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EXISTENCE OF NON-NEGATIVE SOLUTIONS FOR
PREDATOR-PREY ELLIPTIC SYSTEMS WITH A

SIGN-CHANGING NONLINEARITY

JAGMOHAN TYAGI

Abstract. By the method of monotone iteration and Schauder fixed point
theorem, we prove the existence of non-negative solutions to the system

−∆u = λa(x)f(v) in Ω,

−∆v = λb(x)g(u) in Ω,

u = v = 0 on ∂Ω,

for λ sufficiently small, where Ω is a bounded domain in RN with smooth
boundary ∂Ω and λ is a positive parameter. In this work, we allow the sign
changing nature of a and b with a(x)b(x) ≤ 0, ∀x ∈ Ω̄.

1. Introduction

Let us consider the system
−∆u = λa(x)f(v) in Ω,

−∆v = λb(x)g(u) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, λ is a positive
parameter. Let a, b ∈ L∞(Ω) be sign-changing potentials.

In this note, we are interested establishing the existence of a non-negative so-
lution to (1.1) in predator-prey case; i.e., when ab ≤ 0 a.e. in Ω̄. This case is
more delicate as it deals with the predator-prey models arising in the mathematical
biology; see [2, 9] and the references cited therein for more details. The present
work concludes our earlier study started in [10].

In the recent years, a good amount of research is established for reaction-diffusion
systems. Reaction-diffusion systems model many phenomena in biology, ecology,
combustion theory, chemical reactions, population dynamics etc. A typical example
of these model is

−∆u = f(v) in Ω,

−∆v = g(u) in Ω,
u = v = 0 on ∂Ω,

(1.2)
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where Ω is a bounded domain in RN with smooth boundary ∂Ω. The existence of
the positive solution of (1.2) is established by de Figueiredo et al, [4] in an Orlicz
space setting for N ≥ 3. Hulshof and Vorst [8] established the existence of positive
solution to (1.2) by variational technique for N ≥ 1. Dalmasso [3] established
the existence of positive solutions to (1.2) by Schauder fixed point theorem. For
the existence and non-existence of positive solutions of (1.2) in ball; we refer the
reader to [5] for N ≥ 4. Recently, by the method of sub and supersolutions and
Schauder fixed point theorem, Hai and Shivaji [7] established the existence of a
positive solution to the system

−∆u = λf(v) in Ω,

−∆v = λg(u) in Ω,
u = v = 0 on ∂Ω,

(1.3)

for λ large. So it is natural to explore the existence questions of (1.3) for λ small
with sign-changing nonlinearity. In case of a single equation

−∆u = λa(x)f(u) in Ω; u = 0 on ∂Ω, (1.4)

Hai [6] obtained the existence of a positive solution to (1.4) by Leray-Schauder fixed
point theorem without assuming the monotonicity assumption on f , but assumed
the continuity of a. Hai obtained an explicit nonnegative lower bound for solutions
of (1.4) in product of λ, f(0) and

∫
Ω
G(x, y)a+(y)dy. In order to obtain nonnegative

solutions to the system, which have explicit lower and upper bounds both, the
approach of [6] seems difficult due to ab ≤ 0 a.e. in Ω. Using monotone iterations
as in [1], we prove the existence of nonnegative solutions to the system, which have
both lower and upper bounds explicitly.

In the present study, we assume the following hypotheses on the nonlinearity
and weights:

(H1) f, g : [0,∞) → [0,∞) which are continuous and non-decreasing on [0,∞).
(H2) There exists µ1 > 0 such that∫

Ω

G(x, y)a+(y)dy ≥ (1 + µ1)
∫

Ω

G(x, y)a−(y)dy, ∀x ∈ Ω.

(H3) There exists µ2 > 0 such that∫
Ω

G(x, y)b+(y)dy ≥ (1 + µ2)
∫

Ω

G(x, y)b−(y)dy ∀x ∈ Ω,

where G(x, y) is the Green’s function of −∆ associated with the Dirichlet boundary
condition.

In our earlier study [10], we assumed that a(x)b(x) ≥ 0 a.e. x ∈ Ω̄ and proved
the existence of a non-negative solution to (1.1). In fact, the main result which is
proved in [10] is the following:

Let a(x)b(x) ≥ 0 a.e. x ∈ Ω̄. If f(0) > 0, g(0) > 0, f and g both
are nondecreasing and continuous functions. Suppose (H2), (H3)
hold. Then there exists λ∗ > 0 depending on f, g, a, b, µi, i = 1, 2
such that (1.1) has a non-negative solution for 0 ≤ λ ≤ λ∗.

We point out that the existence of a non-negative solution to (1.1) was left open
in case when a(x)b(x) ≤ 0 a.e. x ∈ Ω̄, due to the inapplicability of [10, Prop. 2.4].
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In this note, we obtain a proposition similar to [10, Prop. 2.4] and by an appli-
cation of Schauder fixed point theorem, we prove the existence of a non-negative
solution to (1.1) in the case a(x)b(x) ≤ 0 a.e. x ∈ Ω̄ for λ sufficiently small.

We organize this note as follows: Section 2 deals with some propositions which
have been used in the main result. We prove the main theorem in Section 3. In
Section 4, we establish the existence of a non-negative solution for a class of n× n
systems with sign-changing nonlinearity. Now we state and prove the main theorem.

Theorem 1.1. Let ab ≤ 0 a.e. in Ω̄. If f(0) > 0, g(0) > 0f , and g both are
nondecreasing and continuous functions. Suppose (H2), (H3) hold. Then there
exists λ∗ > 0 depending on f, g, a, b, µi, i = 1, 2 such that (1.1) has a non-negative
solution for 0 ≤ λ ≤ λ∗.

2. Main Result

Let us assume throughout that ab ≤ 0 a.e. in Ω̄. Let A : C(Ω) × C(Ω) →
C(Ω)× C(Ω) be defined by

A(u, v)(x) =
(
λ

∫
Ω

G(x, y)a(y)f(v(y))dy, λ
∫

Ω

G(x, y)b(y)g(u(y))dy
)
.

Let Ω1 = {x ∈ Ω : a(x) ≥ 0, b(x) < 0} and Ω2 = {x ∈ Ω : a(x) < 0, b(x) ≥ 0}. In
this case A can be written as

A(φ, ψ)(x) =
(
λ

∫
Ω1

G(x, y)a+(y)f(ψ(y))dy − λ

∫
Ω2

G(x, y)a−(y)f(ψ(y))dy,

λ

∫
Ω2

G(x, y)b+(y)g(φ(y))dy − λ

∫
Ω1

G(x, y)b−(y)g(φ(y))dy
)
.

Also, it can be rewritten as

A(φ, ψ)(x) =
(
A1ψ(x)−A2ψ(x), B2φ(x)−B1φ(x)

)
,

where A1, B1 act on C+(Ω ∩ Ω1) and A2, B2 act on C+(Ω ∩ Ω2) and Ai and Bi,
i = 1, 2 are monotone by (H1).

One can see easily that our problem is exactly to find out the fixed point of the
integral operator defined by

A(φ, ψ)(x) =
(
A1ψ(x)−A2ψ(x), B2φ(x)−B1φ(x)

)
.

The difficulty here is that in general, A does not leave invariant the cone of non-
negative continuous functions C+(Ω)×C+(Ω) invariant. In the ensuing proposition,
we construct a closed, convex set Γ ⊂ C+(Ω)×C+(Ω), which is left invariant under
A.

Indeed, the next proposition is already given in [10], but for the sake of com-
pleteness, we repeat the proof here.

Proposition 2.1. Assume that there exist Φ = (φ(1), φ(2)), Ψ = (ψ(1), ψ(2)) in
C+(Ω)× C+(Ω) such that Φ ≤ Ψ and

(φ(1), φ(2)) =
(
A1φ

(2) −A2ψ
(2), B2φ

(1) −B1ψ
(1)

)
,

(ψ(1), ψ(2)) =
(
A1ψ

(2) −A2φ
(2), B2ψ

(1) −B1φ
(1)

)
.
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Then under the hypothesis (H1),

Γ =
{
(u, v) ∈ C(Ω)× C(Ω) : (0, 0) ≤ (φ(1)(x), φ(2)(x))

≤ (u(x), v(x)) ≤ (ψ(1)(x), ψ(2)(x)), x ∈ Ω
}

is a closed, convex set and Γ is invariant under A.

Proof. It is easy to observe that Γ is a closed, convex set in C(Ω) × C(Ω). Γ is
invariant under A for A(u, v) = (A1v −A2v,B2u−B1u) where

A1v −A2v ≤ A1ψ
(2) −A2φ

(2) = ψ(1),

A1v −A2v ≥ A1φ
(2) −A2ψ

(2) = φ(1),

B2u−B1u ≤ B2ψ
(1) −B1φ

(1) = ψ(2),

B2u−B1u ≥ B2φ
(1) −B1ψ

(1) = φ(2).

This implies

(φ(1), φ(2)) ≤ (A1v −A2v,B2u−B1u) ≤ (ψ(1), ψ(2)).

Therefore, Γ is invariant under A. �

Proposition 2.2. Let f and g satisfy (H1). Then under the assumptions of Propo-
sition 2.1, A has a fixed point on Γ.

Proof. In view of Proposition 2.1, it is easy to see that A is a completely continuous
operator on Γ. By Schauder fixed point theorem A has a fixed point on Γ. �

The fixed point of A is the solution of (1.1). Now we construct such Φ and Ψ
(introduced in Proposition 2.1) by the iteration introduced by Cac et al, [1].

Proposition 2.3. Suppose we have bounded measurable functions Φ0 = (φ(1)
0 , φ

(2)
0 ),

Ψ0 = (ψ(1)
0 , ψ

(2)
0 ) on Ω such that

(i) (0, 0) = 0 ≤ Φ0 ≤ Ψ0 on Ω1; 0 ≤ Ψ0 ≤ Φ0 on Ω2;
(ii) (A1ψ

(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ) ≤ (ψ(1)

0 , ψ
(2)
0 ) on Ω1;

(A1ψ
(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ) ≤ (φ(1)

0 , φ
(2)
0 ) on Ω2.

(iii) (A1φ
(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ) ≥ (φ(1)

0 , φ
(2)
0 ) on Ω1;

(A1φ
(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ) ≥ (ψ(1)

0 , ψ
(2)
0 ) on Ω2.

Define

Φ1 =

{
(A1φ

(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ) on Ω1,

(A1ψ
(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ) on Ω2.

Ψ1 =

{
(A1ψ

(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ) on Ω2,

(A1φ
(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ) on Ω2.

Then under the hypothesis (H1), Φ1 and Ψ1 also satisfy (i)–(iii).

Proof. Note that (i) implies

(A1φ
(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ) ≤ (A1ψ

(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ).

This shows that Φ1 and Ψ1 satisfy (i). Now we claim that Φ1 and Ψ1 satisfy (ii)
and (iii). For this,

(A1ψ
(2)
1 −A2ψ

(2)
1 , B2φ

(1)
1 −B1φ

(1)
1 )
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=
(
A1(B2φ

(1)
0 −B1φ

(1)
0 )−A2(B2ψ

(1)
0 −B1ψ

(1)
0 ),

B2(A1ψ
(2)
0 −A2ψ

(2)
0 )−B1(A1φ

(2)
0 −A2φ

(2)
0 )

)
≤ (A1ψ

(2)
0 −A2ψ

(2)
0 , B2φ

(1)
0 −B1φ

(1)
0 ).

So this implies that Φ1 and Ψ1 satisfy (ii). Now(
A1φ

(2)
1 −A2φ

(2)
1 , B2ψ

(1)
1 −B1ψ

(1)
1

)
=

(
A1(B2ψ

(1)
0 −B1ψ

(1)
0 )−A2(B2φ

(1)
0 −B1φ

(1)
0 ),

B2(A1φ
(2)
0 −A2φ

(2)
0 )−B1(A1ψ

(2)
0 −A2ψ

(2)
0 )

)
≥ (A1φ

(2)
0 −A2φ

(2)
0 , B2ψ

(1)
0 −B1ψ

(1)
0 ).

This implies that Φ1 and Ψ1 satisfy (iii). This completes the proof of proposition.
�

Proposition 2.4. Suppose we have bounded measurable functions Φ0 and Ψ0 on
Ω such that (i)–(iii) of Proposition 2.3 hold. Then under the hypothesis (H1), there
exist Φ,Ψ ∈ C+(Ω)× C+(Ω) satisfying the requirement of Proposition 2.1.

Proof. Let us define

Φn+1 = (φ(1)
n+1, φ

(2)
n+1) =

{
(A1φ

(2)
n −A2φ

(2)
n , B2ψ

(1)
n −B1ψ

(1)
n ) on Ω1,

(A1ψ
(2)
n −A2ψ

(2)
n , B2φ

(1)
n −B1φ

(1)
n ) on Ω2.

Ψn+1 = (ψ(1)
n+1, ψ

(2)
n+1) =

{
(A1ψ

(2)
n −A2ψ

(2)
n , B2φ

(1)
n −B1φ

(1)
n ) on Ω1,

(A1φ
(2)
n −A2φ

(2)
n , B2ψ

(1)
n −B1ψ

(1)
n ) on Ω2.

By Proposition 2.3 and induction, (Φn,Ψn) satisfies (i)–(iii) and therefore one can
see easily that

0 ≤ (A1φ
(2)
n −A2φ

(2)
n , B2ψ

(1)
n −B1ψ

(1)
n )

≤ (A1φ
(2)
n+1 −A2φ

(2)
n+1, B2ψ

(1)
n+1 −B1ψ

(1)
n+1) ≤ . . .

≤ (A1ψ
(2)
n+1 −A2ψ

(2)
n+1, B2φ

(1)
n+1 −B1φ

(1)
n+1)

≤ (A1ψ
(2)
n −A2ψ

(2)
n , B2φ

(1)
n −B1φ

(1)
n ) · · · ≤ (ψ(1)

0 , ψ
(2)
0 ) on Ω

(2.1)

We can write down the above inequalities as

0 ≤ T (Φn,Ψn) ≤ T (Φn+1,Ψn+1) ≤ · · · ≤ T (Ψn+1,Φn+1) ≤ T (Ψn,Φn) ≤ · · · ≤ Ψ0,

where

T (Φn,Ψn) = (A1φ
(2)
n −A2φ

(2)
n , B2ψ

(1)
n −B1ψ

(1)
n ),

T (Ψn,Φn) = (A1ψ
(2)
n −A2ψ

(2)
n , B2φ

(1)
n −B1φ

(1)
n ).

Thus T (Φn,Ψn) ↑ Φ; i.e.,

(A1φ
(2)
n −A2φ

(2)
n , B2ψ

(1)
n −B1ψ

(1)
n ) → (φ(1), φ(2)) pointwise as n→∞,

and T (Ψn,Φn) ↓ Ψ; i.e.,

(A1ψ
(2)
n −A2ψ

(2)
n , B2φ

(1)
n −B1φ

(1)
n ) → (ψ(1), ψ(2)) pointwise as n→∞.
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Also, Φ ≤ Ψ. From (2.1), A1φ
(2)
n − A2φ

(2)
n , B2ψ

(1)
n − B1ψ

(1)
n , A1ψ

(2)
n − A2ψ

(2)
n ,

B2φ
(1)
n −B1φ

(1)
n are bounded functions, a, b ∈ L∞(Ω) and G(x, y) is integrable. An

application of Lebesgue dominated convergence theorem implies

A1(B2ψ
(1)
n −B1ψ

(1)
n )(x) =

∫
Ω1

G(x, y)a+(y)f((B2ψ
(1)
n −B1ψ

(1)
n )(y))dy

→
∫

Ω1

G(x, y)a+(y)f(φ(2)(y))dy

= A1φ
(2)(x)

and similarly, we obtain

A2(B2φ
(1)
n −B1φ

(1)
n )(x) → A2ψ

(2)(x),

B1(A1ψ
(2)
n −A2ψ

(2)
n )(x) → B1ψ

(1)(x),

B2(A1φ
(2)
n −A2φ

(2)
n )(x) → B2φ

(1)(x).

Now using the definition of T (Φn+1,Ψn+1),

T (Φn+1,Ψn+1) = (A1φ
(2)
n+1 −A2φ

(2)
n+1, B2ψ

(1)
n+1 −B1ψ

(1)
n+1)

=
(
A1(B2ψ

(1)
n −B1ψ

(1)
n )−A2(B2φ

(1)
n −B1φ

(1)
n ),

B2(A1φ
(2)
n −A2φ

(2)
n )−B1(A1ψ

(2)
n −A2ψ

(2)
n )

)
,

we obtain
(φ(1), φ(2)) = (A1φ

(2) −A2ψ
(2), B2φ

(1) −B1ψ
(1)).

By a similar arguments and using the definition of T (Ψn+1,Φn+1), we obtain

(ψ(1), ψ(2)) = (A1ψ
(2) −A2φ

(2), B2ψ
(1) −B1φ

(1)).

This proves the construction of Φ and Ψ. �

Now we are ready to give the proof of main theorem.

3. Proof of Theorem 1.1

By a simple construction of Φ0 and Ψ0, we give some sufficient conditions so
that (i)–(iii) of Proposition 2.3 are satisfied. Let

Φ0 =

{
(0, 0) on Ω1,

(α1, α2) on Ω2;
Ψ0 =

{
(α1, α2) on Ω1,

(0, 0) on Ω2.

Then (i) is satisfied if (α1, α2) ≥ (0, 0). Now the condition (ii) is

AΨ0 =
(
A1(α2)−A2(0), B2(α1)−B1(0)

)
≤ (α1, α2) on Ω;

i.e., A1(α2)−A2(0) ≤ α1, B2(α1)−B1(0) ≤ α2;

while (iii) is

AΦ0 =
(
A1(0)−A2(α2), B2(0)−B1(α1)

)
≥ (0, 0) on Ω;

i.e., A1(0)−A2(α2) ≥ 0, B2(0)−B1(α1) ≥ 0.

Letting

z±(x) =
∫

Ω

G(x, y)a±(y)dy, Z±(x) =
∫

Ω

G(x, y)b±(y)dy,
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the rest of the proof goes exactly same as the proof of [10, Theorem 1.1]. For the
sake of brevity, we omit the details.

4. n× n systems

We consider the existence of a non-negative solution to the n× n system

−∆u1 = λa1(x)f1(u2) in Ω,

−∆u2 = λa2(x)f2(u3) in Ω,
. . .

−∆un−1 = λan−1(x)fn−1(un) in Ω,

−∆un = λan(x)fn(u1) in Ω,
u1 = u1 = u3 = · · · = un = 0 on ∂Ω,

(4.1)

where ai ∈ L∞(Ω), for all i = 1, 2, 3, . . . , n and a′is are sign changing in Ω. Let us
consider the case when n is even. Let

a1.a2 · · · an ≤ 0 a.e. in Ω̄. (4.2)

Let us take Ω1 = {x ∈ Ω : ai(x) ≥ 0,∀i=1, 2, 3,. . . ,n-1, an(x) < 0} and Ω2 =
{x ∈ Ω| ai(x) < 0,∀ i = 1, 2, 3, . . . , n − 1, an(x) ≥ 0} such that Ω1 ∩ Ω2 = ∅ and
Ω1 ∪ Ω2 = Ω. One can take different sets of Ω1 and Ω2 but in all sets (4.2) should
hold.

We assume the following hypotheses on the nonlinearity and weights:
(H0’) fi : [0,∞) → [0,∞) which are continuous and non-decreasing on [0,∞), for

i = 1, 2, . . . , n. There exist µi > 0, for i = 1, 2, . . . , n such that
(H1’) ∫

Ω

G(x, y)a1+(y)dy ≥ (1 + µ1)
∫

Ω

G(x, y)a1−(y)dy, ∀x ∈ Ω.

(H2’) ∫
Ω

G(x, y)a2+(y)dy ≥ (1 + µ2)
∫

Ω

G(x, y)a2−(y)dy, ∀x ∈ Ω.

(. . . ) . . .
(H(n-1)’)∫

Ω

G(x, y)a(n−1)+(y)dy ≥ (1 + µn−1)
∫

Ω

G(x, y)a(n−1)−(y)dy, ∀x ∈ Ω.

(Hn’) ∫
Ω

G(x, y)an+(y)dy ≥ (1 + µn)
∫

Ω

G(x, y)an−(y)dy, ∀x ∈ Ω,

where G(x, y) is the Green’s function of −∆ associated with the Dirichlet
boundary condition.

One can see easily that the fixed point of the integral operator A : (C(Ω))n →
(C(Ω))n defined by

A(φ1, φ2, . . . , φn)(x)

=
(
λ

∫
Ω

G(x, y)a1(y)f1(φ2(y))dy, λ
∫

Ω

G(x, y)a2(y)f2(φ3(y))dy, . . . ,
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λ

∫
Ω

G(x, y)an−1(y)fn−1(φn(y))dy, λ
∫

Ω

G(x, y)an(y)fn(φ1(y))dy
)

is the solution of (4.1). We note that the operator A can be written as

A(φ1, φ2, . . . , φn)(x)

=
(
λ

∫
Ω1

G(x, y)a1+(y)f(φ2(y))dy − λ

∫
Ω2

G(x, y)a1−(y)f(φ2(y))dy, . . .

λ

∫
Ω1

G(x, y)an+(y)fn(φ1(y))dy − λ

∫
Ω2

G(x, y)an−(y)fn(φ1(y))dy
)
.

For simplicity, A can be rewritten as

A(φ1, φ2, . . . , φn)(x) = (A(1)
1 φ2(x)−A

(1)
2 φ2(x), A

(2)
1 φ3(x)−A

(2)
2 φ3(x), . . . ,

A
(n)
2 φ1(x)−A

(n)
1 φ1(x)),

(4.3)

where A
(i)
1 and A

(i)
2 act on C+(Ω ∩ Ω1) and C+(Ω ∩ Ω2), respectively, for i =

1, 2, . . . , n. By (H’), A(i)
1 and A(i)

2 are monotone for i = 1, 2, . . . , n.

Theorem 4.1. Let a1 · a2 · · · an ≤ 0 a.e. in Ω̄. If fi(0) > 0 and f ′is are non-
decreasing, continuous functions for i = 1, 2, . . . , n. Let (H1’)–(Hn’) hold. Then
there exists λ̄ > 0 depending on fi, ai and µi, i = 1, 2, 3, . . . , n such that (4.1) has
a non-negative solution for 0 ≤ λ ≤ λ̄.

Proof. The proof of this theorem is along the lines of the proof of Theorem 1.1 with
an account of propositions similar to Propositions 2.1-2.4. For the sake of brevity,
we omit the detailed verification. There exists λ̄ > 0 depending on fi, ai, µi, for
i = 1, 2, . . . , n such that (4.1) has a non-negative solution for 0 ≤ λ ≤ λ̄. �
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