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OSCILLATION RESULTS FOR EVEN-ORDER QUASILINEAR
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

BLANKA BACULÍKOVÁ, JOZEF DŽURINA, TONGXING LI

Abstract. In this article, we use the Riccati transformation technique and
some inequalities, to establish oscillation theorems for all solutions to even-
order quasilinear neutral differential equation“ˆ`

x(t) + p(t)x(τ(t))
´(n−1)˜γ

”′
+ q(t)xγ

`
σ(t)

´
= 0, t ≥ t0.

Our main results are illustrated with examples.

1. Introduction

Neutral differential equations find numerous applications in natural science and
technology; see Hale [1]. Recently, there has been much research activity concerning
the oscillation and non-oscillation of solutions of various types of neutral functional
differential equations; see for example [2, 3, 4, 6, 7, 11, 12, 14] and the references
cited therein.

In this article, we consider the oscillatory behavior of solutions to the even-order
neutral differential equation([(

x(t) + p(t)x(τ(t))
)(n−1)]γ

)′
+ q(t)xγ

(
σ(t)

)
= 0, t ≥ t0. (1.1)

We will use the following assumptions:
(A1) n ≥ 2 is even and γ ≥ 1 is the ratio of odd positive integers;
(A2) p ∈ C([t0,∞), [0, a]), where a is a constant;
(A3) q ∈ C([t0,∞), [0,∞)), and q is not eventually zero on any half line [t∗,∞);
(A4) τ, σ ∈ C([t0,∞),R), limt→∞ τ(t) = limt→∞ σ(t) = ∞, σ−1 exists and σ−1

is continuously differentiable.
We consider only those solutions x of (1.1) for which sup{|x(t)| : t ≥ T} > 0 for

all T ≥ t0. We assume that (1.1) possesses such a solution. As usual, a solution of
(1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞); otherwise, it is
called non-oscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

For the oscillation of even-order neutral differential equations, Zafer [5], Karpuz
et al. [8], Zhang et al. [10] and Li et al. [13] considered the oscillation of even-order
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neutral equation(
x(t) + p(t)x(τ(t))

)(n) + q(t)x(σ(t)) = 0, t ≥ t0 (1.2)

by using the results given in [15]. Meng and Xu [9] studied the oscillation property
of the even-order quasi-linear neutral equation[

r(t)|(z(t))(n−1)|α−1(z(t))(n−1)
]′ + q(t)|x(σ(t))|α−1x(σ(t)) = 0, t ≥ t0,

with z(t) = x(t) + p(t)x(τ(t)). To the best of our knowledge, there are no results
on the oscillation of (1.1) when p(t) > 1 and γ > 1. The purpose of this paper is
to establish some oscillation results for (1.1). The organization of this article is as
follows: In Section 2, we give some oscillation criteria for (1.1). In Section 3, we
give several examples to illustrate our main results.

Below, when we write a functional inequality without specifying its domain of
validity we assume that it holds for all sufficiently large t.

2. Main results

In this section, we establish some oscillation criteria for (1.1). Let f−1 denote
the inverse function of f , and for the sake of convenience, we let

z(t) := x(t) + p(t)x(τ(t)), Q(t) := min{q(σ−1(t)), q(σ−1(τ(t)))},
(ρ′(t))+ := max{0, ρ′(t)}.

To prove our main results, we use the following lemmas.

Lemma 2.1 ([2, Lemma 2.2.1]). Let u(t) be a positive and n-times differentiable
function on an interval [T,∞) with its n-th derivative u(n)(t) non-positive on [T,∞)
and not identically zero on any interval [T1,∞), T1 ≥ T . Then there exists an
integer l, 0 ≤ l ≤ n− 1, with n+ l odd, such that, for some large T2 ≥ T1,

(−1)l+ju(j)(t) > 0 on [T2,∞) (j = l, l + 1, . . . , n− 1)

u(i)(t) > 0 on [T2,∞) (i = 1, 2, . . . , l − 1) when l > 1.

Lemma 2.2 ([2, P. 169]). Let u be as in Lemma 2.1. If limt→∞ u(t) 6= 0, then, for
every λ, 0 < λ < 1, there is Tλ ≥ t0 such that, for all t ≥ Tλ,

u(t) ≥ λ

(n− 1)!
tn−1u(n−1)(t).

Lemma 2.3 ([15]). Let u be as in Lemma 2.1 and u(n−1)(t)u(n)(t) ≤ 0 for t ≥ t∗.
Then for every constant θ, 0 < θ < 1, there exists a constant Mθ > 0 such that

u′(θt) ≥Mθt
n−2u(n−1)(t).

Lemma 2.4. Assume that x is an eventually positive solution of (1.1), and n is
even. Then there exists t1 ≥ t0 such that, for t ≥ t1,

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0, z(n)(t) ≤ 0,

and z(n) is not identically zero on any interval [a,∞).

The proof of the above lemma is similar to that of [9, Lemma 2.3], with γ being
the ratio of odd integers. We omit it.
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Lemma 2.5. Assume that γ ≥ 1, x1, x2 ∈ R. If x1 ≥ 0 and x2 ≥ 0, then

x1
γ + x2

γ ≥ 1
2γ−1

(x1 + x2)γ . (2.1)

Proof. (i) Suppose that x1 = 0 or x2 = 0. Then we have (2.1). (ii) Suppose
that x1 > 0 and x2 > 0. Define f by f(x) = xγ , x ∈ (0,∞). Clearly, f ′′(x) =
γ(γ − 1)xγ−2 ≥ 0 for x > 0. Thus, f is a convex function. By the definition of
convex function, for x1, x2 ∈ (0,∞), we have

f
(x1 + x2

2
)
≤ f(x1) + f(x2)

2
.

That is,

x1
γ + x2

γ ≥ 1
2γ−1

(x1 + x2)γ .

This completes the proof. �

First, we establish the following comparison theorems.

Theorem 2.6. Assume that (σ−1(t))′ ≥ σ0 > 0 and τ ′(t) ≥ τ0 > 0. Further,
assume that there exists a constant λ, 0 < λ < 1, such that[y(σ−1(t))

σ0
+

aγ

σ0τ0
y(σ−1(τ(t)))

]′ + 1
2γ−1

( λ

(n− 1)!
tn−1

)γ

Q(t)y(t) ≤ 0 (2.2)

has no eventually positive solution. Then (1.1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0
for all t ≥ t1. Then z(t) > 0 for t ≥ t1. From (1.1), we obtain(

(z(n−1)(t))γ
)′ = −q(t)xγ(σ(t)) ≤ 0, t ≥ t1.

By Lemma 2.4 with n even, there exists t2 ≥ t1 such that z(n)(t) ≤ 0 for t ≥ t2.
Thus, from Lemma 2.1, there exist t3 ≥ t2 and an odd integer l ≤ n− 1 such that,
for some large t4 ≥ t3,

(−1)l+jz(j)(t) > 0, j = l, l + 1, . . . , n− 1, t ≥ t4 (2.3)

and
z(i)(t) > 0, i = 1, 2, . . . , l − 1, t ≥ t4. (2.4)

Hence, in view of (2.3) and (2.4), we obtain z′(t) > 0 and z(n−1)(t) > 0. Therefore,
limt→∞ z(t) 6= 0. Then, by Lemma 2.2, for every λ, 0 < λ < 1, there exists Tλ such
that, for all t ≥ Tλ,

z(t) ≥ λ

(n− 1)!
tn−1z(n−1)(t). (2.5)

It follows from (1.1) that

((z(n−1)(σ−1(t)))γ)′

(σ−1(t))′
+ q(σ−1(t))xγ(t) = 0. (2.6)

The above inequality at times σ−1(t) and σ−1(τ(t)), yields

((z(n−1)(σ−1(t)))γ)′

(σ−1(t))′
+ aγ ((z(n−1)(σ−1(τ(t))))γ)′

(σ−1(τ(t)))′

+ q(σ−1(t))xγ(t) + aγq(σ−1(τ(t)))xγ(τ(t)) = 0.
(2.7)
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By (2.1) and the definition of z,

q(σ−1(t))xγ(t) + aγq(σ−1(τ(t)))xγ(τ(t)) ≥ Q(t)[xγ(t) + aγxγ(τ(t))]

≥ 1
2γ−1

Q(t)[x(t) + ax(τ(t))]γ

≥ 1
2γ−1

Q(t)zγ(t)

(2.8)

It follows from (2.7) and (2.8) that

((z(n−1)(σ−1(t)))γ)′

(σ−1(t))′
+ aγ ((z(n−1)(σ−1(τ(t))))γ)′

(σ−1(τ(t)))′
+

1
2γ−1

Q(t)zγ(t) ≤ 0. (2.9)

From this inequality, (σ−1(t))′ ≥ σ0 > 0 and τ ′(t) ≥ τ0 > 0, we obtain

((z(n−1)(σ−1(t)))γ)′

σ0
+ aγ ((z(n−1)(σ−1(τ(t))))γ)′

σ0τ0
+

1
2γ−1

Q(t)zγ(t) ≤ 0. (2.10)

Set y(t) = (z(n−1)(t))γ > 0. From (2.5) and (2.9), we see that y is an eventually
positive solution of[y(σ−1(t))

σ0
+

aγ

σ0τ0
y(σ−1(τ(t)))

]′ + 1
2γ−1

( λ

(n− 1)!
tn−1

)γ

Q(t)y(t) ≤ 0.

The proof is complete. �

Theorem 2.7. Let τ−1 exist. Assume that τ(t) ≤ t, (σ−1(t))′ ≥ σ0 > 0 and
τ ′(t) ≥ τ0 > 0. Moreover, assume that there exists a constant λ, 0 < λ < 1, such
that

u′(t) +
1

2γ−1
(

1
σ0

+ aγ

σ0τ0

)( λ

(n− 1)!
tn−1

)γ

Q(t)u(τ−1(σ(t))) ≤ 0 (2.11)

has no eventually positive solution. Then (1.1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for
all t ≥ t1. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 2.6, we
obtain that y(t) = (z(n−1)(t))γ > 0 is non-increasing and satisfies inequality (2.2).
Define

u(t) =
y(σ−1(t))

σ0
+

aγ

σ0τ0
y(σ−1(τ(t))).

Then, from τ(t) ≤ t, and σ−1 begin increasing, we have

u(t) ≤
( 1
σ0

+
aγ

σ0τ0

)
y(σ−1(τ(t))).

Substituting the above formulas into (2.2), we find u is an eventually positive
solution of

u′(t) +
1

2γ−1
(

1
σ0

+ aγ

σ0τ0

)( λ

(n− 1)!
tn−1

)γ

Q(t)u(τ−1(σ(t))) ≤ 0. (2.12)

The proof is complete. �

From Theorem 2.7 and [3, Theorem 2.1.1], we establish the following corollary.
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Corollary 2.8. Let τ−1 exist. Assume that τ(t) ≤ t, (σ−1(t))′ ≥ σ0 > 0, τ ′(t) ≥
τ0 > 0, τ−1(σ(t)) < t and

lim inf
t→∞

∫ t

τ−1(σ(t))

Q(s)(sn−1)γds >
2γ−1

(
1
σ0

+ aγ

σ0τ0

)
e

(
(n− 1)!

)γ
. (2.13)

Then (1.1) is oscillatory.

Proof. From (2.13), one can choose a positive constant 0 < λ < 1 such that

lim inf
t→∞

λγ

∫ t

τ−1(σ(t))

Q(s)(sn−1)γds >
2γ−1

(
1
σ0

+ aγ

σ0τ0

)
e

((n− 1)!)γ .

Applying [3, Theorem 2.1.1] to (2.12), with τ−1(σ(t)) < t, we complete the proof.
�

Theorem 2.9. Assume that (σ−1(t))′ ≥ σ0 > 0, τ ′(t) ≥ τ0 > 0 and τ(t) ≥ t.
Furthermore, assume that there exists a constant λ, 0 < λ < 1, such that

u′(t) +
1

2γ−1
(

1
σ0

+ aγ

σ0τ0

)( λ

(n− 1)!
tn−1

)γ

Q(t)u(σ(t)) ≤ 0 (2.14)

has no eventually positive solution. Then (1.1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for
all t ≥ t1. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 2.6, we
obtain that y(t) = (z(n−1)(t))γ > 0 is nonincreasing and satisfies inequality (2.2).
Define

u(t) =
1
σ0
y(σ−1(t)) +

aγ

σ0τ0
y(σ−1(τ(t))).

Then, from τ(t) ≥ t, we have

u(t) ≤
( 1
σ0

+
aγ

σ0τ0

)
y(σ−1(t)).

Substituting the above formulas into (2.2), we find u is an eventually positive
solution of

u′(t) +
1

2γ−1
(

1
σ0

+ aγ

σ0τ0

)( λ

(n− 1)!
tn−1

)γ

Q(t)u(σ(t)) ≤ 0. (2.15)

The proof is complete. �

From Theorem 2.9 and [3, Theorem 2.1.1], we establish the following corollary.

Corollary 2.10. Assume that (σ−1(t))′ ≥ σ0 > 0, τ ′(t) ≥ τ0 > 0, τ(t) ≥ t,
σ(t) < t and

lim inf
t→∞

∫ t

σ(t)

Q(s)(sn−1)γds >
2γ−1

(
1
σ0

+ aγ

σ0τ0

)
e

(
(n− 1)!

)γ
. (2.16)

Then (1.1) is oscillatory.

Proof. From (2.16), one can choose a positive constant 0 < λ < 1 such that

lim inf
t→∞

λγ

∫ t

σ(t)

Q(s)(sn−1)γds >
2γ−1

(
1
σ0

+ aγ

σ0τ0

)
e

((n− 1)!)γ .

Applying [3, Theorem 2.1.1] to (2.15), with σ(t) < t, we complete proof. �
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By employing Riccati transformation, we obtain the following criteria.

Theorem 2.11. Let (σ−1(t))′ ≥ σ0 > 0, σ−1(t) ≥ t, σ−1(τ(t)) ≥ t and τ ′(t) ≥
τ0 > 0. Assume that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[ 1
2γ−1

ρ(s)Q(s)−
1
σ0

+ aγ

σ0τ0

(γ + 1)γ+1

((ρ′(s))+)γ+1

(θMsn−2)γργ(s)

]
ds = ∞ (2.17)

holds for some constant θ, 0 < θ < 1 and for all constants M > 0. Then (1.1) is
oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0
for all t ≥ t1. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 2.6,
there exists t2 ≥ t1 such that (2.3), (2.4) and (2.10) hold for t ≥ t2.

Using the Riccati transformation

ω(t) = ρ(t)
(z(n−1)(σ−1(t)))γ

zγ(θt)
, t ≥ t2. (2.18)

Then ω(t) > 0 for t ≥ t2. Differentiating (2.18), we obtain

ω′(t) = ρ′(t)
(z(n−1)(σ−1(t)))γ

zγ(θt)
+ ρ(t)

((z(n−1)(σ−1(t)))γ)′

zγ(θt)

− γθρ(t)
(z(n−1)(σ−1(t)))γz′(θt)

zγ+1(θt)
.

(2.19)

By Lemma 2.3 and Lemma 2.4, we have

z′(θt) ≥Mtn−2z(n−1)(t) ≥Mtn−2z(n−1)(σ−1(t)),

for every θ, 0 < θ < 1 and for some M > 0. Thus, from (2.18) and (2.19), we
obtain

ω′(t) ≤ (ρ′(t))+
ρ(t)

ω(t) + ρ(t)
((z(n−1)(σ−1(t)))γ)′

zγ(θt)
− γθMtn−2 (ω(t))(γ+1)/γ

ρ1/γ(t)
. (2.20)

Next, define function

ψ(t) = ρ(t)
(z(n−1)(σ−1(τ(t))))γ

zγ(θt)
, t ≥ t2. (2.21)

Then ψ(t) > 0 for t ≥ t2. Differentiating (2.21), we see that

ψ′(t) = ρ′(t)
(z(n−1)(σ−1(τ(t))))γ

zγ(θt)
+ ρ(t)

((z(n−1)(σ−1(τ(t))))γ)′

zγ(θt)

− γθρ(t)
(z(n−1)(σ−1(τ(t))))γz′(θt)

zγ+1(θt)
.

(2.22)

In view of Lemmas 2.3 and 2.4, we have

z′(θt) ≥Mtn−2z(n−1)(t) ≥Mtn−2z(n−1)(σ−1(τ(t))),

for every θ, 0 < θ < 1 and for some M > 0. Hence, by (2.21) and (2.22), we obtain

ψ′(t) ≤ (ρ′(t))+
ρ(t)

ψ(t) + ρ(t)
((z(n−1)(σ−1(τ(t))))γ)′

zγ(θt)

− γθMtn−2 (ψ(t))(γ+1)/γ

ρ1/γ(t)
.

(2.23)
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Therefore, from (2.20) and (2.23) it follows that
ω′(t)
σ0

+
aγ

σ0τ0
ψ′(t)

≤ ρ(t)
[ ((z(n−1)(σ−1(t)))γ)′

σ0
+ aγ

σ0τ0
((z(n−1)(σ−1(τ(t))))γ)′

zγ(θt)
]

+
1
σ0

[ (ρ′(t))+
ρ(t)

ω(t)− γθMtn−2 (ω(t))(γ+1)/γ

ρ1/γ(t)
]

+
aγ

σ0τ0

[ (ρ′(t))+
ρ(t)

ψ(t)− γθMtn−2 (ψ(t))(γ+1)/γ

ρ1/γ(t)
]
.

(2.24)

Thus, from the above inequality and (2.10), we have
ω′(t)
σ0

+
aγ

σ0τ0
ψ′(t)

≤ − 1
2γ−1

ρ(t)Q(t) +
1
σ0

[ (ρ′(t))+
ρ(t)

ω(t)− γθMtn−2 (ω(t))(γ+1)/γ

ρ1/γ(t)
]

+
aγ

σ0τ0

[ (ρ′(t))+
ρ(t)

ψ(t)− γθMtn−2 (ψ(t))(γ+1)/γ

ρ1/γ(t)
]
.

(2.25)

Set

A :=
(ρ′(t))+
ρ(t)

, B :=
γθMtn−2

ρ1/γ(t)
, v := ω(t), ψ(t).

Then, using (2.25) and the inequality

Av −Bv(γ+1)/γ ≤ γγ

(γ + 1)γ+1

Aγ+1

Bγ
, B > 0, (2.26)

we have

ω′(t)
σ0

+
aγ

σ0τ0
ψ′(t) ≤ − 1

2γ−1
ρ(t)Q(t) +

1
σ0

+ aγ

σ0τ0

(γ + 1)γ+1

((ρ′(t))+)γ+1

(θMtn−2)γργ(t)
.

Integrating the above inequality from t2 to t, we obtain∫ t

t2

[ 1
2γ−1

ρ(s)Q(s)−
1
σ0

+ aγ

σ0τ0

(γ + 1)γ+1

((ρ′(s))+)γ+1

(θMsn−2)γργ(s)

]
ds ≤ ω(t2)

σ0
+

aγ

σ0τ0
ψ(t2),

which contradicts (2.17). The proof is complete. �

Remark 2.12. From (2.25), define a Philos-type function H(t, s), and obtain some
oscillation criteria for (1.1), the details are left to the reader.

Theorem 2.13. Let n = 2, (σ−1(t))′ ≥ σ0 > 0, σ−1(t) ≥ t, σ−1(τ(t)) ≥ t and
τ ′(t) ≥ τ0 > 0. Assume that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[ 1
2γ−1

ρ(s)Q(s)−
1
σ0

+ aγ

σ0τ0

(γ + 1)γ+1

((ρ′(s))+)γ+1

ργ(s)

]
ds = ∞. (2.27)

Then (1.1) is oscillatory.

Proof. Define

ω(t) = ρ(t)
(z′(σ−1(t)))γ

zγ(t)
, ψ(t) = ρ(t)

(z′(σ−1(τ(t))))γ

zγ(t)
.

The remainder of the proof is similar to that of Theorem 2.11. �
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3. Applications

Han et al. [11, 12] considered the oscillation of solutions to the second-order
neutral equation

(x(t) + p(t)x(τ(t)))′′ + q(t)x(σ(t)) = 0, t ≥ t0,

where
0 ≤ p(t) ≤ p0 <∞, τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ. (3.1)

Li et al. [13] investigated the oscillation of (1.2) when (3.1) holds. It is easy to
see that our results weaken the restrictions in [11, 12, 13], since we do not assume
τ ◦ σ = σ ◦ τ ; instead we assume τ−1(σ(t)) < t, and bounds on σ′, (σ−1)′ and τ−1.
Below, we give three examples that illustrate our results.

Example 3.1. Consider the even-order equation([(
x(t) + ax(t− 3)

)(n−1)]γ
)′

+
β

(tn−1)γ
xγ (t− 6) = 0, t ≥ 1, (3.2)

where γ > 1 is the quotient of odd positive integers, a > 0 and β > 0 are constants.
Let τ(t) = t− 3, p(t) = a, q(t) = β/(tn−1)γ and σ(t) = t− 6. Then τ−1(t) = t+ 3,
τ−1(σ(t)) = t − 3, σ−1(t) = t + 6, σ−1(τ(t)) = t + 3 and Q(t) = β/((t + 6)n−1)γ .
Since

lim inf
t→∞

∫ t

τ−1(σ(t))

Q(s)(sn−1)γds >
β

2γ(n−1)
lim inf
t→∞

∫ t

t−3

ds =
3β

2γ(n−1)
,

by applying Corollary 2.8, Equation (3.2) is oscillatory when

3β
2γ(n−1)

≥ 2γ−1(1 + aγ)((n− 1)!)!
e

.

Example 3.2. Consider the even-order equation([(
x(t) + ax(t+ 3)

)(n−1)]γ
)′

+
β

(tn−1)γ
xγ

( t
2
)

= 0, t ≥ 1, (3.3)

where γ > 1 is the quotient of odd positive integers, a > 0 and β > 0 are constants.
Let τ(t) = t + 3, p(t) = a, q(t) = β/(tn−1)γ and σ(t) = t/2. Then σ−1(t) = 2t,
σ−1(τ(t)) = 2(t+ 3) and Q(t) = β/((2t+ 6)n−1)γ . Since

lim inf
t→∞

∫ t

σ(t)

Q(s)(sn−1)γds = ∞,

by applying Corollary 2.10, Equation (3.3) is oscillatory.

Example 3.3. Consider the even-order equation([(
x(t) + ax (2t)

)(n−1)]γ
)′

+
β

t
xγ

( t
3

+ 1
)

= 0, t ≥ 1, (3.4)

where γ > 1 is the quotient of odd positive integers, a > 0 and β > 0 are constants.
Let τ(t) = 2t, p(t) = a, q(t) = β/t and σ(t) = (t/3) + 1. Then σ−1(t) = 3(t − 1),
σ−1(τ(t)) = 3(2t−1) and Q(t) = β/(6t−3). Set ρ(t) = 1. Then, by Theorem 2.11,
every solution of (3.4) is oscillatory.

Note that the known results in the literature are not applicable to Equations
(3.2), (3.3) and (3.4).
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