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BOUNDARY-VALUE PROBLEMS FOR NONAUTONOMOUS
NONLINEAR SYSTEMS ON THE HALF-LINE

JASON R. MORRIS

Abstract. A method is presented for proving the existence of solutions for
boundary-value problems on the half line. The problems under study are
nonlinear, nonautonomous systems of ODEs with the possibility of some pre-
scribed value at t = 0 and with the condition that solutions decay to zero as
t grows large. The method relies upon a topological degree for proper Fred-
holm maps. Specific conditions are given to ensure that the boundary-value
problem corresponds to a functional equation that involves an operator with
the required smoothness, properness, and Fredholm properties (including a
calculable Fredholm index). When the Fredholm index is zero and the solu-
tions are bounded a priori, then a solution exists. The method is applied to
obtain new existence results for systems of the form v̇ + g(t, w) = f1(t) and
ẇ + h(t, v) = f2(t).

1. Introduction

Let F = F (t, z) : [0,∞)×RN → RN be a given function and P be the projection
of RN onto X1 along a given splitting RN = X1 ⊕ X2. This paper concerns the
existence of solutions to problems of the type

u̇(t) + F (t, u(t)) = f(t) for all t ≥ 0,

Pu(0) = ξ,

lim
t→∞

u(t) = 0,

(1.1)

where f ∈ C0 and ξ ∈ X1 are given.
By choice of X1 and X2, different kinds of initial conditions are obtained. For

example, the choice X1 = RN and X2 = {0} results in the usual initial value
problem. If X1 = {0} and X2 = RN , there is no initial condition. Using the usual
representation of a second (or higher) order system by a larger first-order system,
this framework also accommodates a second (or higher) order equation or system
with a variety of different initial conditions including those of Dirichlet, Neumann,
or mixed type.
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This kind of problem was recently approached by Rabier and Stuart in the two
papers [17] and [16]. As the authors point out in [17], boundary-value problems
on infinite intervals have been studied by many. In particular, Andres, Gabor, and
Gorniewicz [2] contains many references. The book by Agarwal and O’Regan [1]
contains another good survey of such problems. As a rule of thumb, most results
in the literature deal with very specific problems and/or involve weaker conditions
as t →∞.

To discuss more recent results, some more detail is needed. In [17] and [16] the
authors prove the existence of a solution in the Sobolev space W 1,p

(
(0,∞), RN

)
,

under appropriate conditions on F . The authors Rabier and Stuart use a degree
argument. Because the problem is posed on an unbounded interval, the underlying
operator is not a compact perturbation of the identity and therefore the Leray-
Schauder degree cannot be used. Instead, a degree for proper C1 maps of Fredholm
index zero is employed. This degree was developed for C2 maps by Fitzpartick,
Pejsachowicz, and Rabier [7], and later extended to C1 maps by Pejsachowicz and
Rabier [14]. Because of this degree argument, prominent roles are obviously played
by the Fredholm and properness properties, and also by the issue of finding a priori
bounds on solutions.

This work continued in the present author’s dissertation [10], in which existence
is obtained in the space C1

0

(
[0,∞), RN

)
of continuously differentiable functions

that tend to zero (along with their derivatives)as t → ∞. In practice, this allows
for simpler a priori bounds analysis than is possible in the Sobolev space setting.
Moreover, the author removed a key assumption from [17] and [16], namely that
F (t, u) have an autonomous limit F∞(u) as t →∞.

More recently, Evéquoz [5, 4] considers problems of the form

u̇(t) + F (t, u(t), ξ, λ) = 0 for all t ≥ 0,

Pu(0) = φ(ξ, λ),

lim
t→∞

u(t) = 0,

in which global continuation in the real parameter λ is explored, in both the con-
tinuous and Sobolev settings. This further expands the range of applicability of the
technique. In particular, a more complicated dependence on ξ is allowed, as well
as apparently more flexibility (via λ) in the path of solutions departing from the
trivial solution. These results are applied by the same author in [6] to a third order
ODE that arises in the study of free convection boundary layers in porous media.

In this paper, we will first provide all of the necessary background from the
present author’s dissertation [10]. These arguments are elaborated in some cases
and simplified in others. Since this material has not been published elsewhere,
we include all such background for completeness and ease of reference in this and
future work.

Once this is complete, we prove the existence of solutions to a class of boundary
value problems of the form

v̇ + g(t, w) = f1,

ẇ + h(t, v) = f2,

v(0) = ξ,

v(∞) = w(∞) = 0 .

(1.2)
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A version of this problem was treated in [16], in which the nonlinearities g and h
were assumed to have autonomous limits as t →∞, and in which restrictions were
placed on the magnitudes of the derivatives Dwg and Dvh. Our results remove
these restrictions.

We now briefly indicate the overall arrangement of this paper; each section in-
cludes its own detailed introduction and orientation. We approach problem (1.1)
by writing it as F(u) = (f, ξ), where

F(u) := (u̇ + F (·, u), Pu(0)). (1.3)

In Section 2, we provide the functional setting for F and prove that under suitable
hypotheses concerning F , that F is a C1 map of Banach spaces.

In Section 3, we turn to the question of properness. To determine whether F
is proper on closed, bounded subsets of the domain, we provide a condition that
involves checking for solutions of certain limits of (1.1) obtained by letting t →∞
in a suitable topology.

In Section 4, we discuss the desired Fredholm property, along with some connec-
tions with exponential dichotomies and with the properness property.

Having paved the way for the use of topological degree for proper C1 maps of
Fredholm index zero, in Section 5 we prove several existence theorems. This shows
how to use the results of Sections 2, 3, and 4 (along with a priori bounds for
solutions) to prove the existence of solutions to (1.1).

In Section 6, we turn to the specific problem (1.2), showing that under suitable
conditions of g and h that this problem always has a solution.

Throughout this paper, we will use the following notation and definitions. Given
an interval I ⊆ R, we will denote by Cb(I) the Banach space of all continuous
RN -valued functions on I, with the usual supremum norm

‖u‖∞ = sup
t∈I

|u(t))|.

(Of course any convenient norm |ξ| can be used in RN .) We will denote by C1
b(I))

the Banach space consisting of those functions in Cb(I) with bounded derivative.
For this space, we use the norm

‖u‖1,∞ = ‖u‖∞ + ‖u̇‖∞
We denote by C0(I) the closed subspace of Cb(I) that consists of that functions
that tend to zero as t →∞. We denote by C1

0 (I) the closed subspace of C1
b(I) that

consists of those functions such that both u(t) and u̇(t) tend to zero as t →∞.
Almost always, we will use I = [0,∞). In those cases, we will simply write

Cb, C1
b, etc. Otherwise, we will explicitly specify the interval, by writing C1

0 (R),
Cb((−∞, 0]), etc.

Given a function such as F = F (t, z) : [0,∞) × RN → RN , we will often have
need of the so-called Nemytskĭı operator NF associated to F . The operator NF

acts on functions u = u(t) : [0,∞) → RN through composition, as follows.

NF (u) = v, where v(t) = F (t, u(t)).

2. Smoothness of the Nemytskii Operator

In this section we provide the function setting and we give the conditions on
F = F (t, z) that ensure that the induced map F from (1.3) is a C1 map of Banach
spaces.
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Let F = F (t, z) : [0,∞) × RN → RN be a function that satisfies the following
conditions:

F is continuous, with lim
t→∞

F (t, 0) = 0, (2.1)

DzF exists and is continuous on [0,∞)× RN , (2.2)

and for each compact subset K of RN ,

F and DzF are BUC on [0,∞)×K, (2.3)

where “BUC” means “bounded and uniformly continuous”.

Lemma 2.1. Let G = G(t, z) : [0,∞) × RN → RN be bounded and uniformly
continuous on [0,∞) × K, for every compact subset K of RN . Then G has the
following properties:

(a) For each u ∈ Cb and each ε > 0, there is δ > 0 such that

|G(t, u(t))−G(t, v(t))| < ε

for all v ∈ Cb such that ‖u− v‖∞ < δ.
(b) For each u ∈ C0,

lim
t→∞

G(t, u(t))−G(t, 0) = 0.

Proof. (a) Let R = 1 + ‖u‖∞. By assumption, the function G is uniformly contin-
uous on [0,∞)×BR(0). Thus, there is δ1 > 0 such that

|G(t, x)−G(t, y)| < ε

as long as x, y ∈ BR(0) with |x − y| < δ1. It follows at once that the choice
δ = min(1, δ1) is sufficient.

(b) By assumption, the function G is uniformly continuous on [0,∞) × B1(0).
Thus, there is 0 < δ < 1 such that

|G(t, x)−G(t, 0)| < ε

as long as |x| < δ < 1. Since limt→∞ u(t) = 0, part (b) is proved. �

Theorem 2.2. Suppose that F satisfies (2.1), (2.2), and (2.3). Then the Nemytskĭı
operator NF is a well defined C1 map from C1

0 to C0, and DNF (u)v = NG(u)v
(where G = DzF and where the multiplication of NG(u) by v is pointwise in t).

Proof. Let u ∈ C1
0 be given. To see that NF (u) ∈ C0, consider a sequence tn → t

in [0,∞). It follows that u(tn) → u(t) since u is continuous, and hence that
F (tn, u(tn)) → F (t, u(t)). This shows that NF (u) is continuous on [0,∞). To see
that NF (u)(t) → 0 as t →∞, let ε > 0 be given. Since u ∈ C0 and F is uniformly
continuous on [0,∞)×B‖u‖∞(0) by (2.3), one finds for all sufficiently large t that
|F (t, u(t))− F (t, 0)| < ε. By (2.1), this is enough to show that NF (u) ∈ C0.

The next claim to verify is that NF is differentiable, with DNF = NG. Let u
and v be chosen members of C1

0 . By the using the mean value theorem once for
each t ≥ 0,

NF (u + v)−NF (u)−NG(u)v = NG(u + τv)v −NG(u)v,

where the function 0 ≤ τ ≤ 1 of t depends on the choice of v (and of course on the
choice of u). It thus follows from Lemma 2.1 (a) that

NF (u + v)−NF (u)−NG(u)v = o(‖v‖∞) = o(‖v‖1,∞)
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in C0 as v tends to zero in C1
0 .

Finally, to check that DNF is continuous, let u ∈ C1
0 and ε > 0 be given. It

follows from Lemma 2.1 (a) that

‖NG(u)v −NG(w)v‖∞ < ε

for all unit vectors v ∈ C1
0 , provided only that ‖u − w‖1,∞ (or even ‖u − w‖∞) is

sufficiently small. This proves that DNF (u) varies continuously in L
(
C1

0 , C0

)
with

respect to u ∈ C1
0 . �

Remark 2.3. An examination of the above proof reveals that NF is also of class
C1 as a map from C0 into itself, and also as a map from Cb into itself.

Remark 2.4. With only the obvious changes, the result holds when [0,∞) is
replaced by any closed interval, and (−∞,∞) in particular.

We have the following corollary for the operator F : C1
0 → C0 ×X1 defined by

F(u) := (u̇ + NF (u), Pu(0)) for u ∈ C1
0 . (2.4)

Corollary 2.5. In the situation of Theorem 2.2, the map F is of class C1. In
addition, if we set G := DzF , then

DF(u)v = (v̇ + NG(u)v, Pv(0)).

Proof. Differentiation is a continuous linear map from C1
0 into C0, and the evalu-

ation of v at t = 0 followed by the linear projection P is a continuous linear map
from C1

0 into X1. Therefore, Corollary 2.5 is a direct result of Theorem 2.2. �

3. Properness

In this section, we establish a necessary and sufficient condition for F to be
proper on the closed, bounded subsets of C1

0 . The essential idea is the following.
When {un} is a bounded sequence in C1

0 such that F(un) converges in C0×X1, we
are to show that {un} has a convergent subsequence in C1

0 . To find a convergent
subsequence of {un}, we show that the sequence forms a relatively compact set,
by the use of a result from Rabier [15] that characterizes the relatively compact
subsets of C0. To use this result, one must show that the sequence {un(t)} tends
to zero uniformly (with respect to n) as t →∞.

This “equi-decay” is characterized in [15] by a condition involving sequences of
the form {un(· + ξn)}, where ξn → ∞. It is this temporal translation to infinity
that ultimately brings one to the condition (Theorem 3.16) that no equation of the
form u̇ + NE(u) = 0 have a nonconstant C1 solution, where E is any uniform–on–
compacta limits of temporal translations of F . It is a noteworthy artifact of the
translation to infinity that this condition involves problems on the whole line, even
though the original problem is posed on the half line.

Remark 3.1. In this section we will follow the following convention. Any vector
valued function (in particular, any real valued function) that depends on a variable
t ≥ 0 is extended to negative values of t whenever convenient, by using the even
extension. Of course, this convention is only used where needed and never for a
function whose domain already includes negative values of t.

For example, let u ∈ C1
0 and ξn → ∞ in R. Then the sequence {u(t + ξn)} is

well defined for all t ∈ R under this convention, and this sequence can hence have
a well-defined pointwise or uniform–on–compacta limit on all of R. Notice that
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this kind of sequence is locally eventually independent of the choice of extension
(since t + ξn is eventually positive), and so any limit function is independent of the
choice of extension. This is characteristic of our later use of this “even extension
convention”, which will occur with minimal further comment. The purpose of this
perhaps distracting convention is to avoid the alternate distraction of a prominently
displayed extension operator.

3.1. Topological preliminaries. Let Z be a nonempty subset of RN , and define
the following closed subspace of Cb(R) = Cb(R, RN ):

CZ(R) = CZ(R, RN ) :=
{
u ∈ Cb(R) : lim

t→±∞
dist(u(t), Z) = 0

}
, (3.1)

consisting of those functions u = u(t) converging to Z as |t| tends to infinity.
We define the space CZ ⊂ Cb of functions defined on [0,∞) by requiring that
limt→∞ dist(u(t), Z) = 0. It is clear that C0 = C{0} and that CZ ⊆ CW if and only
if Z̄ ⊂ W̄ (with equality if and only if Z̄ = W̄ ).

We say that Z is totally disconnected if the connected components of Z are
singletons. Examples include finite sets, sequences (with or without their limit
point), and Cantor-like sets. If Z ⊂ R, then Z is totally disconnected if and only if
Z does not contain an interval.

If H is a subset of Cb or Cb(R) and if I is a subset of the corresponding domain
[0,∞) or R respectively, then H(I) := {u(t) : u ∈ H, t ∈ I}, the union of the direct
images of I under members of H.

Here is the result that we will use from Rabier [15], followed by a simple corollary
adapted for use on the half line.

Lemma 3.2 (Rabier [15, Corollary 7]). A subset H of C0(R) is relatively compact
if and only if the following three conditions hold:

(a) The set H(R) is bounded.
(b) The set H is uniformly equicontinuous.
(c) There is a compact and totally disconnected subset Z of RN with the follow-

ing property. If ũ ∈ Cb(R) and there are sequences {un} ⊂ H and {ξn} ⊂ R
such that |ξn| → ∞ and

lim
n→∞

un(t + ξn) = ũ(t) for all t ∈ R,

then ũ(R) ⊂ Z.

Corollary 3.3. A subset H of C0 is relatively compact if and only if the following
three conditions hold:

(a) The set H([0,∞)) is bounded.
(b) The set H is uniformly equicontinuous.
(c) There is a compact and totally disconnected subset Z of RN with the follow-

ing property. If ũ ∈ Cb(R) and there are sequences {un} ⊂ H and {ξn} ⊂ R
such that ξn →∞ and

lim
n→∞

un(t + ξn) = ũ(t) for all t ∈ R,

then ũ(R) ⊂ Z.

Proof. Use the even extension of the functions in C0. Now apply Lemma 3.2.
Also see the final paragraph of Section 2 in [15], where such generalizations are
mentioned. �



EJDE-2011/135 BOUNDARY-VALUE PROBLEMS ON THE HALF-LINE 7

Remark 3.4. In [15] Lemma 3.2 is proved in a more general setting. For one thing,
the functions in C0 are allowed to take values in a general metric space, and item (a)
is that H(R) should be relatively compact. This suggests the question of whether
item (c) is necessary when the metric space is RN . The example H = {un : n ∈ N}
where un(t) = min

(
1,max(n−t, 0)

)
for t ≥ 0 shows that item (c) is indeed necessary.

Remark 3.5. When using Lemma 3.2 or Corollary 3.3, one often finds that the
set H consists of the terms of a sequence {vn}. If so, one may assume that {un} is
a subsequence of {vn} when checking condition (c).

If {Tn} is a sequence of continuous functions from a metric spaces M into a
metric space N , we will write1 T = co-limn→∞ Tn if the sequence {Tn} converges
uniformly to T on each compact subset of M . In each use of this notation, M and
N will be clear from context.

Lemma 3.6. Suppose that F satisfies (2.1), (2.2), and (2.3). Let {ξn} ⊂ R be a
sequence such that ξn → ∞ and put En(t, z) := F (t + ξn, z). Then there exist a
subsequence {Enk

} and a function E : R× RN → RN such that
(a) E = co-limk→∞ Enk

,
(b) E satisfies (2.1), (2.2), and (2.3) (with [0,∞) replaced by R and F replaced

by E), and
(c) DzE = co-limk→∞ DzEnk

.

Proof. The classical Ascoli-Arzela Theorem applies for each compact subset K of
R×RN . (The boundedness of {En(α) : n ∈ N, α ∈ K} and and the equicontinuity
of {En

∣∣
K
} follow from (2.3).) Apply the Ascoli-Arzela theorem recursively for an

increasing sequence of compact sets that exhausts R × RN . This diagonal pro-
cess yields a function E and a subsequence {Enk

} such that E = co-limk→∞ Enk
.

Repeat this process with {DzEnk
} to obtain a further subsequence (still denoted

{Enk
}) and a function H such that H = co-limk→∞ DzEnk

. As usual, since the
convergence is uniform on compact sets, DzE exists and DzE = H. Thus, E sat-
isfies (2.2). It is now easy to verify that (2.1) (with E(t, 0) ≡ 0) and (2.3) are
inherited by E from F . �

Definition 3.7. Given a function F that satisfies (2.1), (2.2), and (2.3), we define
the omega limit set 2 of F by

ω(F ) = {E : E = co-lim En for some sequence ξn →∞}.

Here, En(t, z) := F (t+ξn, z), just as in Lemma 3.6. It is a corollary of Lemma 3.6
that ω(F ) is nonempty. Before moving on, several examples may be helpful. The
proofs of the following claims are left as exercises (but may also be found in [10]).

Example 3.8. The pointwise limit F∞(x) = limt→∞ F (t, x) exists if and only if
ω(F ) is the singleton {F∞} (which includes the autonomous situation F (t, x) =
F∞(x)). This is the case considered in [17, 16].

Example 3.9. Suppose F is periodic or asymptotically periodic, in the sense that

lim
t→∞

|F (t, x)−G(t, x)| = 0

1As suggested by the usual name “compact-open” for the resulting topology.
2This terminology is suggested by its use in the linear setting in [19].
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pointwise in x, for some G that is periodic in t. Then

ω(F ) = {G(·+ τ, ·) : 0 ≤ τ < T},

where T is a period of G.

Example 3.10. Suppose that for all x ∈ RN and all R > 0,

lim
t→∞

sup
0≤τ≤R

|F (t, x)− F (t + τ, x)| = 0.

In this case we will say that F is asymptotically autonomous. This is the case
if and only if ω(F ) consists only of autonomous functions G(t, x) = G(x). If F
is C1, a sufficient (but not necessary) condition for asymptotic autonomy is that
limt→∞ DtF (t, x) = 0 pointwise in x.

Example 3.11. Suppose F is of the quasilinear form F (t, x) = A(t)q(x) where A
is a d× d matrix function and q(x) ∈ RN . Let ω(A) denote the set of all uniform-
on-compact-intervals limits of sequences {A(· + τk)} where τk → ∞. Then ω(F )
consists of all quasilinear functions G(t, x) = B(t)q(x) where B ∈ ω(A). When
F is quasilinear, the preceding examples correspond respectively to the cases that
A(t) has a limit as t → ∞, or that A is asymptotically periodic, or that A is
asymptotically constant. In this last case, note that

ω(A) = ∩n∈NA
(
[n,∞)

)
.

3.2. Properness via solutions of omega limit equations. The following defi-
nition is of key importance in Theorem 3.16. Recall that the definition of the term
“totally disconnected” is provided on page 6.

Definition 3.12. Assume that F satisfies (2.1), (2.2), and (2.3). Let S denote the
set of all (bounded) functions u ∈ C1

b(R) such that u̇ + E(t, u) = 0 on (−∞,∞),
for some E in the omega-limit set ω(F ). We will say that F has an admissible
omega-limit set provided that S consists only of constant functions, and that these
constants form a compact and totally disconnected subset of RN .

When F has an admissible omega-limit set, if “t goes to infinity” in the equation
u̇ + F (t, u) = f , no resulting equation has a nonconstant solution that is bounded
on R. This will be the key to proving Theorem 3.16.

It is useful to record one more definition, if only to highlight the connection
between the admissibility of the omega-limit set and the third item in Corollary 3.3.

Definition 3.13. Given a function F that satisfies (2.1), (2.2), and (2.3), we define
the omega zero set of F by

Z(F ) := {z ∈ RN : E(·, z) = 0 for some E ∈ ω(F )}.

Remark 3.14. Notice that u(t) = c is a constant solution of u̇ + E(t, u) = 0 (for
some E ∈ ω(F )) if and only if c ∈ Z(F ). This shows that if F has an admissible
omega-limit set, then the set S that is mentioned in Definition3.12 coincides with
Z(F ).

Remark 3.15. Notice that Z(F ) includes all z ∈ RN such that limt→∞ F (t, z) = 0.
However, Z(F ) may contain other points. As an illustration, consider F (t, z) =
(sin

√
t)z. Then z = 0 is the only point such that limt→∞ F (t, z) = 0, but Z(F ) =

RN because 0 ∈ ω(F ).
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For Theorem 3.16, recall that F : C1
0 → C0 ×X1 is defined by

F(u) := (u̇ + NF (u), Pu(0)),

and that it follows from Theorem 2.2 that F ∈ C1
(
C1

0 , C0 ×X1

)
and that

DF(u)v = (v̇ + DzF (·, u)v, Pv(0)) for u, v ∈ C1
0 .

Theorem 3.16. Assume that F satisfies (2.1), (2.2), (2.3), and that F has an
admissible omega-limit set. Then F is proper on each subset of C1

0 that is closed
and bounded.

Proof. Let {un} be a bounded sequence in C1
0 such that {(fn, ξn)} := {F(un)} is

convergent in C0×X1. We are to prove that {un} has a C1
0 -convergent subsequence.

To do so, we will first use Corollary 3.3 to find a C0-convergent subsequence; take
H = {un : n ∈ N} (see Remark 3.5).

Item (a) of Corollary 3.3 follows immediately from the boundedness of {un} in
C1

0 . Item (b) also follows from this boundedness. To see this, since {un} is bounded
in C1

0 , the sequence {u̇n} of derivatives is equibounded on [0,∞). Therefore, all of
the functions in H are uniformly Lipshitz on [0,∞), and share a common Lipshitz
constant. This implies that H is uniformly equicontinuous.

For item (c), take Z = Z(F ) (see Definition 3.13) which is compact and totally
disconnected by Definition 3.12. Let u ∈ Cb(R) and a subsequence {unk

} of {un}
be given. Let {ξk} be a sequence of real numbers such that limk→∞ ξk = ∞. Put
vk(t) := unk

(t + ξk). Assuming that {vk} converges pointwise to u, we are to show
that u(R) ⊂ Z(F ).

We make several observations:

(i) Since {fn} ⊂ C0, the translated sequence {fnk
(· + ξk)} converges to zero

as k →∞, uniformly on compact intervals.
(ii) By passing to a subsequence and relabeling, we may assume that the con-

vergence of {vk} to u is uniform on compact intervals: u = co-limk→∞ vk.
This follows from the boundedness and equicontinuity of {vk}.

(iii) By again passing to a subsequence, there is some E ∈ ω(F ) such that
E = co-limk→∞ Ek, where Ek(t, z) = F (t + ξk, z). See Lemma 3.6 and
Definition 3.7.

It now follows readily from (ii) and (iii) that the sequence {NEk
(vk)} converges to

{NE(u)} uniformly on compact intervals; we note that NEk
(vk)(t) = Ek(t, vk(t)) =

F (t + ξk, unk
(t + ξk)) and NE(u)(t) = E(t, u(t)). As a result, the sequence {v̇k}

converges uniformly on compact sets to −E(t, u). Indeed,

v̇k(t) = u̇nk
(t + ξk)

= fnk
(t + ξk)− F (t + ξk, unk

(t + ξk))

= fnk
(t + ξk)− Ek(t, vk(t)),

which converges to −E(t, u(t)) as k →∞, uniformly on compact sets. But uniform
convergence of {v̇k} on an interval implies that the limit function u is differentiable
and that {v̇k} converges to u̇. Therefore,

u̇(t) + E(t, u(t)) = 0.
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Since u is bounded, it follows (from the admissibility of the omega-limit set of F )
that u is a constant function, say u(t) ≡ z. Therefore, E(t, z) = E(t, u(t)) =
−u̇(t) = 0, so that u(R) = {z} ⊂ Z(F ) by Definition 3.13.

Having completed the verification of all three items in Corollary 3.3, we con-
clude that {un} has a subsequence (again denoted {un}) that converges in C0 to
a limit u∞. To complete the proof, recall that NF is continuous from C0 to itself
(Remark 2.3). Therefore, the sequence {u̇n} = {−NF (un)} converges to −NF (u∞)
in C0. In particular, u∞ is differentiable and {u̇n} converges to u̇∞ in C0. Since
(the subsequence) {un} is therefore convergent in C1

0 , the proof is complete. �

4. The Fredholm property

4.1. Linear systems. Let A = A(t) : [0,∞) → Rd×d be a bounded and continuous
matrix function. In this section, we develop the Fredholm properties of the linear
operator DA : C1

0 → C0 defined by

DAu(t) := u̇(t) + A(t)u(t),

as well as the augmented linear operator Λ: C1
0 → C0 ×X1 defined by

Λu = (DAu, Pu(0)).

Before we begin, we have a few remarks concerning autonomous systems (meaning
that A(t) ≡ A is constant). In this case, the Fredholm property and index is
determined by the spectrum of A together with the dimensions of the associated
invariant subspaces of RN . If A has any eigenvalue on the imaginary axis, then the
range of DA is not closed in C0, whence neither DA nor Λ is Fredholm. Otherwise
both operators are Fredholm. Moreover, the index of DA is the algebraic count of
eigenvalues of A having positive real part. The index of Λ is diminished from the
index of DA by exactly the dimension of X1.

These facts are proved in the Sobolev space setting in [16, Section 2]. That
paper then reduces the nonautonomous case to the autonomous case by using a
limit A∞ = limt→∞ A(t). We do not assume the existence of such a limit, and
because of this our arguments will be significantly different. In the case A∞ exists,
our results reduce to those of [16, Theorem 4.1], albeit with respect to spaces of
smooth functions rather than Sobolev spaces.

When there is no limit for A(t) as t → ∞, the situation is a bit more subtle.
Merely to know the spectrum of A(t) is no longer sufficient. In fact, the operator Λ
turns out to be Fredholm exactly when the matrix A = A(t) admits an exponential
dichotomy on [0,∞). This was proved by Palmer [13, 12]. Palmer did not consider
spaces of functions that tend to zero as t →∞, so we will provide proofs herein.

With respect to the linear system DAu := u̇ + Au = 0, let U = U(t) denote the
fundamental matrix solution of the system U̇ + AU = 0 with U(0) = I. We recall
that A admits an exponential dichotomy on [0,∞) if there exist a projection Π and
positive constants K and α such that

|U(t)ΠU(s)−1| ≤ Ke−α(t−s) (4.1)

for all t ≥ s ≥ 0 and

|U(t)(I −Π)U(s)−1| ≤ Ke−α(s−t) (4.2)

for all s ≥ t ≥ 0.
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It is well known that the range of Π is uniquely determined in the sense that if
A also admits an exponential dichotomy with projection Π′, then rge Π′ = rge Π.
Conversely, if Π′ is any projection with rge Π′ = rge Π, then A admits an exponential
dichotomy with projection Π′. (This converse is untrue if one replaces [0,∞) by
the whole real line.) Also, rge Π coincides with the subspace of RN consisting of
those initial data ξ ∈ RN such that the solution u(t) = U(t)ξ of DAu = 0, u(0) = ξ
remains bounded as t → ∞. By (4.1) a solution with initial data in rge Π will
tend to 0 exponentially as t → ∞. In contrast, (4.2) shows that a solution with
initial data outside of rge Π will tend to infinity exponentially as t →∞. For these
properties (and others) see Coppel [3] or Massera and Schäffer [9].

Our first result in this section is that the Fredholm property of the operator DA

is equivalent to the property that A admit an exponential dichotomy on [0,∞), and
that the Fredholm index is the same as the rank of any projection associated with
the exponential dichotomy. In order to prove this result, it will help to know that
when DA has closed range, it follows DA is onto C0 and that a certain kind of a
priori bound exists on solutions to DAu = f . That is the content of the following
lemma:

Lemma 4.1. Assume that the operator DA : C1
0 → C0 has closed range. Let V1

be the subspace of RN consisting of the initial values u(0) of bounded solutions u
to the homogeneous equation DAu = 0, and let V2 be any direct complement of V1.
Then

(a) The operator DA is onto C0.
(b) There is a positive constant r such that for all f ∈ C0, one has the estimate

‖u‖∞ ≤ r‖f‖∞, (4.3)

where u is the unique u ∈ C1
0 such that DAu = f and u(0) ∈ V2.

Proof. Since the subspace C0 of C0 consisting of compactly supported functions is
dense in C0, it is enough to prove that the range of DA contains C0. Let f ∈ C0,
and suppose that f is supported in [0, T ]. Let

ξ = −
∫ T

0

U(s)−1f(s) ds,

and let

u(t) = U(t)
(
ξ +

∫ t

0

U(s)−1f(s) ds
)
.

Then u is supported in [0, T ] and DAu = f . This completes the proof of the first
assertion.

To prove the second assertion, let f ∈ C0 be given. Since we now know that DA

is surjective, let v ∈ C1
0 be such that DAv = f . Let Π denote the projection onto

V1 along V2. There is a unique w ∈ C1
0 such that DAw = 0 and w(0) = Πv(0).

It follows that if u = v − w, then DAu = f and u(0) ∈ V2. To see that u is
unique in C1

0 , the difference of two such functions will be a bounded solution to the
homogeneous equation DAu = 0 whose initial value lies in V2. By definition of V2,
this initial value must be zero.

We will denote by S : C0 → Cb the linear map that carries f into u. We will
use the closed graph theorem to prove that S is bounded, and the proof will then
be complete. Take a sequence {(fn, un)} in the graph of S and suppose that this
sequence converges in C0 × Cb to some (f, u). Fix t > 0. Using the uniform
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convergence of {(fn, un)} to (f, u) and the uniform continuity of A on [0, t], we
have

u(t)− u(0) = lim
n→∞

un(t)− un(0)

= lim
n→∞

∫ t

0

−A(s)un(s)− fn(s) ds

=
∫ t

0

−A(s)u(s)− f(s) ds.

Upon differentiating with respect to t, we find that DAu = f . Since it also happens
that u(0) = limn→∞ un(0) ∈ V2, it follows that Sf = u as desired. �

Of course, the second assertion in Lemma 4.1 continues to hold if DA is already
known to be surjective. Here is the first main result in this section.

Theorem 4.2. Assume that A = A(t) : [0,∞) → Rd×d is bounded and continuous.
Then the operator DA : C1

0 → C0 defined by DAu(t) = u̇(t)+A(t)u(t) is a Fredholm
operator if and only if A admits an exponential dichotomy on [0,∞). In this case,
DA is surjective and dim kerDA = dim rge Π so that

ind DA = dim rge Π,

where Π is any projection associated with the exponential dichotomy. Additionally,
for all f ∈ C0,

{u(0) : u ∈ C1
0 and u̇ + Au = f} = rge Π−

∫ ∞

0

(I −Π)U(s)−1f(s) ds. (4.4)

Proof. First assume that DA is Fredholm. In particular, the range of DA is closed
in C0. According to Coppel [3, (Proposition 3 on page 22)], to prove that A admits
an exponential dichotomy it is sufficient to show that the equation u̇(t)+A(t) = f(t)
has a bounded solution (not necessarily in C1

0 ) whenever f ∈ Cb. So let f ∈ Cb be
given, and let {fn} be a sequence of continuous functions on [0,∞) such that for
each n ∈ N,

(a) fn agrees with f on [0, n],
(b) fn is supported in [0, n + 1], and
(c) |fn(t)| ≤ |f(t)| on [0,∞).

Since these functions are compactly supported, they are all in C0. Let V1 and V2

be as in Lemma 4.1, and let un be the unique solution to DAun = fn such that
un(0) ∈ V2. According to Lemma 4.1, the sequence {un} is bounded because the
sequence {fn} is bounded. There is hence a subsequence {unk

} such that the initial
values ξk = unk

(0) converge to some ξ ∈ V2. Define

u(t) = U(t)
(
ξ +

∫ t

0

U(s)−1f(s) ds
)

so that DAu = f . For the desired application of the mentioned result from Cop-
pel [3], it remains to show that u is bounded on [0,∞). Fix t > 0. For all n > t,
we have fn(t) = f(t). Therefore for all nk > t,

unk
(t)− u(t) = U(t)(ξk − ξ).

In particular, u(t) = limk→∞ unk
(t). Because the sequence {un} is (uniformly)

bounded, this shows that u is bounded on [0,∞).
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Conversely, assume that A admits an exponential dichotomy on [0,∞). For each
f ∈ C0 and ξ ∈ RN , introduce the notation

u = uf,ξ(t) := U(t)
(
ξ +

∫ t

0

U(s)−1f(s) ds
)

for the solution to the initial value problem DAu = f , u(0) = ξ, regardless of
whether this solution is in C1

0 . Recall that the map S that carries ξ into u0,ξ is
an isomorphism of RN onto the vector space of all solutions to the homogeneous
equation DAu = 0. The kernel of DA : C1

0 → C0 is thus isomorphic to the set of all
ξ ∈ RN such that Sξ = u0,ξ ∈ C1

0 . We claim that in fact

ker DA = S(rge Π).

Indeed, the defining properties (4.1) and (4.2) of exponential dichotomy imply that
u0,ξ has exponential decay as t → ∞ when ξ ∈ rge Π, and exponential growth
otherwise. Therefore, u0,ξ ∈ C1

0 if and only if ξ ∈ rge Π.
We next consider the range of DA in C0. For each choice of f and ξ, we decom-

pose uf,ξ along the projection Π as follows:

uf,ξ = U(t)(Π + I −Π)
(
ξ +

∫ t

0

U(s)−1f(s) ds
)

= U(t)Πξ +
∫ t

0

U(t)ΠU(s)−1f(s) ds

+ U(t)
(
(I −Π)ξ +

∫ t

0

(I −Π)U(s)−1f(s) ds
)

=: g1(t) + g2(t) + g3(t).

First, g1 = u0,Πξ ∈ C1
0 . Second, let ε > 0 and let T > 0 be such that |f(t)| < ε

when t > T . Because of (4.1), when t > T

|g2(t)| ≤
∫ t

0

Ke−αt−s|f(s)|ds

≤ K‖f‖∞
∫ T

0

e−α(t−s) ds + Kε

∫ t

T

e−α(t−s) ds

= Kα−1
(
‖f‖∞(eα(T−t) − e−αt) + ε(1− eα(T−t))

)
For sufficiently large t, this expression is no more than 2Kα−1ε. Since ε > 0 was
arbitrary, this shows that g2 ∈ C0. As for g3, note first that

η :=
∫ ∞

0

(I −Π)U(s)−1f(s) ds

is a well-defined element of rge(I −Π); this is due to (4.2) and the boundedness of
f . Indeed,

|(I −Π)U(s)−1| ≤ K−1e−αs

so that the integrand decays exponentially as s →∞. Notice now that

g3(t) = U(t)
(
(I −Π)ξ + η −

∫ ∞

t

(I −Π)U(s)−1f(s) ds
)

= U(t)(I −Π)(ξ + η)−
∫ ∞

t

U(t)(I −Π)U(s)−1f(s) ds
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Because of (4.2), we have∣∣ ∫ ∞

t

U(t)(I −Π)U(s)−1f(s) ds
∣∣ ≤ ∫ ∞

t

Ke−α(s−t)|f(s)|ds

≤ Kα−1 sup
s≥t

|f(s)|,

which converges to zero as t → ∞. Therefore, g3 will be in C0 if and only if
limt→∞ U(t)(I − Π)(ξ + η) = 0. For this, it is necessary and sufficient that one
has ξ + η ∈ rge Π. Since ξ = uf,ξ(0), this is the content of assertion (4.4). In
any case, it is possible to choose ξ (say ξ = −η) so that g3 is in C0. In that case,
uf,ξ = g1 + g2 + g3 is in C0 as well. Because A is bounded and u̇ = −Au + f ,
it follows that u ∈ C1

0 . This shows that DA is surjective, which completes the
proof. �

Notice that in the first part of the proof, we used the fact that Fredholm maps
have closed range (by definition), but we used no other property of Fredholm maps.
Therefore, as soon as DA is known to have closed range, it follows that DA is Fred-
holm (and that A admits an exponential dichotomy on [0,∞)). This observation
amounts to the following corollary, which will be used later.

Corollary 4.3. Assume that A = A(t) : [0,∞) → Rd×d is bounded and continuous
and that the operator DA : C1

0 → C0 defined by DAu(t) = u̇(t)+A(t)u(t) has closed
range. Then DA is Fredholm.

We next consider the Fredholm properties of the differential operator with eval-
uation at zero.

Theorem 4.4. Assume that A = A(t) : [0,∞) → Rd×d is bounded and continuous.
Let P be any linear projection in RN . Then the operator Λ: C1

0 → C0×X1 defined
by Λu = (DAu, Pu(0)) is a Fredholm operator if and only if A admits an exponential
dichotomy on [0,∞). In this case,

ker Λ = {U(·)ξ : ξ ∈ rge Π ∩ ker P},

rge Λ = {(f, η) ∈ C0 ×X1 : η +
∫ ∞

0

(I −Π)U(s)−1f(s) ds ∈ rge Π + ker P},

and ind Λ = dim rge Π− dim X1, where Π is any projection associated to the expo-
nential dichotomy admitted by A.

Proof. We can append the zero map to DA without changing the Fredholm property
and index, as long as the target space is only trivially enlarged; this results in the
map

(DA, 0) : C1
0 → C0 × {0}.

If we now enlarge the target space to C0×X1, the codimension of the range increases
by dim X1. The map Λ is then a finite rank perturbation of the result; recall that
neither the Fredholm property nor the index are affected by perturbations of finite
rank (nor even compact perturbations). The end result in changing DA into Λ is
that the Fredholm index decreases by dim X1, the only exception to this being that
neither operator is Fredholm.

Next, u ∈ ker Λ if and only if u ∈ C1
0 with DAu = 0 and Pu(0) = 0. By

Theorem 4.2 this is the case if and only if u(t) = U(t)ξ (so that DA = 0) and
ξ ∈ rge Π (so that u ∈ C1

0 ), and u(0) ∈ ker P .
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Finally, by Theorem 4.2, (f, η) is in the range of Λ if and only if η = Pξ and
ξ ∈ rge Π−

∫∞
0

(I −Π)U(s)−1f(s) ds. Since η = Pξ means that η differs from ξ by
a vector in ker P , this proves the claimed characterization of rge Λ. �

Corollary 4.5. In the situation of Theorem 4.4, the operator Λ is Fredholm of
index zero from C1

0 into C0 × X1 if and only if Π and P have the same rank. In
this case, the following are equivalent:

(a) The map Λ is an isomorphism.
(b) rge Π ∩ ker P = {0}.
(c) RN = rge Π⊕ ker P .

Proof. In the situation of Theorem 4.4 the Fredholm index of Λ is dim rge Π −
dim X1. Of course, this is zero if and only if Π and P have the same rank. Fur-
thermore, a map of Fredholm index zero is an isomorphism if and only if the map
has trivial kernel. By Theorem 4.4, this kernel is rge Π ∩ ker P . Finally, under the
assumption that P and Π have the same rank, the conditions that rge Π ∩ ker P
and RN = rge Π⊕ ker P are equivalent. �

By drawing upon what is known about exponential dichotomies, we can use
Corollary 4.5 to quickly deduce a variety of specific conditions that are sufficient
for Λ to be Fredholm of index zero. We present several as examples. Except
where an alternate citation is given, all of these can be verified by consulting (for
example) [3] or [9].

Example 4.6. If A∞ = limt→∞ A(t) exists (which includes the constant case),
then Λ is Fredholm if and only if A∞ has no eigenvalues on the imaginary axis. In
this case, Λ has index zero if and only if the rank of P is equal to the algebraic
count of eigenvalues of A∞ that have positive real part.

Example 4.7. If A is asymptotically autonomous, then Λ is Fredholm if and only
if the eigenvalues of A are eventually bounded away from the imaginary axis. In
this case, Λ has index zero if and only if the rank of P is equal to the algebraic
count of eigenvalues that stay to the right of the imaginary axis. We must remark
that this kind of condition is not valid when A is not asymptotically autonomous.

Example 4.8. By the usual Floquet theory (see Hsieh and Sibuya [8, pages 87-89]),
the study of periodic systems can be reduced to that of autonomous systems. As a
result, if A has period T , then Λ is Fredholm if an only if U(T ) has no eigenvalues
of unit modulus. In this case, Λ has index zero if and only if the rank of P is equal
to the algebraic count of eigenvalues of U(T ) with modulus greater than unity. In
fact, this example extends to asymptotically periodic systems.

Example 4.9. The operator Λ is Fredholm if and only if there are a bounded,
continuously differentiable Hermitian matrix function H = H(t) and a constant
β > 0 such that

H(t)A(t) + A(t)∗H(t)− Ḣ(t) ≥ βI

for a.e. t ≥ 0, in the sense of quadratic forms on RN . (See Coppel [3].) In this
case (see [11, Corollary 4.4]), the algebraic count d of positive eigenvalues of H(t)
is eventually independent of t, and Λ has index zero if and only if the rank of P is
equal to d.
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4.2. Properness and the Fredholm property. There is an interesting and prac-
tical connection between Theorems 3.16 and 4.2. The connection is due to Yood’s
Criterion, which states that a bounded linear map of Banach spaces is proper on
the closed and bounded subsets of the domain if and only if the kernel of the map
is finite dimensional and the range of the map is closed. This leads to a test for the
Fredholm property and index. To use this test, one can replace A by any element
of ω(A), which may be easier to work with. We have the following theorem.

Theorem 4.10. Assume that A is a bounded, uniformly continuous N ×N matrix
function on [0,∞). Assume that for all B ∈ ω(A), there are no bounded, nontrivial
solutions to u̇ + B(t)u = 0 on (−∞,∞). Then the dimension of the kernel of
DB : C1

0 → C0 is independent of the choice of B ∈ ω(A). Moreover, Λ is Fredholm
of index dim kerDB − dim X1.

Proof. By assumption, the set S in Definition 3.12 is S = {0}, which is certainly
compact and totally disconnected. Therefore, A has an admissible omega-limit set,
and it follows from Theorem 3.16 that Λ is proper on the subsets of C1

0 that are
closed and bounded. Thus, Yood’s criterion guarantees that Λ has closed range
in C0 × X1. It follows from Theorem 4.2 (via Corollary 4.3) that DA is a surjec-
tive Fredholm operator of index k = dim ker DA and that A admits an exponential
dichotomy on [0,∞) with associated projection of rank k = dim ker DA. By Theo-
rem 4.4, the map Λ is Fredholm of dimension dim kerDA − dim X1.

To complete the proof, we appeal to Remark 4 in Sacker [18], in which Sacker
explains that under the current hypotheses, dim ker DB = dim kerDA for all B ∈
ω(A). �

Remark 4.11. In Theorem 4.10, it is assumed that there are no bounded, nontriv-
ial solutions to u̇+B(t)u = 0, while Definition 3.12 prohibits bounded nonconstant
solutions. This is because Theorem 4.10 concerns a linear system, so that the set
S in Definition 3.12 is automatically a vector space. Thus, for S to be compact, it
is necessary to require that S = {0}.
4.3. Nonlinear systems. Recall that RN = X1 ⊕X2 is a given decomposition of
RN with associated projection P onto X1 along X2. If F satisfies (2.1), (2.2), and
(2.3) recall once again that we define an operator F : C1

0 → C0 ×X1 by

F(u) := (u̇ + NF (u), Pu(0)),

and that it follows from Theorem 2.2 that F ∈ C1
(
C1

0 , C0 ×X1

)
with

DF(u)v = (v̇ + DzF (·, u)v, Pv(0)) for u, v ∈ C1
0 .

Lemma 4.12. Assume that F satisfies (2.1), (2.2), and (2.3). Then for each
u ∈ C1

0 , the bounded linear operator DF(u)−DF(0) is compact.

Proof. Let {vn} be a bounded sequence in C1
0 . To show that

(
DF(u)−DF(0)

)
vn =(

DzF (·, u)−DzF (·, 0)
)
vn, 0) has a convergent subsequence in C0 ×X1 is to show

that
{wn} := {

(
DzF (·, u)−DzF (·, 0)

)
vn}

has a convergent subsequence in C0. Firstly, note that for each N ∈ N, the (restric-
tion of) the sequence {vn} is bounded and uniformly continuous on [0, N ]. Thus,
by the Ascoli-Arzela Theorem and a diagonal sequence argument, there is a sub-
sequence of {vn} (again denoted {vn}) and a function v ∈ Cb such that vn → v
uniformly on compact intervals.
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We will now show that {wn} is a Cauchy sequence in C0, and is hence convergent
there. Let ε > 0. The sequence {vn} is uniformly bounded on [0,∞) × RN .
According to Lemma 2.1 (b), limt→∞

(
DzF (t, u(t)) − DzF (t, 0)

)
= 0. These two

facts imply that there is T > 0 such that |wn(t)| < ε/4 for all n ∈ N and all t > T .
Thus,

|wn(t)− wm(t)| < ε/2, for all n, m ∈ N and t > T. (4.5)

On the other hand, {vn} is uniformly convergent (hence uniformly Cauchy) on
[0, T ]. Since

(
DzF (t, u(t))−DzF (t, 0)

)
is bounded on [0, T ], the sequence {wn} is

also uniformly Cauchy on [0, T ]. With (4.5), this implies that for some N ∈ N,

|wn(t)− wm(t)| < ε, for all n, m > N and t ≥ 0.

That is to say, the sequence {wn} is Cauchy in C0, as advertised. �

Theorem 4.13. Let F satisfy (2.1), (2.2), and (2.3). Then F : C1
0 → C0 ×X1 is

a Fredholm operator if and only if DzF (·, 0) admits an exponential dichotomy. In
this case, indF = 0 if and only if dim X1 equals the common rank of the projections
associated to this exponential dichotomy.

Proof. Recall that by definition, the nonlinear operator F is Fredholm if and only
if DF(u) is Fredholm for some u. In this case, DF(u) is Fredholm for all u, and
the index is independent of u, and the Fredholm index of the nonlinear operator F
is defined to be this common value of indDF(u).

Lemma 4.12 shows that the Fredholm property and index (which do not vary
under compact perturbations) of DF(u) agrees with that of DF(0). An application
of Corollary 4.5 with A(t) = DzF (t, 0) completes the proof. �

5. Existence theorems

In the first result the hypotheses are relatively abstract. This is where the
topological degree argument is provided. Subsequent results will have more concrete
(though less general) hypotheses.

Lemma 5.1. Assume that F is of class C1 from C1
0 to C0×X1. Assume moreover

that F is Fredholm of index zero and is proper on the subsets of C1
0 that are closed

and bounded. Assume as well that for a given pair (f, ξ) ∈ C0 ×X1, that a priori
bounds exist in the sense that the set

{u ∈ C1
0 : F(u) = (sf, sξ) for some 0 ≤ s ≤ 1} (5.1)

is norm bounded in C1
0 . Finally, assume that F is odd.

Then there exists u ∈ C1
0 such that F(u) = (f, ξ).

Proof. Let R > 0 be a norm bound for the set defined in (5.1), and let B be the
open ball of radius R + 1 and center 0 in C1

0 . By assumption, F : C1
0 → C0 ×X1

is a C1 map of Fredholm index zero that is proper on the closure of B. All of this
ensures that F is B-admissible, in the sense of [14, Definition 4.1].

Next, the choice of B ensures that (sf, sξ) ∈ C0 \ F(∂B) for all 0 ≤ s ≤ 1.
As it is introduced in [14, Corollary 5.5], the absolute degree |d|(F , B, (sf, sξ))
is a well-defined nonnegative integer for all 0 ≤ s ≤ 1. Introduce the homotopy
h : [0, 1]× C1

0 → C0 ×X1 by

h(s, u) := F(u)− (sf, sξ).
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To conclude that the absolute degree is invariant along h, we must verify first that
h is B-admissible, in the sense of [14, Definition 4.2]. It is clear that h is C1. To
see that h is Fredholm of index one, note that Dh(s, u) is a rank one perturbation
of the linear map L := (0, DF(u)) from R×C1

0 into C0 ×X1. Thus, the Fredholm
properties of Dh(s, u) coincide with those of L. Now, L has the same range and
target space as DF(u), but the kernel of L is R × ker DF(u). Since DF(u) is
assumed to be Fredholm of index zero, it follows that L is Fredholm of index one,
as desired.

For the B-admissibility of h, we must also verify that the restriction of h to
[0, 1]×B is proper. That is to say, the preimage of a compact set in C0×X1 should
have compact intersection with [0, 1]×B. Suppose that {(sn, un)} is a sequence in
[0, 1] × B such that {h(sn, un)} converges in C0 ×X1, say to a point (g, η). Since
[0, 1] is compact, we may assume that sn converges to some s0. By definition of
h, we see that the sequence {F(un)} converges to (g + s0f, η + s0ξ). It follows
at once from the assumed properness of F on the subsets of C1

0 that are closed
and bounded that {un} possesses a convergent subsequence. Having verified that
h is B-admissible, it now follows from [14, Theorem 5.1] that |d|(h(s, ·), B, (0, 0)) is
independent of 0 ≤ s ≤ 1.

By Borsuk’s Theorem, the assumed oddness of F implies that this degree is
nonzero when s = 0. By homotopy invariance it follows that |d|(h(1, ·), B, (0, 0)) is
nonzero. The normalization property of the degree implies the existence of some
u ∈ B such that F(u)− (f, ξ) = (0, 0). This completes the proof. �

There are various tools available to ensure that the degree is nonzero at the
s = 0 point of the homotopy h that is used in the above proof. In Lemma 5.1,
the assumption that F be odd can be dispensed with if the degree is known to
be nonzero. For this, one sufficient pair of conditions is that there be no nonzero
solution u ∈ C1

0 to the homogeneous equation F(u) = (0, 0), and the zero solution
be regular in the sense that DF(0) is an isomorphism. Briefly, the condition is that
the trivial solution to F(u) = (0, 0) be both unique and regular.

In that case, it follows from the definition of the degree at regular values that
|d|(F , B, (0, 0)) = 1. An additional relevance of this situation is that isomorphisms
are automatically Fredholm of index zero. Since Lemma 4.12 ensures the com-
pactness of DF(u) − DF(0) for all u ∈ C1

0 , it follows from the invariance of the
Fredholm property under compact perturbations that F is Fredholm of index zero.
All of this results in the following variation of Lemma 5.1:

Corollary 5.2. Assume that F is of class C1 from C1
0 to C0 ×X1. Assume also

that F is proper on the subsets of C1
0 that are closed and bounded. Assume as well

that for a given pair (f, ξ) ∈ C0 ×X1, that a priori bounds exist in the sense that
the set (5.1) is norm bounded in C1

0 . Finally, assume that there is no nonzero
solution u ∈ C1

0 to the homogeneous equation F(u) = (0, 0), and that DF(0) is an
isomorphism.

Then there exists u ∈ C1
0 such that F(u) = (f, ξ).

Proof. The proof of Lemma 5.1 needs to be modified only according to the above
remarks concerning nonzero degree and the Fredholm property. In particular, recall
that compact perturbations of linear maps of Fredholm zero are again Fredholm of
index zero, and that F is Fredholm of index zero if DF(u) is Fredholm of index
zero at each u ∈ C1

0 . �
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Remark 5.3. There is no harm done (but perhaps no practical gain made) in
replacing the linear path from (0, 0) to (f, ξ) in (5.1) by any C1 path from (0, 0) to
(f, ξ).

Before stating the next theorem, it may be helpful to bring in the following
definition:

Definition 5.4. Let f ∈ C0 and ξ ∈ X1 be given. Let S be the set of all u ∈ C1
0

such that
u̇(t) + F (t, u(t)) = sf(t) for all t ≥ 0,

Pu(0) = sξ
(5.2)

for some 0 ≤ s ≤ 1. If S is norm-bounded in C1
0 , we say that the pair (f, ξ) satisfies

the a priori bounds condition for F .

Theorem 5.5. Assume that F satisfies (2.1), (2.2), and (2.3) and that F has an
admissible omega-limit set. Assume that (f, ξ) ∈ C0 × X1 satisfies the a priori
bounds condition for F , and that the homogeneous system associated to (1.1) has
both uniqueness and regularity of the trivial solution. Then there is at least one
u ∈ C1

0 to solve (1.1).

Proof. We apply Corollary 5.2. It follows from Corollary 2.5 that F (as defined
in (2.4)) is a C1 map from C1

0 to C0 × X1. It follows from Theorem 3.16 that
F is proper on the subsets of C1

0 that are closed and bounded. According to
Definition 5.4, the a priori bounds condition of Corollary 5.2 is satisfied.

Finally, to say that the homogeneous system associated to (1.1) has both unique-
ness and regularity of the trivial solution means precisely that the remaining re-
quirements of Corollary 5.2 are met as well. We conclude that there is indeed at
least one u ∈ C1

0 to solve(1.1). �

Remark 5.6. As per Remark 5.3, there is no harm in replacing the linear path
from (0, 0) to (f, ξ) in (5.2) by any C1 path from (0, 0) to (f, ξ).

Perhaps less useful in practice, the following version (which avoids the isomor-
phism condition) is worth recording:

Theorem 5.7. Assume that F satisfies (2.1), (2.2), and (2.3) and that F has an
admissible omega-limit set. Assume that (f, ξ) ∈ C0 × X1 satisfies the a priori
bounds condition for F . Finally, assume that F is Fredholm of index zero and that
F (t, ·) is odd for each t ≥ 0. Then there is at least one u ∈ C1

0 to solve(1.1).

Proof. This result follows from Lemma 5.1 instead of Corollary 5.2. �

Remark 5.8. In applications of Theorem 5.7, one must verify that F is Fredholm
of index zero. By Lemma 4.12 it is enough to check that DF(0) is Fredholm of
index zero, for which in turn it is sufficient to know that DF(0) is an isomorphism.
In this context, the assumed oddness replaces the uniqueness of the trivial solution
to the homogeneous problem.

Alternately, one can use the results of Section 4 to verify that F is Fredholm of
index zero. According to Theorem 4.13, it is necessary and sufficient that DzF (·, 0)
admit an exponential dichotomy with associated projection of the same rank as P .
There are a number of examples given in Section 4 of how to do this. Of particular
interest in the context of this paper is that it is sufficient to set A = DzF (·, 0) and
to check that for all B ∈ ω(A), that there are no bounded, nontrivial solutions to
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u̇ + B(t)u = 0 on (−∞,∞). In this case, according to Theorem 4.10 it remains
only to check that for any B ∈ ω(A) (and hence all B ∈ ω(A)) that the dimensions
of ker DA and of X1 are equal.

In principle, this approach allows for applications of Theorem 5.7 even when the
trivial solution to the homogeneous system associated to (1.1) is neither unique nor
regular.

6. Example

This section provides a new example that builds upon the results in [16, Example
7.2, culminating in Theorem 7.3]. (For a variety of other examples, please see [10].)

Let I be any closed interval containing zero, possibly as an endpoint. Let g =
g(t, s) : I × R → R and h = h(t, s) : I × R → R be two real-valued functions with
the following properties. (Of course, this means that each of the following is true
also upon replacing g by h, possibly with different constants.)

g(t, 0) = 0, (6.1)

Dsg exists and is continuous on I × R, (6.2)

g, and Dsg are B.U.C. on I ×K for each compact interval K, (6.3)

Dsg is non-negative, (6.4)

inf
t∈I

Dsg(t, 0) > 0, (6.5)

and finally, there are positive constants α and s∗ such that for all t ∈ I,

g(t, s)/s ≥ α whenever |s| > s∗. (6.6)

Of course, the significance of conditions (6.1)-(6.3) are that g and h satisfy (2.1)-
(2.3) (with N = 1, with each of g and h in place of F , and with I in place of [0,∞)).
Also, if condition (6.6) holds for all α > 0 (so that s∗ = s∗(α)), then g and h are
super-linear.

The following are a few simple properties that will be used later.

Lemma 6.1. Continue to assume that g : I×R → R satisfies conditions (6.1)-(6.6).
Then

(a) g(t, s) has the same sign as s.
(b) sg(t, s) and g(t, s)/s are both positive when s 6= 0.
(c) If s > 0, then inft∈I g(t, s) > 0.
(d) If s < 0, then supt∈I g(t, s) < 0.
(e) The function g∗(s) := inft∈I g(t, s) is monotone increasing.
(f) lim|s|→∞|g(t, s)| = ∞ uniformly in t ∈ I.

Proof. (a) Since g(t, 0) = 0, this follows from the non-negativity of Dsg, along
with the strict positivity of Dsg(t, 0).

(b) This follows from part (a).
(c) This follows from (6.5).
(d) This also follows from (6.5).
(e) Let s2 > s1, and choose ε > 0. Let t1 and t2 be chosen so that both

|g∗(s1)− g(t1, s1)| and |g∗(s2)− g(t2, s2)| are smaller than ε. Then

g∗(s2)− g∗(s1) ≥ g(t2, s2)− g(t1, s1)− 2ε

=
(
g(t2, s2)− g(t2, s1)

)
+

(
g(t2, s1)− g(t1, s1)

)
− 2ε
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≥ 0 + g∗(s1)− g(t1, s1)− 2ε

≥ −3ε,

where we have used the fact that for fixed t2, the function g(t2, s) is
monotone increasing in s. Since ε > 0 was arbitrary, this shows that
g∗(s2)− g∗(s1) ≥ 0, as desired.

(f) This follows from (6.6).
�

Before stating and proving the main existence result, it helps to prove two lemmas
that concern blowup and a priori bounds.

Lemma 6.2. Let g = g(t, s) and h = h(t, s) be two real valued functions on I × R
that satisfy conditions (6.1)-(6.5). Let u = (v, w) be any nontrivial C1 solution to
the homogeneous problem

v̇ + g(t, w) = 0,

ẇ + h(t, v) = 0.
(6.7)

We take u to be extended from t = 0 as far as possible as a solution, perhaps to all
of I.

(a) If v(0)w(0) ≤ 0 and [0,∞) ⊆ I, then u blows up as t → ∞ (possibly in
finite time).

(b) If v(0)w(0) ≥ 0, and (−∞, 0] ⊆ I, then u blows up as t → −∞ (possibly in
finite time).

Proof. At most one of v(0) and w(0) is zero, and it is no loss of generality to assume
that w(0) 6= 0. Otherwise, we can exchange the names of g and h. This exchange
results in a corresponding exchange in the names of v and w.

We first consider (a). We examine the case that w(0) > 0 and v(0) ≤ 0; the
remaining case has a similar proof. With reference to Lemma 6.1 part (a), we have

v̇(0) = −g(0, w(0)) < 0,

and
ẇ(0) = −h(0, v(0)) ≥ 0.

Thus v is decreasing and w is not decreasing at t = 0. Let J be the set of all t ≥ 0
such that w > 0 on [0, t). Note that in J , we have v̇(t) = −g(t, w) < 0 so that v
is decreasing on J . In particular, v is non-positive on J . Since ẇ(t) = −h(t, v), it
follows that w is non-decreasing on J . Unless the solution blows up in finite time
(in which case there is nothing to prove), this shows that [0,∞) ⊆ J . Therefore,
w ≥ w(0) on [0,∞), from which it follows that v̇(t) = −g(t, w(t)) ≤ −g(t, w(0)) ≤
− inft≥0 g(t, w(0)) < 0. (See Lemma 6.1, part (c).) Since v̇ is negative and bounded
away from zero, this proves that v(t) → −∞ as t →∞.

We now consider (b). It is once again without loss of generality that w(0) 6= 0.
We consider the case that w(0) > 0 and v(0) ≥ 0; once again, the omitted case is
very similar. We let J be the set of all t ≤ 0 such that w is positive on (t, 0]. By an
analysis similar to that of part (a), we find that (−∞, 0] ⊆ J and v̇(t) is therefore
positive and bounded away from zero on (−∞, 0]. This proves that v(t) → ∞ as
t → −∞. �

The next lemma says that if u = (v, w) is a C1
0 solution, then neither v nor w

can become too large relative to the other.
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Lemma 6.3. Let g = g(t, s) and h = h(t, s) be two real valued functions on [0,∞)×
R, and assume that g and h satisfy conditions (6.1)-(6.6). Let f1, f2 ∈ C0, and let
K ≥ 0 be given. There exists R = R(K, f1, f2) ≥ 0 with the following property. Let
u = (v, w) be any C1

0 solution to the nonhomogeneous problem

v̇ + g(t, w) = σf1,

ẇ + h(t, v) = σf2,
(6.8)

for some 0 ≤ σ ≤ 1. For all t0 ≥ 0, if one of |v(t0)| or |w(t0)| is no larger than K,
then the other is no larger than R.

Proof. Fix 0 ≤ σ ≤ 1 and t0 ≥ 0. Let u = (v, w) be any C1
0 solution to (6.8).

By the symmetry of (6.8), it suffices to assume that |v(t0)| ≤ K and prove that
|w(t0)| ≤ R. To be clear, we need to find R = R(K, f1, f2) such that |w(t0)| ≤ R.
It is important to ensure that the choice of R does not depend on the choice of
solution u, parameter σ, nor time t0.

We first consider the case that v(t0) and w(t0) are both nonnegative. We will
show that if w(t0) is too large relative to K, f1, and f2, then u 6∈ C1

0 . It follows
from Lemma 6.1, part (f) that there is s1 such that inft≥0 g(t, s) ≥ 1 for all s > s1.
Suppose that w(t0) > s1. (Otherwise, just take R > s1.)

Define h∗(s) := inft≥0 h(t, s). Let J be the set of all t ≥ t0 such that both
h∗(v(·)) > −‖f2‖ − 1 and w > s1 on the interval [t0, t]. Because t0 ∈ J , it follows
that J is an interval [t0, a) for some t0 < a ≤ ∞. Notice that as t increases, t
remains in J only so long as v and w are large enough. We will find an upper
bound for a by showing that v is ultimately decreasing. However, this is sure to
occur only after f1 has become negligible.

To this end, let t1 ≥ t0 satisfy |f1(t)| ≤ 1/2 for all t > t1. Then for all t ∈ J ,

v̇(t) = σf1(t)− g(t, w(t)) ≤ σf1(t)− 1 ≤

{
‖f1‖, if t ≤ t1;
−1/2, if t ≥ t1.

Therefore, for all t ∈ J ,

v(t) ≤

{
K + (t− t0)‖f1‖, if t ≤ t1;
K + (t1 − t0)‖f1‖ − (1/2)(t− t1), if t > t1.

Since h(t, v(t)) ≥ h∗(v(t)) > −‖f2‖ − 1 in J , it follows that J contains only values
of t > t1 (if any) such that

h
(
t, K + t1‖f1‖ − (1/2)(t− t1)

)
> −‖f2‖ − 1.

With reference to items (a) and (f) of Lemma 6.1 (with h in place of g), this
implicitly bounds the right endpoint a of J , in a way that depends only on K, f1,
and f2.

Now we can estimate w(t) when t ∈ J . Notice that

sup
t∈J

h(t, v) ≤ M := sup
t∈J

h
(
t, K + t1‖f1‖

)
< ∞.
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Note that M depends only on K, f1, and f2. When t ∈ J ,

w(t) = w(t0) +
∫ t

t0

ẇ(τ) dτ

= w(t0) +
∫ t

t0

σf2(τ)− h(τ, v(τ)) dτ

≥ w(t0)− (a− t0)(‖f2‖+ M).

(6.9)

Now, what would happen if w(t0) were too large? From inequality (6.9) it follows
that if

w(t0) ≥ s1 + (a− t0)(‖f2‖+ M) + 1,

then w(t) ≥ s1 + 1 for all t ∈ J . By definition of J , it follows that h∗(v(a)) =
−‖f2‖−1. (Recall that a < ∞). Now let’s look at the solution (v, w) as t increases
beyond a. Let J ′ be the set of all t ≥ a such that both w > s1 and h∗(v(·)) < −‖f2‖
on [a, t). Note that theses inequalities hold at t = a, so that J ′ is nonempty. Let
a′ = supJ ′. Notice that for all t ∈ J ′,

v̇(t) = σf1(t)− g(t, w) ≤ −1/2.

Therefore, it is necessary that a′ < ∞, lest v be unbounded and the solution
u = (v, w) fails to be in C1

0 . However, the definition of J ′ allows for only two
possibilities concerning a′. The first is that w(a′) = s1. This is impossible, because
w(a) > s1 and ẇ = σf2 − h(t, v) > 0 on J ′. The only remaining possibility is that
h∗(v(a′)) = −‖f2‖. However, v is decreasing in J ′, so item (e) implies that h∗(v(·))
is non-increasing in J ′. Since h∗(v(a)) = −‖f2‖ − 1, this is a contradiction. We
conclude that for R = s1+(a−t0)(‖f2‖+M)+1, if w(t0) > R then u = (v, w) 6∈ C1

0 .
This completes the proof in case v(t0) and w(t0) are both non-negative.

Still assuming that v(t0) ≥ 0, we next consider those solutions such that w(t0) <
0. We now let s1 < 0 be such that −‖f1‖ − g(t, s) > 2 for all t ≥ t0 and all s < s1.
Suppose that w(t0) < s1. This time we take J to be the set of all t ≥ t0 such that
−‖f1‖ − g(·, w(·)) > 1 on [t0, t]. For all t ∈ J ,

v̇(t) = σf1 − g(t, w(t)) > 1,

so that v(t) > v(t0) + (t− t0) ≥ t− t0 and so

h(t, v(t)) > h(t, t− t0).

According to item (f) of Lemma 6.1 there is t1 ≥ t0 such that h(t, t− t0) ≥ ‖f2‖+1
for all t ≥ t1. Thus, for all t ∈ J ,

w(t) = w(t0) +
∫ t

t0

σf2(τ)− h(τ, v(τ)) dτ

≤

{
w(t0) + (t− t0)‖f2‖, if t ≤ t1;
w(t0) + (t1 − t0)‖f2‖ − (t− t1), if t ≥ t1

≤ w(t0) + (t1 − t0)‖f2‖.

This shows that if w(t0) ≤ s1− (t1− t0)‖f2‖, then w(t) ≤ s1 for all t ∈ J . It follows
that −‖f1‖− g(t, w(t)) > 2 for all t ∈ J , so that J = [t0,∞). Since v̇ > 1 on J , the
solution u = (v, w) is unbounded and is not in C1

0 . This proves that no C1
0 solution

u = (v, w) satisfies w(t0) < s1 − (t1 − t0)‖f2‖. The proof is complete in the case
that v(t0) ≥ 0.
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The argument when v(t0) ≤ 0 is similar, in principle. However, it is probably
more efficient to use the following reflection argument. Let p(t, s) = −g(t,−s), and
q(t, s) = −h(t,−s). Note that Dsp(t, s) = Dsg(t,−s) and Dsq(t, s) = Dsh(t,−s),
so that p and q are seen to satisfy conditions (6.1)-(6.6). Also, the following are
equivalent:

• The pair (v, w) = (x, y) solves

v̇ + g(t, w) = σf1,

ẇ + h(t, v) = σf2,
(6.10)

• The pair (v, w) = (−x,−y) solves

v̇ + p(t, w) = −σf1,

ẇ + q(t, v) = −σf2,
(6.11)

Therefore, if v(t0) ≤ 0, we can apply the case that has already been proved to the
reflected problem to obtain the desired bound. �

With the help of the preceding technical lemmas, it remains only to see how
Theorem 5.5 can be applied.

Theorem 6.4. Let g and h be real-valued functions on [0,∞) × R that satisfy
conditions (6.1)-(6.6). Let ξ ∈ R, and let f1, f2 ∈ C0 be such that ‖f1‖+ ‖f2‖ < α,
where α is the bound that appears in condition (6.6). Then the system

v̇ + g(t, w) = f1,

ẇ + h(t, v) = f2,

v(0) = ξ

(6.12)

has at least one solution (v, w) ∈ C1
0 .

Proof. To apply Theorem 5.5, we set u = [ v
w ], F (t, z) = F (t, u) =

[
g(t,w)
h(t,v)

]
, f =[

f1
f2

]
, and P [ s1

s2 ] = s1. Using the variable z = [ s1
s2 ], it follows that

DzF (t, z) =
[

0 Dsg(t, s2)
Dsh(t, s1) 0

]
.

It follows immediately from the conditions placed upon g and h that F satis-
fies (2.1), (2.2), and (2.3).

Next, we must show that F has an admissible omega-limit set. Let E be any
member of ω(F ). It follows that E =

[
g̃

h̃

]
for some g̃ ∈ ω(g) and some h̃ ∈ ω(h),

and that these are functions that satisfy conditions (6.1)-(6.6) with I = R. (Some of
these conditions are verified via Lemma 3.6; the rest follow easily using the uniform
convergence on compact sets.) Assume that u ∈ C1

b(R) is a (bounded) solution
to u̇ + E(t, u) = 0. For the admissibility of the omega-limit set of F , we are to
show that u is constant, and that the set of all such constant functions (over all
choices of E ∈ ω(F )) forms a compact, totally disconnected subset of R2. Note
that u̇ + E(t, u) = 0 means that

v̇ + g̃(t, w) = 0,

ẇ + h̃(t, v) = 0.
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Since g̃ and h̃ satisfy conditions (6.1)-(6.6), the two parts of Lemma 6.2 together
imply that the bounded (v, w) must be the trivial solution. This proves that u
must be zero, which is indeed constant. Moreover, the set of all possible constant
solutions is again just {0}, which is compact and totally disconnected. This verifies
the admissibility of the omega-limit set of F .

In our application of Theorem 5.5, we next verify that the homogeneous system

v̇ + g(t, w) = 0,

ẇ + h(t, v) = 0

v(0) = 0

has both uniqueness and regularity of the trivial solution in C1
0 . Uniqueness follows

from the first part of Lemma 6.2. For regularity, we must show that the linearized
system

v̇ + Dsg(t, 0)w = 0,

ẇ + Dsh(t, 0)v = 0

v(0) = 0

has only the trivial solution in C1
0 . Notice that the maps s 7→ Dsg(t, 0)s and

s 7→ Dsh(t, 0)s satisfy conditions (6.1)-(6.6). In particular, the fact that g and h
satisfy condition (6.5) is what ensures that Dsg and Dsh satisfy both (6.5) and (6.6).
Therefore, the first part of Lemma 6.2 implies that the linearized system has no
nontrivial solutions in C1

0 .
Finally, we must verify that (f, ξ) satisfies the a priori bounds condition; see

Definition 5.4. Thus, let S be the set of all pairs (v, w) ∈ C1
0 such that

v̇ + g(t, w) = σf1,

ẇ + h(t, v) = σf2,

v(0) = σξ

for some 0 ≤ σ ≤ 1. We are to show that S is norm bounded in C1
0 .

Let (v, w) ∈ S, and let r(t) = v(t)2 + w(t)2. Since r ∈ C1
0 , this function achieves

its maximum at some t0 ≥ 0 at which u = (v, w) also achieves its maximum
Euclidean norm, which we will use to establish the a priori bounds. If t0 = 0, then
Lemma 6.3 provides an a priori bound R(K, f1, f2) for w(0), where K = ξ. In this
case,

sup
t≥0

|u(t)| = |u(0)| =
√

v(0)2 + w(0)2 ≤
√

K2 + R2. (6.13)

Before using inequality (6.13), we derive an analogous inequality in case t0 > 0. If
at least one of v(t0) and w(t0) is no greater than K = 1 in absolute value, we use
Lemma 6.3 to bound the other by R = R(1, f1, f2). It follows that

sup
t≥0

|u(t)| = |u(t0)| =
√

v(t0)2 + w(t0)2 ≤
√

1 + R2. (6.14)

It remains to consider the case that both |v(t0)| and |w(t0)| are greater than 1,
while t0 > 0. Since r attains its maximum at the interior point t0 > 0, it follows
that ṙ(t0) = 0. Thus,

v(t0)v̇(t0) + w(t0)ẇ(t0) = 0,
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from which it follows that

v(t0)
(
σf1(t0)− g(t0, w(t0))

)
+ w(t0)

(
σf2(t0)− h(t0, v(t0))

)
= 0.

Division by v(t0)w(t0) 6= 0 results in

g(t0, w(t0))
w(t0)

+
h(t0, v(t0))

v(t0)
=

σf1(t0)
w(t0)

+
σf2(t0)
v(t0)

(6.15)

Because |v(t0)| and |w(t0)| are greater than 1, the expression on the right side of
equation (6.15) is bounded by ‖f1‖ + ‖f2‖ in absolute value. On the other hand,
both terms of the left side of (6.15) are positive; this follows from item (a) of
Lemma 6.1. Thus, each of the two terms is independently bounded by ‖f1‖+ ‖f2‖,
which is assumed to be less than the bound α from (6.6); this implies that both
|v(t0)| and |w(t0)| are no greater than the value s∗ from (6.6). Together with
inequalities (6.13) and (6.14) from the other two cases, we have verified that there
is a constant R = R(ξ, f1, f2) such that

sup
t≥0

|u(t)| ≤ R

for all u ∈ S. This proves that S is norm bounded in C0. To achieve a bound in
the norm of C1

0 , it remains only to use the equations

v̇ = σf1 − g(t, w),

ẇ = σf2 − h(t, v).

Having bounded v and w, the right sides of these equations serve to bound v̇ and
ẇ. This completes the verification that F has an admissible omega-limit set, which
in turn completes the application of Theorem 5.5. We conclude that (6.12) has at
least one solution in C1

0 , as advertised. �

As a simple corollary, if g and h are strictly super-linear, then we need not
assume that f1 and f2 are small. Specifically, we have the following corollary.

Corollary 6.5. Let g and h be real-valued functions on [0,∞) × R that satisfy
conditions (6.1)-(6.6). However, assume moreover that g and h are super linear, in
the sense that (6.6) holds for all α > 0 (meaning that s∗ = s∗(α)).

Let ξ ∈ R, and let f1, f2 ∈ C0 be arbitrary. Then the system

v̇ + g(t, w) = f1,

ẇ + h(t, v) = f2,

v(0) = ξ

(6.16)

has at least one solution (v, w) ∈ C1
0 .

Proof. Apply Theorem 6.4, with α = ‖f1‖+ ‖f2‖+ 1. �

Remark 6.6. Some of the results that appear in this paper are elaborations of
arguments that first appeared in the author’s Ph. D. dissertation, completed under
the guidance of Professor Patrick J. Rabier at The University of Pittsburgh.
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