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OTT-SUDAN-OSTROVSKIY EQUATIONS ON A RIGHT
HALF-LINE

MARTÍN P. ÁRCIGA-ALEJANDRE, ELENA I. KAIKINA

Abstract. We consider initial-boundary value problems for the Ott-Sudan-
Ostrovskiy equation on a right half-line. We show the the existence of solu-
tions, global in time, and study their asymptotic behavior for large time.

1. Introduction

This article is devoted to the study of the initial-boundary value problem for the
Ott-Sudan-Ostrovskiy equation on the right half-line,

ut + uux + αuxxx +
∫ +∞

0

sign(x− y)uy(y, t)√
|x− y|

dy = 0, t > 0, x > 0,

u(x, 0) = u0(x), x > 0,

u(0, t) = 0, t > 0,

(1.1)

where α > 0.
The Ott-Sudan-Ostrovskiy equation is a simple universal model equation which

appears as the first approximation in the description of the ion-acoustic waves in
plasma [16, 19]. We study traditionally important questions in the theory of non-
linear partial differential equations, such as global in time existence of solutions to
the initial-boundary value problem (1.1)) and the asymptotic behavior of solutions
for large time.

Many publications have dealt with asymptotic representations of solutions to
the Cauchy problem for nonlinear evolution equations in the previous twenty years.
While not attempting to provide a complete review of these publications, we do
list some known results: [2, 3, 5, 6, 8, 10], where, in particular, the optimal time
decay estimates and asymptotic formulas of solutions to different nonlinear local
and nonlocal dissipative equations were obtained. In the case of dispersive equations
some progress in the asymptotic methods was achieved due to the discovery of the
Inverse Scattering Transform method (see books [1, 17]). Some other functional
analytic methods were applied for the study of the large time asymptotic behavior
of solutions to dispersive equations in [4, 9, 14, 18].
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The theory of the initial-boundary value problems on a half-line for the nonlinear
non local equations is relatively young and traditional questions of a general theory
are far from their conclusion ([15, 20]). There are many open natural questions
which we need to study. First of them is how many boundary data should be
posed in the initial-boundary value problems for it’s correct solvability. Another
difficulty of the non local equation on a half-line is due to the influence of the
boundary data. A description of the large time asymptotic behavior of solutions
requires new approach and some reorientation of the points of view comparing
with the Cauchy problem. For example, comparing with the corresponding case
of the Cauchy problem, solutions can obtain rapid oscillations, can converge to
a self-similar profile, can grow or decay faster, and so on. So every type of the
nonlinearity and boundary data should be studied individually. For the general
theory of nonlinear pseudodifferential equations on a half-line we refer to the book
[11]. This book is the first attempt to develop systematically a general theory of
the initial-boundary value problems for nonlinear evolution equations on a half-
line, where pseudodifferential operator K on a half-line was introduced by virtue
of the inverse Laplace transformation of the product of the symbol K(p) = O(pβ)
which is analytic in the right complex half-plane, and the Laplace transform of the
derivative ∂

[β]
x u. The main difficulty in the boundary value problem (1.1) is that

the operator

Ku = αuxxx +
∫ +∞

0

sign(x− y)uy(y, t)√
|x− y|

dy

in equation (1.1) has a symbol K(p) = αp3 + |p|1/2, which is non analytic. Thus
we can not use methods of the book [11] directly. Also the order of the first term
of the symbol K(p) is critical, since the number of the boundary data depends
also on the sign of α (see [11]). In paper [13] the initial-boundary value problem
for the nonlinear nonlocal Ott-Sudan-Ostrovskiy type on the left half-line (α < 0)
was studied. It was proved that because of the negative sign of the term uxxx

two boundary conditions have to be imposed at x = 0. In the present paper we
develop the theory of the Ott-Sudan-Ostrovskiy equation (1.1) considering the case
of the right half-line and α > 0. We will show below that only one boundary
value is necessary and sufficient to pose in the problem (1.1) for its solvability and
uniqueness. Our approach here is based on the Lp estimates of the Green function.
For constructing the Green operator in the present paper we follow the idea of paper
[12], reducing the linear problem (1.1) to the corresponding Riemann problem.
The Laplace transform requires the boundary data u(0, t), ux(0, t), uxx(0, t) and
so ux(0, t) and uxx(0, t) should be determined by the given data. To achieve this
we need to solve the system of nonlinear singular integro-differential equations
with Hilbert kernel. We believe that the method developed in this paper could be
applicable to a wide class of dissipative nonlinear non local equations.

To state precisely the results of the present paper we give some notation. We
denote 〈t〉 = 1 + t, {t} = t/〈t〉. Direct Laplace transformation Lx→ξ is

û(ξ) ≡ Lx→ξu =
∫ +∞

0

e−ξxu(x) dx
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and the inverse Laplace transformation L−1
ξ→x is defined by

u(x) ≡ L−1
ξ→xû = (2πi)−1

∫ i∞

−i∞
eξxu(ξ)dξ.

Weighted Lebesgue space Lq,a(R+) = {ϕ ∈ S ′; ‖ϕ‖Lq,a < ∞}, where

‖ϕ‖Lq,a =
( ∫ +∞

0

(1 + x)aq|ϕ(x)|qdx
)1/q

for a > 0, 1 ≤ q < ∞ and

‖ϕ‖L∞ = ess supx∈R+ |ϕ(x)|

By Φ± we denote a left and right limiting values of sectionally analytic function Φ
given by integral of Cauchy type

Φ(z) =
1

2πi

∫ i∞

−i∞

φ(q)
q − z

dq

All the integrals are understood in the sense of the Cauchy principal value. We
introduce Λ(s) ∈ L∞(R+) by formula

Λ(s) =
1

2πi

∫ i∞

−i∞
eps−|p|1/2

dp−
( 1
2πi

)3
∫ i∞

−i∞
dξeξ

∫ +∞

0

e−ps

×
√

p(p2 + |ξ|4)1/8

(
√

ip + ξ)(
√
−ip + ξ)

dp

∫ ∞

0

1
q + p

1
(q2 + |ξ|4)1/8

dq.

(1.2)

We define the linear operator

f(φ) =
∫ +∞

0

φ(y)dy. (1.3)

Now we state our main result.

Theorem 1.1. Suppose that for small a > 0 the initial data

u0 ∈ Z = L1(R+) ∩ L1,a(R+) ∩ L∞(R+)

are such that ‖u0‖Z ≤ ε is sufficiently small. Then there exists a unique global
solution

u ∈ C([0,∞);L1(R+) ∩ L1,a(R+)) ∩ C((0,∞);L∞(R+))

to the initial-boundary value problem (1.1). Moreover

u = AΛ(xt−2)t−2 + O(t−2−γ), (1.4)

as t →∞ in L∞, where γ ∈ (0,min(1, a)) and

A = f(u0)−
∫ +∞

0

f(uxu))dτ.
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2. Preliminaries

We consider the following linear initial-boundary value problem on half-line

ut + αuxxx +
∫ +∞

0

sign(x− y)uy(y, t)√
|x− y|

dy = 0, t > 0, x > 0,

u(x, 0) = u0(x), x > 0,

u(0, t) = 0, t > 0.

(2.1)

Denote

K(q) = αq3 + |q|1/2, K1(q) = αq3 + q1/2, K1(k(ξ)) = −ξ, (2.2)

where Re k(ξ) > 0 for Re ξ > 0. We define

G(t)φ =
∫ +∞

0

G(x, y, t)φ(y)dy, (2.3)

where
G(x, y, t)

=
( 1
2πi

)2
∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
dpepx Y −(p, ξ)

K1(p) + ξ
(p− k1)(p− k2)I−(p, ξ, y)

(2.4)

for x > 0, y > 0, t > 0. Here and below

Y ± = eΓ± , (2.5)

Γ+(p, ξ) and Γ−(p, ξ) are a left and right limiting values of sectionally analytic
function

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
K(q) + ξ

K1(q) + ξ
dq, (2.6)

and

I(z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z

1
(q − k2)(q − k1)

1
Y +(q, ξ)

dq. (2.7)

All the integrals are understood in the sense of the principal values.

Proposition 2.1. Let the initial data u0 be in L1. Then there exists a unique
solution u(x, t) of the initial-boundary value problem (2.1), which has integral rep-
resentation

u(x, t) = G(t)u0. (2.8)

Proof. To derive an integral representation for the solutions of (2.1) we suppose
that there exists a solution u(x, t) of problem (2.1), which is continued by zero
outside of x > 0:

u(x, t) = 0 for all x < 0.

Let φ(p) be a function of the complex variable Rep = 0, which obeys the Hölder
condition for all finite p and tends to 0 as p → ±i∞. We define the operator

Pφ(z) = − 1
2πi

∫ i∞

−i∞

1
p− z

φ(p)dp.

Note that Pφ(z) = F (z) constitutes a function analytic n the left and right semi-
planes. Here and below these functions will be denoted F+(z) and F−(z), respec-
tively. These functions have the limiting values F+(p) and F−(p) at all points
of imaginary axis Re p = 0, on approaching the contour from the left and from
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the right, respectively. These limiting values are expressed by Sokhotzki-Plemelj
formula

F+(p)− F−(p) = φ(p). (2.9)

We have for the Laplace transform

Lx→p

{∫ +∞

0

sign(x− y)uy(y, t)√
|x− y|

dy
}

= P
{
|p|1/2(Lx→p{u} −

u(0, t)
p

)
}

.

Since Lx→q{u} is analytic for all Re q > 0 we have

û(q, t) = Lx→q{u} = P{û(p, t)} (2.10)

and

Lx→q{αuxxx} = P
{

αp3
(
û(p, t)−

3∑
j=1

∂j−1
x u(0, t)

pj

)}
.

Therefore, applying the Laplace transform to (2.1) with respect to space and time
variables we obtain for Re p = 0, t > 0

̂̂u(p, ξ) =
1

K(p) + ξ

(
Ξ(p, ξ) + Φ̂(p, ξ)

)
Ξ(p, ξ) = û0(p) + αpûx(0, ξ) + αûxx(0, ξ).

(2.11)

with some function Φ̂(p, ξ) = O(p−1/2) such that for all Re z > 0

P−{Φ̂}(z, ξ) = 0 (2.12)

Here the functions ̂̂u(p, ξ), Φ̂(p, ξ), ûx(0, ξ) and ûxx(0, ξ) are the Laplace transforms
for û(p, t), Φ(p, t), ux(0, t) and uxx(0, t) with respect to time, respectively. We will
find the function Φ̂(p, ξ) using the analytic properties of function ̂̂u in the right-half
complex planes Re p > 0 and Re ξ > 0. For Re p = 0, we have

̂̂u(p, ξ) = − 1
πi
−
∫ i∞

−i∞

1
q − p

̂̂u(q, ξ)dq. (2.13)

As in [12] we perform the condition (2.13) in the form of nonhomogeneous Riemann
problem to find

Φ̂(p, ξ) = −Y +(p, ξ)U+(p, ξ),

where

U(z, ξ) = P
{ 1

Y +(p, ξ)
K1(p)−K(p)

(K(p) + ξ)(K1(p) + ξ)
Ξ(p, ξ)

}
. (2.14)

We now return to solution u(x, t) of the problem (2.1). From (2.11) with the
help of the integral representation (2.14) and Sokhotzki-Plemelj formula (2.9) we
have for Laplace transform of solution of the problem (2.1)

̂̂u(p, ξ) =
1

K1(p) + ξ
(û0(p) + α(pûx(0, ξ) + ûxx(0, ξ))− Y −U−). (2.15)

There exist two roots kj(ξ) of equation K1(z) = −ξ such that Re kj(ξ) > 0 for all
Re ξ > 0. Therefore in the expression for the function ̂̂u the factor 1/(K1(z) + ξ)
has two poles in the point z = kj(ξ), j = 1, 2, Re z > 0. However the function ̂̂u
is the limiting value of an analytic function in Re z > 0. Thus in general case the
problem (2.1) is insolvable. It is soluble only when the functions U−(z, ξ) satisfies
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additional conditions. For analyticity of ̂̂u(z, ξ) in points z = kj(ξ) it is necessary
that

Resz=kj(ξ){û0(z) + α(zûx(0, ξ) + ûxx(0, ξ))− Y −U−} = 0, j = 1, 2. (2.16)

Therefore, we obtain for the Laplace transforms of boundary data ux(0, t), uxx(0, t)
the following system

B1(kj(ξ), ξ)ûx(0, ξ) + B2(kj(ξ), ξ)ûxx(0, ξ) =
1
α
{I3û0}(kj), j = 1, 2, (2.17)

where

B1(kj(ξ), ξ) = kj(ξ)− Y −(kj(ξ), ξ) lim
y→0

∂yΥ1(kj(ξ), ξ, y), (2.18)

B2(kj(ξ), ξ) = 1− Y −(kj(ξ), ξ) lim
y→0

Υ1(kj(ξ), ξ, y), (2.19)

{I3û0}(kj) =
∫ +∞

0

dyu0(y)
(
Y −(kj(ξ), ξ)Υ1(kj(ξ), ξ, y)− e−kj(ξ)y

)
, (2.20)

where

Υ1(z, ξ, y) =
1

2πi

∫ i∞

−i∞

1
q − z

1
Y +(q, ξ)

K1(q)−K(q)
K1(q) + ξ

e−qydq. (2.21)

To solve this system firstly we consider the sectionally analytic function Υ1(z, ξ, y)
given by Cauchy type integral. Since, by (2.9),

1
Y +(q, ξ)

K(q) + ξ

K1(q) + ξ
=

1
Y −(q, ξ)

, (2.22)

we have

Υ1(z, ξ, y) =
1

2πi

∫ i∞

−i∞

1
q − z

( 1
Y +(q, ξ)

− 1
Y −(q, ξ)

)
e−qydq (2.23)

Observe that the function 1/
(
Y −(q, ξ)

)
is analytic for all Re q > 0. Therefore, by

the Cauchy Theorem for y > 0, we find

− lim
z→p, Re z>0

1
2πi

∫ i∞

−i∞

1
q − z

1
Y −(q, ξ)

e−qydq =
1

Y −(p, ξ)
e−py. (2.24)

Thus from (2.23) and (2.24), we obtain the relation

Υ−
1 (p, ξ, y) = Ψ−(p, ξ, y) +

1
Y −(p, ξ)

e−py, (2.25)

where

Ψ(z, ξ, y) =
1

2πi

∫ i∞

−i∞

1
q − z

1
Y +(q, ξ)

e−qydq.

Therefore,

B1(kj(ξ), ξ) = Y −(kj(ξ), ξ)∂yΨ(kj , ξ, 0), j = 1, 2,

B2(kj(ξ), ξ) = −Y −(kj(ξ), ξ)Ψ(kj , ξ, 0), j = 1, 2

and

{I3û0}(kj) =
∫ +∞

0

dyu0(y)
[
Y −(kj(ξ), ξ)Υ−

1 (kj , ξ, y)− e−kj(ξ)y
]

= Y −(kj(ξ), ξ)
∫ +∞

0

dyu0(y)Ψ(kj(ξ), ξ, y), j = 1, 2.
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Here and below

∂yΨ(z, ξ, 0) = lim
y→0

∂y
1

2πi

∫ i∞

−i∞

e−zy

q − z

1
Y +(q, ξ)

dq,

Ψ(z, ξ, 0) = lim
y→0

1
2πi

∫ i∞

−i∞

e−zy

q − z

1
Y +(q, ξ)

dq,

Substituting these formulas in (2.17) we obtain

ûx(0, ξ)

=
1
α

∫ +∞

0

dyu0(y)
Ψ(k1, ξ, 0)Ψ(k2(ξ), ξ, y)−Ψ(k2, ξ, 0)Ψ(k1(ξ), ξ, y)

∂yΨ(k2, ξ, 0)− ∂yΨ(k1, ξ, 0)
(2.26)

and
ûxx(0, ξ)

=
1
α

∫ +∞

0

dyu0(y)
∂yΨ(k1, ξ, 0)Ψ(k2(ξ), ξ, y)− ∂yΨ(k2, ξ, 0)Ψ(k1(ξ), ξ, y)

∂yΨ(k2, ξ, 0)− ∂yΨ(k1, ξ, 0)
.

(2.27)

Now we return to formula (2.15). In accordance with (2.26)–(2.27), the function̂̂u(p, ξ) constitutes the limiting value of an analytic function in Re z > 0 and, as a
consequence, its inverse Laplace transform vanish for all x < 0.

Under assumption u(0, t) = 0, via definition (2.21) the integral representation
(2.14) for the function U−(p, ξ), in Re z > 0, takes form

U−(p, ξ)

=
∫ +∞

0

dyu0(y)Υ−
1 (p, ξ, y)− αûx(0, ξ)∂yΥ−

1 (p, ξ, 0) + αΥ−
1 (p, ξ, 0)ûxx(0, ξ),

where the function Υ1(z, ξ, y) is defined by (2.23). Using (2.25) from (2.15) we
obtain ̂̂u =

∫ ∞

0

u0(y)
Y −(p, ξ)
K1(p) + ξ

Ψ−(p, ξ, y)dy

+ αûx(0, ξ)∂yΨ−(p, ξ, 0)− αΨ−(p, ξ, 0)ûxx(0, ξ)
(2.28)

where ûx(0, ξ) and ûxx(0, ξ) are defined by (2.26)–(2.27)

Ψ(z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z

1
Y +(q, ξ)

dq.

Applying to (2.28) the inverse Laplace transform with respect to time, and the
inverse Fourier transform with respect to space variables, we obtain

u(x, t) = G(t)u0 =
∫ ∞

0

G(x, y, t)u0(y)dy,

where for x > 0, y > 0, t > 0, the G(x, y, t) was defined by

G(x, y, t)

=
1

2πi

1
2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
dpepx Y −

K1(p) + ξ

(
Ψ−(p, ξ, y)

+
(∂yΨ−(p, ξ, 0)− Ψ̃(k2))Ψ(k1, ξ, y)− (∂yΨ−(p, ξ, 0)− Ψ̃(k1))Ψ(k2, ξ, y)

∂yΨ(k2, ξ, 0)− ∂yΨ(k1, ξ, 0)

)
,

(2.29)



8 M. P. ARCIGA-ALEJANDRE, E. I. KAIKINA EJDE-2011/??

where

Ψ̃(kj) = Ψ(kj , ξ, 0)∂yΨ(kj , ξ, 0), j = 1, 2,

Ψ(z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z
e−Γ+(q,ξ)dq,

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
K(q) + ξ

K1(q) + ξ
dq.

For subsequent considerations it is required to investigate the behavior of the func-
tion Γ(z, ξ). Set

φ(p, ξ) = ln
K(p) + ξ

K1(p) + ξ
6= 0, Re p = 0, Re ξ ≥ 0.

Observe that the function φ(p, ξ) satisifes the Hölder condition for all finite p and
tends to a definite limit φ(∞, ξ) as p → ±i∞,

φ(∞, ξ) = 0.

It can be easily obtained that for large p and some fixed ξ,

|φ(p, ξ)− φ(∞, ξ)| ≤ C
ξ

〈|p|〉3
. (2.30)

Therefore,
|eΓ±(z,ξ)| ≤ C (2.31)

for all Re ξ ≥ 0. Moreover we have

1
q − z

= −1
z
− q

z2
+

q2

z2(q − z)
.

and therefore

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln(
K(q) + ξ

K1(q) + ξ
)dq = A1(ξ)

1
z

+ O(|z|−2), (2.32)

where

A1(ξ) =
∫ i∞

−i∞
ln

{ K(q) + ξ

K1(q) + ξ

}
dq. (2.33)

In view of (2.30), for large |q|, the integrand in (2.32) is of order |q|−3; whence
the corresponding integrals with infinite limits are convergent, in accordance with
well-known criterion for convergence improper integrals.

Using the above estimate, for |z| > 1, we obtain

e−Γ+(z,ξ) − 1−A1(ξ)
1
z

= e−A1(ξ)/z+O(|z|−2) − 1 + A1(ξ)
1
z

= O(|z|−2).

In view of this fact and the Cauchy Theorem, we obtain

Ψ−(p, ξ, 0) =
1

2πi
lim
y→0

lim
z→p, Re z>0

∫ i∞

−i∞

e−qy

q − z

( 1
Y +(q, ξ)

− 1
)
dq

+
1

2πi
lim
y→0

lim
z→p, Re z>0

∫ i∞

−i∞

e−qy

q − z
dq

= −1
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and Ψ(kj , ξ, 0) = −1 for j = 1, 2. In the same way

∂yΨ−(p, ξ, 0) =
1

2πi
lim

z→p, Re z>0

∫ i∞

−i∞

q

q − z

( 1
Y +(q, ξ)

− 1 + A1(ξ)
1
q

)
dq

− lim
y→0

∂y lim
z→p,Re z>0

1
2πi

∫ i∞

−i∞

e−qy

q − z

(A1(ξ)
q

− 1
)
dq

= −A1(ξ) + p.

and
∂yΨ(kj , ξ, 0) = −A1(ξ) + kj , j = 1, 2.

Thus after some calculation we attain

[∂yΨ(k2, ξ, 0)− ∂yΨ(k1, ξ, 0)]−1

× (∂yΨ−(p, ξ, 0)−Ψ(k2, ξ, 0)∂yΨ(k2, ξ, 0))Ψ(k1, ξ, y)

− (∂yΨ−(p, ξ, 0)−Ψ(k1, ξ, 0)∂yΨ(k1, ξ, 0))Ψ(k2, ξ, y))

=
(p− k2)Ψ(k1, ξ, y)− (p− k1)Ψ(k2, ξ, y)

k2(ξ)− k1(ξ)
.

Substituting the above relation in (2.29), we obtain (2.4). The proof is complete.
�

Now we collect some preliminary estimates of the Green operator G(t) defined
in (2.3).

Lemma 2.2. The following estimates are true, provided that the right-hand sides
are finite

‖∂n
xG(t)φ‖Ls,µ ≤ Ct̃−( 1

r−
1+µ

s )−n‖φ(·)‖Lr + t̃−( 1
r−

1
s )−n‖φ(·)‖Lr,µ , (2.34)

‖(G(t)φ− t−2Λ(xt−2)f(φ))‖L∞ ≤ Ct−2−2µ‖(·)µφ‖L1 , (2.35)

where t̃ = {t}1/3〈t〉2, small µ > 0, 1 ≤ r ≤ s ≤ ∞, n = 0, 1, Λ(s) is given by (1.2)
and f(φ) is given by (1.3).

Proof. By Sokhotzki-Plemelj formula we have

I−(p, ξ, y) = I+(p, ξ, y)− e−py

Y +(p, ξ)
.

Inserting this expression in (2.4), we have

G(x, y, t) = J1(x, y, t) + J2(x, y, t), (2.36)

where

J1(x, y, t) =
1

2πi

∫ i∞

−i∞
epx−K(p)te−pydp (2.37)

and
J2(x, y, t)

= −(
1

2πi
)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx Y +(p, ξ)(p− k1(ξ))(p− k2(ξ))

K(p) + ξ
I+(p, ξ, y)dp.

(2.38)

Denote

Jj(x, t)φ =
∫ +∞

0

Jj(x, y, t)φ(y)dy
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for x > 0. From [10] we have

‖∂n
xJ1(t)φ‖Ls,µ ≤ Ct̃−( 1

r−
1+µ

s )−n‖φ(·)‖Lr + t̃−( 1
r−

1
s )−2n‖φ(·)‖Lr,µ

for n = 0, 1, 2, s ≥ r, µ ∈ (0, 1). Let the contours Ci be defined as

Ci = {p ∈ (∞e−i( π
2−(−1)iεi), 0) ∪ (0,∞ei( π

2−(−1)iεi))}, i = 1, 2, 3, (2.39)

where εj > 0 are small enough, can be chosen such that all functions under integra-
tion are analytic and Re kj(ξ) > 0, j = 1, 2 for ξ ∈ C3. In particular, for example,
K(p) + ξ 6= 0 outside the origin for all p ∈ C1 and ξ ∈ C3.

Firstly we estimate J1(t)φ . Let x−y > 0. Let x−y < 0. We can rewrite (2.37)
in the form

J1(x, y, t) =
1

2πi

∫
C1

eξtdξ
1

2πi

∫
C2

e−p(y−x) 1
K(p) + ξ

dp (2.40)

By the choice of contour C2 we have |e−p(y−x)| ≤ Ce−C|p||x−y|. Therefore, using
obvious estimates:

‖e−|p||·|‖Ls,µ ≤ C|p|−
1+sµ

s , (2.41)

‖
∫ +∞

0

e−C|p||x−y|φ(y)dy‖Ls,µ ≤ C|p|−1+ 1
r−

1+sµ
s ‖φ‖Lr + C|p|−1+ 1

r−
1
s ‖φ‖Lr,µ

for all s, r ≥ 1, for p ∈ C2, we obtain

‖∂n
xJ1(t)φ‖Ls,µ ≤ C‖φ‖Lr

∫
C1

e−C|ξ|tdξ

∫
C2

1
|K(p) + ξ|

|p|−1+n+ 1
r−

1+sµ
s dp

+ C‖φ‖Lr,µ

∫
C1

e−C|ξ|tdξ

∫
C2

1
|K(p) + ξ|

|p|−1+ 1
r +n− 1

s dp

≤ Ct̃−( 1
r−

1+µ
s )−n‖φ(·)‖Lr + t̃−( 1

r−
1
s )−n‖φ(·)‖Lr,µ

(2.42)

for n = 0, 1, r > s, µ ∈ (0, 1). In the case of x − y > 0 we use the fact that for
p ∈ C3, Re K(p) > 0 and

Re K(p) = O({p}1/2〈p〉3).

Therefore, changing in formula (2.37) contour of integration by C3 from the book
[10] we obtain estimate (2.42).

Now we estimate J2(t)φ. For any analytic in the left half-complex plane function
φ+(p) we have∫ i∞

−i∞

1
K(p) + ξ

φ+(p)dp

= (ei π
4 − e−i π

4 )
∫ +∞

0

φ+(−p)
√

p

(
√

ip− p3 + ξ)(
√
−ip− p3 + ξ)

where Re ξ = 0. Here

K(p) =

{
αp3 + (−ip)1/2, Im p > 0;
αp3 + (ip)1/2, Im p < 0.
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Using the above relation, for J2(x, y, t) we obtain

J2(x, y, t) = −(
1

2πi
)2i
√

2
∫
C1

dξeξt

∫ ∞

0

e−pxZ+(p, ξ, y)

×
√

p

(
√

ip− p3 + ξ)(
√
−ip− p3 + ξ)

dp.

(2.43)

where

Z+(p, ξ, y) = Y +(−p, ξ)(p + k1(ξ))(p + k2(ξ))I+(−p, ξ, y).

To estimate J2(x, y, t) in the case t < 1 we rewrite I+ in the form

I+(p, ξ, y)

=
1

2πi

∫
C2

e−qy

(q − p)(q − k1(ξ))(q − k2(ξ))
(

1
Y −(q, ξ)

K1(q) + ξ

K(q) + ξ
− 1

Y −(q, ξ)
)dq

+
1

2πi

∫
C2

e−qy

(q − p)(q − k1(ξ))(q − k2(ξ))
1

Y −(q, ξ)
dq

Therefore, using analytic properties of integrand function in the second term by
the Cauchy Theorem, we obtain

I+(p, ξ, y) =
1

(k2(ξ)− k1(ξ))

2∑
j=1

(−1)j e−kj(ξ)y

(p− kj(ξ))
1

Y −(kj , ξ)

+
1

2πi

∫
C2

e−qy

(q − p)(q − k1(ξ))(q − k2(ξ))
1

Y −(q, ξ)
K1(q)−K(q)

K(q) + ξ
dq

After this observation from the integral representation (2.37) by Holder inequality
we have arrived at the following estimate for r ≥ 1, s ≥ 1, l−1 = 1 − r−1, small
µ ≥ 0, n = 0, 1, t > 1,

‖∂n
x

∫ +∞

0

J2(·, y, t)φ(y)dy‖Ls,µ

≤ C‖φ‖Lr

∫
e−|ξ|tdξ

∫ ∞

0

dp|p|n−
1+µ

s + 1
2
|p + |ξ| 13 |2

| − p3 + ξ|2

×
( ∫

C2

dq
1

|q − p||q| 12− 1
r

1
| − q3 + ξ|

+
1

〈|ξ|〉 1
3+1− 1

r

)
≤ C‖φ‖Lr t−( 1

r−
1+µ

s +n)/3.

(2.44)

Here we used (2.31) and the estimate kj(ξ) = O(〈ξ〉1/3). Therefore according to
(2.42) and (2.44), for t < 1, we obtain the estimate (2.34).

Now we prove the asymptotic formula (2.35). For large t > 1 and |ξ| > 1,
the integrand eξt decays as e−Ct. However, in the neighborhood of ξ = 0, the
integrand eξt changes relatively slowly. By this reason we split the integrals (2.43)
into integrals over sections |p| < 1, |ξ| < 1 and over the rest of the ranges of
integration. In the neighborhood of p = 0 we have

K(p) + ξ =
√
|p|+ ξ + O(p7/2), K1(p) + ξ =

√
p + ξ + O(p7/2).
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Also for small ξ by construction kj(ξ) = α−2/5ei(−1)j2π/5 + O(ξ). To separate the
principal part of the expansion of

Γ+(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
K(q) + ξ

K1(q) + ξ
dq

near points p = 0, ξ = 0 we introduce the new function Γ̃+(z, ξ) by the relation

Γ̃±(z, ξ) =
1

2πi

{∫ i

i|ξ|2
+

∫ −i|ξ|2

−i

} 1
q − z

ln

√
|q|
√

q
dq

=
1

2πi
(−i

π

4
)
∫ i

i|ξ|2

( 1
q − z

+
1

q + z

)
dq

=
1
8

ln
z2 + |ξ|4

z2 + 1

(2.45)

It can be proved by a direct calculation that for small |z| < 1, |ξ| < 1,

Γ̃+(z, ξ)− Γ+(z, ξ) = O(ξ).

Also via (2.45), the functions

w±(z, ξ) = e
eΓ±(z,ξ) = (

z2 + |ξ|4

z2 + 1
)1/8

are analytic in z ∈ C except for z ∈ [−i,−i|ξ|2] ∪ [i|ξ|2, i] and therefore

w+(z, ξ) = w−(z, ξ)

for all z /∈ [−i,−i|ξ|2] ∪ [i|ξ|2, i]. Via the last comments we obtain for small p > 0,
ξ ∈ C1

I+(p, ξ, y) =
1

2πi

1
k1(ξ)k2(ξ)

∫ i∞

−i∞

1
q − p

1
(q2 + |ξ|4)1/8

K(q)
K1(q)

dq(1 + O(yµpµ)),

where µ ∈ (0, 1
4 ).

On the basis last relations for points of the contours close the points p = 0 and
ξ = 0 integrand of M1(x, y, t) has the following representation

−
( 1
2πi

)2
i
√

2eξte−px

√
p(p2 + |ξ|4)1/8

(
√

ip− p3 + ξ)(
√
−ip− p3 + ξ)

Ĩ+(p, ξ, y).

where

Ĩ+(p, ξ, y) =
1

2πi

∫ i∞

−i∞

1
q − p

1
(q2 + |ξ|4)1/8

K(q)
K1(q)

dq.

On integrating this function by extending the limits to −i∞ and +i∞ we obtain
the contributions to M1(x, y, t) from the neighborhoods of ξ = 0 and p = 0

− t−2(
1

2πi
)2

∫
C1

dξeξ

∫ +∞

0

e−pxt−2
√

p(p2 + |ξ|4)1/8

(
√

ip + ξ)(
√
−ip + ξ)

dp (2.46)

×
∫ ∞

0

1
q + p

1
(q2 + |ξ|4)1/8

dq. (2.47)

To estimate the contribution of R(x, y, t) to G(x, y, t) over the rest of the range
of integration we use standard method of “partition of unity” and Watson Lemma.
Due to smoothing properties of integrand functions by integrating by part we obtain

R(x, y, t) = yµO(t−2−2µ) (2.48)
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For the function J1(x, y, t) defined by (2.37), we have

J1(x, y, t) =
1

2πi
t−2

∫ i∞

−i∞
epxt−2−|p|1/2

dp + yµO(t−2−2µ). (2.49)

Thus from (2.46), (2.48) and (2.49), via (2.36) we obtain

‖Gφ− t−2Λ(xt−2)f(φ)‖L∞ ≤ Ct−2−2µ‖〈x〉µφ‖L1 .

By the same argument, it is easy to prove (2.34) for t > 1. The proof is complete.
�

Theorem 2.3. Let the initial data u0 belong to L1(R+) ∩ L1,a(R+), with small
a ≥ 0. Then for some T > 0 there exists a unique solution

u ∈ C([0, T ];L1(R+) ∩ L1,a(R+)) ∩ C((0, T ];H1
∞(R+))

to the initial-boundary value problem (1.1)

3. Proof of Theorem 1.1

By Proposition 2.1 we rewrite the initial-boundary value problem (1.1) as the
integral equation

u(t) = G(t)u0 −
∫ t

0

G(t− τ)N (u(τ))dτ (3.1)

where G is the Green operator of the linear problem (2.1). We choose the space

Z = {φ ∈ L1(R+) ∩ L1,a(R+)}

with a > 0 is small and the space

X = {φ ∈ C([0,∞);Z) ∩ C((0,∞);H1
∞(R+)) : ‖φ‖X < ∞},

where

‖φ‖X = sup
t≥0

(
{t}−a/3〈t〉−2a‖φ(t)‖L1,a + ‖φ(t)‖L1 +

1∑
n=0

{t}
n+1

3 〈t〉2(n+1)‖φ(t)‖L∞

)
shows the optimal time decay properties of the solution. We apply the contraction
mapping principle in a ball Xρ = {φ ∈ X : ‖φ‖X ≤ ρ} in the space X of radius

ρ =
1

2C
‖u0‖Z > 0.

For v ∈ Xρ we define the mapping M(v) by

M(v) = G(t)u0 −
∫ t

0

e−τG(t− τ)N (v(τ))dτ. (3.2)

We first prove that ‖M(v)‖X ≤ ρ, where ρ > 0 is sufficiently small. By Lemma
2.2, we obtain

‖G(t)φ‖L1 ≤ C{t}−n
3 〈t〉−2n‖φ‖L1 ,

‖G(t)φ‖L1,a ≤ C{t} a
3 〈t〉2a‖φ‖L1 + ‖φ‖L1,a ,

‖∂n
xG(t)φ‖L∞ ≤ C{t}−(n+1)/3〈t〉−2(n+1)‖φ‖L1

for all t ≥ 0. Therefore,
‖Gu0‖X ≤ C‖u0‖Z . (3.3)
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Also since v ∈ Xρ, we obtain

‖N (v(τ))‖L1,a ≤ C‖v‖L1,a‖vx‖L∞ ≤ C{τ}−(2−a)/3〈τ〉2a−4‖v‖2X ,

‖N (v(τ))‖L1 ≤ C‖v‖L1‖vx‖L∞ ≤ C{τ}−2/3〈τ〉−3‖v‖2X ,

for all τ > 0, and

‖N (v(τ))‖L∞ ≤ C‖v‖L∞‖vx‖L∞ ≤ C〈τ〉−6 ‖v‖2X .

for all τ > 1. Now by Lemma 2.2 we obtain

‖
∫ t

0

G(t− τ)N (v(τ))dτ‖L1,a

≤
∫ t

0

{t− τ} a
3 〈t− τ〉2a‖N (v(τ))‖L1dτ +

∫ t

0

‖N (v(τ))‖L1,adτ

≤ C‖v‖2X
[ ∫ t

0

{t− τ} a
3 〈t− τ〉2a{τ}−2/3〈τ〉−4 dτ +

∫ t

0

{τ}−
2−a
3 〈τ〉2a−3 dτ

]
≤ C〈t〉2a{t} a

3 ‖v‖2X
for all t ≥ 0. In the same manner by Lemma 2.2 we have

‖
∫ t

0

G(t− τ)N (v(τ))dτ‖L1 ≤
∫ t

0

‖N (v(τ))‖L1dτ

≤ C‖v‖2X
∫ t

0

{τ}−2/3〈τ〉−3dτ

≤ C‖v‖2X
for all t ≥ 0. Also in view of Lemma 2.2, we find

‖∂n
x

∫ t

0

G(t− τ)N (v(τ))dτ‖L∞

≤
∫ t

0

{t− τ}−(n+1)/3〈t− τ〉−2(n+1)‖N (v(τ))‖L1dτdτ

≤ C‖v‖2X(
∫ t

0

{t− τ}−(n+1)/3〈t− τ〉−2(n+1){τ}−2/3〈τ〉−3dτ)

≤ C{t}−(n+1)/3〈t〉−2(n+1)‖v‖2X
for t ≥ 0. Thus we obtain

‖
∫ t

0

e−τG(t− τ)N (v(τ))dτ‖X ≤ C‖v‖2X ,

hence in view of (3.2) and (3.3),

‖M(v)‖X ≤ ‖Gu0‖X + ‖
∫ t

0

G(t− τ)N (v(τ))dτ‖X

≤ C‖u0‖Z + C‖v‖2X
≤ ρ

2
+ Cρ2 < ρ.

since ρ > 0 is sufficiently small. Hence the mapping M transforms a ball Xρ into
itself. In the same manner we estimate the difference

‖M(w)−M(v)‖X ≤ 1
2
‖w − v‖X ,
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which shows that M is a contraction mapping. Therefore, there exists a unique
solution v ∈ C([0,∞);L1(R+)∩L1,a(R+))∩C((0,∞);H1

∞) to the initial-boundary
value problem (1.1). Now we can prove the asymptotic formula

v(x, t) = A1Λ(xt−2)t−2 + O(t−2−γ), (3.4)

where

A1 = f(u0)−
∫ +∞

0

e−τf(N (v))dτ.

Denote G0(t) = t−2 Λ(xt−2). From Lemma 2.2, we have

t2+γ‖G(t)φ−G0(t)f(φ)‖L∞ ≤ C‖φ‖Z (3.5)

for all t > 1. Also in view the definition of the norm X we have

|f(N (v(τ)))| ≤ ‖N (v(τ))‖L1 ≤ C{τ}−2/3〈τ〉−4‖v‖2X .

By a direct calculation, for some small γ1 > 0, γ > 0, we have

‖
∫ t/2

0

|G0(t− τ)−G0(t)|f(N (v(τ)))dτ‖L∞

≤ 〈t〉−1C‖v‖2X
∫ t/2

0

‖(G0(t− τ) + G0(t))‖L∞{τ}−γ1〈τ〉−γ2dτ

≤ C〈t〉−2

∫ t/2

0

{τ}−γ1〈τ〉−γ2dτ ≤ C〈t〉−γ−2

(3.6)

and in the same way,

‖〈t〉γG0(t)
∫ ∞

t/2

f(N (v(τ)))dτ‖L∞ ≤ C‖v‖2X (3.7)

Also we have

‖
∫ t/2

0

(G(t− τ)N (v(τ))−G0(t− τ)f(N (v(τ))))dτ‖L∞

+ ‖
∫ t

t/2

G(t− τ)N (v(τ))dτ‖L∞

≤ C

∫ t/2

0

(t− τ)−2‖N (v(τ))‖L1dτ + Ce−
t
2

∫ t

t/2

‖N (v(τ))‖L1dτ

≤ Ct−2−γ‖v‖2X

(3.8)

for all t > 1. By (3.1), we obtain

〈t〉γ+2‖(v(t)−AG0(t))‖X

≤ ‖(G(t)u0 −G0(t)f(u0)‖L∞

+ 〈t〉γ+2‖
∫ t

2

0

(G(t− τ)N (v(τ))−G0(t− τ)f(N (v(τ))))dτ‖L∞

+ 〈t〉γ+2‖
∫ t

t/2

G(t− τ)N (v(τ))dτ‖L∞ + 〈t〉γ+2‖G0(t)
∫ ∞

t/2

f(N (v(τ)))dτ‖L∞

+ 〈t〉γ+2‖
∫ t/2

0

(G0(t− τ)−G0(t))f(N (v(τ)))dτ‖L∞ . (3.9)
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All the summands in the right-hand side of above inequality are estimated by
C‖u0‖Z + C‖v‖2X via estimates (3.6)–(3.8). Thus by (3.9) the asymptotic formula
(3.4) is valid, which completes the proof.
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