 26 < 2Gax (V) + 2.

From this inequality, and, it follows that

ap(A1V) < 2Dgax (V)G§. (3.6)
In the same way, we obtain

ap(AV) <2Dyax(V)G]. (3.7

On the other hand, ax (V) < ax{co({u} U (AV))} = ax(AV). Then, (3.6),
(3.7), (H2), and Lemma imply ax(V) = 0; ie., V is relatively compact in
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DC'[J, E] x DC[J, E]. Hence, the Monch fixed point theorem guarantees that A
has a fixed point (Z,7) in Q1. O

Theorem 3.2. Let cone P be normal and conditions (H1)—(H3) be satisfied. Then
has a positive solution (T,5) € QN (C?[J+, E] x C?[J4, E]) which is minimal
in the sense that u®(t) > T (1), v (t) > gW(t), t € J (i = 0,1) for any positive
solution (u,v) € QN (C?*[J4, E] x C?[J4, E]) of ([LI). Moreover, ||(Z,7)|x <
27 + ||(uo,v0)||x, and there exists a monotone iterative sequence {(wm(t), vm(t))}
such that uly (t) — 7D (t), ol (t) = 79 (t) as m — oco(i = 0,1) uniformly on J and
ul (t) = T (¢), v, (t) = 7" (t) as m — oo for any t € J4, where

ug(t)

1 /OO o0 o0
S S U R dt+/ / GGt 5)F (5, Ny, Ny, AL
1—f0 q(t)dt{ ; (t) 0 Jo 005> A%y M Yo

(o]
Alyg) ds dt} +tTo +/0 G(t,8) (s, A5zl Aozg, Nys, ATyg) ds,
(3.8)

vo(t)

1 oo o0 (o)
= e [ moate [ [ 0600 N N, i
1_f0 0

X{yo)dsdt} + tyoo + / G(t,5)g(s, \yzg, Aoz, Ao, A1yg) ds,

(3.9)
and
U (1)
1 o) oo )
= 1—f0°°q(t)dt{xoo/ dt—i—/o /0 q()G(t, s) (s, um—1(8),u,,_1(s),
Um_l(S),’U:n_l( )) det +t$°° /OOG S y U — 1(5),11,;71_1(5),'1)7”,_1(8),
0
v, _1(s))ds, VteJ(m=1,2,3,.
(3.10)
U (1)

By G ARCEY AV AR USRI CAEe )
0

’Um—l(s)’vin—l(s)) ds dt} +ty00 + /oo G(taS)g(saum_l(s)vu/rn—l(s)avm—l(s)a
0
vl _1(s))ds, VteJ(m=1,2,3,...).

m—1

(3.11)
Proof. From (3.8)),(3.9) one sees that (ug,v) € C[J, E] x C[J, E] and

+oo
uf)(t) = / F(8,2020, Aowgs Ao¥o, Ao¥o)ds + Too- (3.12)
t
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By (3.8) and (3.12)), we have u( D> AZoo = Ajxg (i =0,1) and

HUO( )||

1+¢
> 1_f0 dt / / t S ||f(s /\OIO,AOIO, 1y0’ 1y0)||dsdt

+||xoo||/ tq(t dt}+tllxoo||+/ G(t, 8)|| £ (s, Aoz, Aoz, Nowe, Ny || ds,
< (1—1—‘[0—) /Ooao(S)"v‘bO(S)ZO(H)\Sl‘SH,H)\Sxan’H)\SySH,H)\SySHdS
< 1—f0 5

Jo tg(t)dt
+ 1+— [Ey B
()

luo @) S/t 1/ (55 200, X020, A1y, A1wo) [T + [z |

S/O ao(s) + bo(s)ho([[Aoza [, [Aazolls 190 s [[Aoyo 1) ds + [[zeoll,
which implies |luo|lp < o0. Simﬂarly, we have lvollp < oo. Thus, (ug,v9) €
DC'[J, E] x DC*[J, E]. 1t follows from (2.3) and (3.10) that

(U Vi ) () = A(Upp—1, vm,l)(t), ViedJ m=1,23,.... (3.13)
By Lemma we obtain (U, vmy) € Q and

1
1t vm)llx = [ A(m-1, vmy )llx < 5 (Um—1, 9m-1)llx +7- (3.14)
By (H3) and (3.13), we have
ul(t) = Al(uO(t),’Uo(t)) > Al()\oxo,)\lyé) = U()(t), Vited, (315)
and
v1(t) = A2(uo(t), vo(t)) = A2(A\o75: Ayg) = vo(t), VYt e J (3.16)
By induction, we obtain
(X670, ATyn) < (uo(t),vo(t)) < (ur(t),v1(t)) < -+ < (um(t), vm(t)) < ..., (3.17)

for all ¢ € J. By induction and Lemma and (3.13]), we have
g, M) < (ud (6,08 (1) < (W (1), 07 (1)) < - < @@ (1), 0P (8) < ...,

(3.18)
for all t € J. It follows from (3.14]), by induction, that
1 1 m—1 1 m
Ity vm)llx < v+ 5y 400+ (5) v+ (5) [ (o, vo) Il x
(1 =(3)"
< 2D 4 )l (319)
2

<2y + [[(uo, wo)llx  (m=1,2,3,...).

Let K ={(z,y) € Q: ||(z,v)|lx <27+ |(uo,v0)||x}. Then K is a bounded closed
convex set in space DC[J, E] x DC1[J, E] and operator A maps K into K. Clearly,
K is not empty since (ug,v0) € K. Let W = {(upm,vm) : m=0,1,2,... }, AW =
{A(Um,vm) :m=0,1,2,...}. Obviously, W C K and W = {(ug,v9) } UA(W). As
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in the proof of Theorem we obtain ax(AW) = 0; i.e., W is relatively compact
in DC'[J, E] x DC[J, E]. So, there exists a (,7) € DC'[J, E] x DC[J, E] and
a subsequence {(um;,vm;) 1 j = 1,2,3,...} C W such that {(um;,vm,)(t) : j =
1,2,3,...} converges to (¥ (t), 7 (t)) uniformly on .J (i = 0,1). Since that P is
normal and {(u%) (t),vy(fl) (t)) : m =1,2,3,...} is nondecreasing, by Lemma it
is easy to see that the entire sequence {(uﬁ,’) (1), o) (t)):m=1,2,3,...} converges
to (™ (t), 7% (t)) uniformly on J (i = 0,1). Since (um,vn) € K and K is a closed
convex set in space DC1[J, E] x DC'[J, E], we have (Z,7) € K. It is clear,

F (5, um (5), U (5), vm (), Vi (5)) = f(s,2(s), 7' (5),7(s), 7 (5)), (3.20)
as m — oo, for all s € J;. By (H1) and (3.19)), we have

1f (5, ttm (8), 1ty (5), v (), v, (5)) = f(s,7(s), 2 (5), U(5), 7 ()

< 8epco(8) (1 + )| (U, vm)|| x + 2a0(s) + 2Mobo(s) . (3.21)

< Seoco(s)(1 + 5)(27 + [|(uo, v0)1x) + 2ao(s) + 2Mobo(s)

Noticing (3.20) and (3.21]) and taking limit as m — oo in (3.10)), we obtain

_ 1 >
7(t) = 1f0°°q(t)dt{m°°/0 tq(t) dt

[ ae ) fs.3 ). 7 050 T o) dsary (322)

+mm+AmGw®ﬂ&d@w%%M%d@»®,

In the same way, taking limit as m — oo in (3.11)), we obtain

_ 1 >
y(t) = lfoooh(t)dt{yoo/o th(t)dt
+/O /0 h(t)G(t8)9(875(8)7?(8),?(8),?'(3))dsdt} (3.23)

+ww+Ame@w&M@w%»m¢yw»m,

which together with (3.22)) and Lemma implies that (Z,7) € K N C?[J, E] x
C?[J4, E] and (Z(t),5(t)) is a positive solution of (1.1]). Differentiating ([3.10)) twice,
we obtain

uxz(t) = 7f(ta um—l(t)aulm—l(t)avm—l(t)av;n—l(t))a vt € J-/H m= 17 2a 3; e
Hence, by , we obtain
lim (1) = —(t,7(0), 7 (£), 5(0), 7' (1) = 7"(t), Ve ..

m—00

Similarly, we have

lim o), (t) = —g(t, (1), 7' (1), 5(t), 7 (t)) =7"(t), VteJ,.

m—00

Let (m(t),n(t)) be any positive solution of ([1.1)). By Lemma we have (m,n) €
Q and (m(t),n(t)) = A(m,n)(t), for t € J. Tt is clear that m(t) > \saf > 0,
n@(t) > Njyg > 0 for any t € J (i = 0,1). So, by Lemma [2.6, we have m®(t) >
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ul (1), n@(t) > 87 (t) for any t € J (i = 0,1). Assume that m®(t) > ul’ | (1),
n@(t) > v (t) fort € J,m>1 (i =0,1). From Lemma [2.6]it follows that

(AY (m,n)(t), AL (m, n) (1)) 2 (AP (-1, 0i—1)) (1) AS (w1, V1)) (£))

for t € J (i = 0,1); ie., (m@ (&), n® @) > (W (®), v (t)) for t € J (i = 0,1).
Hence, by induction, we obtain

mO(t) >zD ), nD ) >7D(t) VteJ(i=0,1;m=0,1,2,...).  (3.24)
Now, taking limits in (3.24)), we obtain m¥(t) > ZW(¢),n(t) > 5 (t) for t €
J (i =0,1). The proof is complete. O

Theorem 3.3. Let cone P be fully reqular and conditions (H1) and (H3) be satis-
fied. Then the conclusion of Theorem[3.9 holds.

Proof. The proof is almost the same as that of Theorem The only difference is
that, instead of using condition (H2), the conclusion ax (W) = 0 is implied directly

by (3.18) and (3.19), the full regularity of P and Lemma [2.§] O

4. AN EXAMPLE

Consider the infinite system of scalar singular second-order three-point boundary
value problems:

" 1 / /

n n 4 )1/2 1
3n2x,(t)  Tnbzh, (1) Q\f( + 3t)2
1
"
“In t) =
un(t) T4V e2t(4 4 5t)8
n 5 )1/3 n 1
16nty,,, (t) 7/t(3 + 4t)3

7,(0) = /000 e_t2:rn(t) dt, ) (c0) =

In [(1+ 3t)z,(t)],

_
8n3yan (t)

In [(3 + 4t)y4, ()],

(6 + @3 (1) + 2, (8) +

1 2 1
yn(()):/ —ez y,(t)dt, y,(00)=—, (n=1,2,...).
0

Proposition 4.1. System (4.1) has a minimal positive solution (x,(t),yn(t)) sat-
isfying xn(t), x),(t) = 1/n, yn(t), ¥, (t) = 1/(2n) for 0 <t < +o00 (n=1,2,3,...).

Proof. Let E = ¢y = {z = (v1,...,%n,...) : T, — 0} with the norm |z| =
sup,, |zn|. Obviously, (E,| - ||) is a real Banach space. Choose P = {z = (z,,) €
co:xn > 0,n=1,2,3,...}. It is easy to verify that P is a normal cone in E with
normal constant 1. Now we consider which can be regarded as a boundary-
value problem of form in F with zo = (1, %, :1,),...), Yoo = (%, %, %, ...). In
this situation, * = (z1,...,Zn,...), ¥ = (U1, -, Upn,---), ¥ = (Y1, s Yny---)s
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v=(v1,..sUn,-..)s f=(f1,---, fn,--.), in which
fﬂ(tv'xauay7v)

1 2 4 1/2
T ons Ve2t(2 4 5t)° (5 + Yn o tizn + Von + 3n2z, i 7n5uzn> (4.2)
+ W In[(1 + 3t)z,],
and
gn(t, z,u,y,v))
1 1 5 1/3
7 Ve2t(4 + 5t)8 <6 T tan 8n3yan, + 16n4v4n) (4.3)
1

+ m In[(3 + 4t)v4p].

Let zf = 2o = (17%,%7...), Yo = Yoo = (%,i,%,...). Then Py, = {z =
(X1, T2,y e Xyee )t Ty > %, n=123..}5Px=1{y = W,y Uny.--):
Yn = %, n=1,2,3,...}, for A > 0. By a simple computation, we have Dy =

42

8.7912, Dy = 2.6787, [ e~ dt ~ 0.8863 < 1, [ te " dt = 0.5, [F e dt ~
42

0.6267 < 1, [~ ste 2 dt = 0.5, \j = A} = L. It is clear, f,g € C[J4 x Pyx x Pyx X

Py x Ppy, P] for any A > 0. Note that ve2t > ¥/t for t > 0 for t > 0, by ([#.2) and

(4.3), we obtain

1 167 1/2
tvxvua , U S 5 — + + |ul| + ||v

+In [(1+30)2]] },

and
lot. 0, p,0)] <
y L, Uy Y, U = U 6/7/0 1 A0
g Y TV/H(3 + 4t)2
which imply (H1) is satisfied for ag(t) = 0, bo(t) = co(t) =

b1 (t) = C1 (t) = m and

{O+ el + lal) " + 1 [3+ ap)ol} . (4.5)

1 _
9 Vi(1130)2° al(t) =0,

167
ZO(U07U17U27U3) = (H +up +ug + U3)1/2 + ln[(l + 3t)u0],
/

21 (ug, uy, ug, ug) = (9—|-u0 +u1)1 ’ + In[(3 + 4t)us].

Let flz{fllvf%w"vféa"'}a f2:{f12af22,"'af7%a"'}7 91:{9%79%7"%9}1,"'}7
9> =1{9%,95,...,92,...}, where

i,z u,y,v) = ! (5+y + uop + V3p + 2 + 1 )1/2
AR 9n3 V/e2t(2 + 5t)° mTE T T 302y, T Tnduy,
(4.6)
2tz u,y,v) = M In[(1 + 3t)x,], (4.7)
In(t 2,0, y,0) = . (6+m3n+U4n+ L, 0 )1/3
e Tn4/e2t (4 4 5t)8 8ndys,  16ntvy,/ 7

(4.8)
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1
TV/t(3 + 4t)3
Let t € J,, and R > 0, and {z("™} be any sequence in Y, Pir, Pips Pig, Pig),
where (™) = (zgm), e z,(lm)7 ...). By (4.6)), we have

1 167
0< Zr(Lm) < i
- 9n3Ve2t(2 + 5t)9 ( 21

g2t u,y,v) = In[(3 4 4t)vyy). (4.9)

1/2

+ 3R) (n,m=1,2,3,...). (4.10)

So, {z,(Lm)} is bounded, and by the diagonal method we can choose a subsequence
{m;} C {m} such that

{(ziM}y » 7z, asi—oo(n=1,2,3,...), (4.11)
which by (4.10]) implies
_ 1 167 1/2
0<%, < — — +3R n=1,2,3,...). 4.12
" 9n3W(2+5t)9( 21 A ) (4.12)

Hence Z = (Z1,...,Zn,...) € ¢p. It is easy to see from (4.10)-(4.12)) that

[20m) — 2] = sup ™) — 2| — 0 as i — o,
n

Thus, we have proved that f!(t, Big, Pig, Pir. Pig) is relatively compact in co.
For any t € J,R > 0,2,y,%,5 € D C Pjp, by (4.7) we have

|f,,21(t,.’b, y,uw) - erL(ta f,ﬂ7ﬂ,@)‘ = W ln[(l + St)xn] - 11’1[(]. + St)fn“

< 1 |zn — T |
T 9V + 3t) (1+3t)E,

(4.13)

where &, is between z,, and T,,. By (4.13)), we obtain
1

S J—

9v/t(1 + 3t)

In the same way, we can prove that g'(t, Pirs Pips Prr, Pir) is relatively compact
in ¢g. Also we can obtain

£t @, y,u,v) — f2(t,2,7,%,0)| |z —Z|, z,94,2Z,9€D. (4.14)

1
2 P — - =
t,r,u,y,v) — g6, 27,0, Y,0)|| £ —————|lv—-7|, =x,y,7,y€D.

llg™( y,v) —g°( | 7\%(3+4t)2|| | Y, T,
From this inequality and (4.14)), it is easy to see that (H2) holds for Loo(t) =
1/(9v/t(1 + 3t)), Lio(t) = 1/(7v/t(3 + 4t)?). By a simple computation, we have
G§ =~ 0.044, G7 ~ 0.013, 2G* - D* ~ 0.7736 < 1. Our conclusion follows from
Theorem 311 O
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