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NON-EXISTENCE OF LIMIT CYCLES VIA INVERSE
INTEGRATING FACTORS

LEONARDO LAURA-GUARACHI, OSVALDO OSUNA, GABRIEL VILLASEÑOR-AGUILAR

Abstract. It is known that if a planar differential systems has an inverse
integrating factor, then all the limit cycles contained in the domain of definition
of the inverse integrating factor are contained in the zero set of this function.
Using this fact we give some criteria to rule out the existence of limit cycles.
We also present some applications and examples that illustrate our results.

1. Introduction and statement of results

Many problems in qualitative theory of differential equations in the plane are
related to limit cycles; this fact motivates their study. We consider the system of
differential equations

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2),
(1.1)

where fi : U ⊆ R2 → R, 1 ≤ i ≤ 2 are functions of class C1 and U is a simply
connected open set. Consider the vector field F := f1

∂
∂x1

+ f2
∂

∂x2
, then system

(1.1) can be rewritten in the form

ẋ = F (x), x := (x1, x2) ∈ U. (1.2)

Its divergence is div(F ) := ∂f1
∂x1

+ ∂f2
∂x2

.

Definition 1.1. A function ϑ : U ⊂ R, ϑ ∈ C1(U, R), is said to be an inverse
integrating factor of (1.1) if it is not locally null and satisfies the partial differential
equation

f1
∂ϑ

∂x1
+ f2

∂ϑ

∂x2
=

( ∂f1

∂x1
+

∂f2

∂x2

)
ϑ. (1.3)

In short notation, an inverse integrating factor is a solution of the equation
Fϑ = div(F )ϑ. It is well known that inverse integrating factor is an important
tool in the qualitative study of differential equations, but their determination is
a difficult problem (see [3] and references therein). In particular, in [1] has been
established that are also a very useful tool for investigation of limit cycles.

The aim of this article is to use inverse integrating factors to produce in a system-
atic way, criteria for non-existence of limit cycles in planar differential equations. In
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particular, we obtain an alternative proof to the nonexistence of limit cycles for ho-
mogeneous polynomial equations. We give some examples to illustrate applications
of these results.

We rewrite (1.1) in its Pfaffian form

ω := −f2(x1, x2)dx1 + f1(x1, x2)dx2 = 0, (x1, x2) ∈ U. (1.4)

Note that the above equation is just the differential equation of the orbits of system
(1.1). Recall that an integrating factor for ω = 0 is a C1 function µ : U → R, which
makes µω an exact form. In the case that U is simply connected; this is equivalent
to

∂(−µf2)
∂x2

=
∂(µf1)
∂x1

(1.5)

It is clear that µ is an integrating factor for (1.4) if and only if, ϑ = 1
µ is an inverse

integrating factor of (1.1), in the appropriate domain.
Before establishing our results we recall the following result.

Theorem 1.2 ([1, Theorem 9]). Let ϑ : U → R be an inverse integrating factor of
(1.1). If γ ⊂ U is a limit cycle of (1.1), then γ is contained in the set ϑ−1(0) :=
{(x1, x2) ∈ U : ϑ(x1, x2) = 0}.

Recall that it is possible to impose certain conditions on (1.5), to determine
special cases of integrating factors. Our first result is an observation that these
techniques can be adapted to exclude existence of limit cycles. We start with the
following result.

Proposition 1.3. Let U be a simply connected open set. Suppose a vector field

F = f1
∂

∂x1
+ f2

∂

∂x2
∈ C1(U, R2).

If any of the following two conditions holds, then (1.1) does not have limit cycles
in U :

(i) The function αi := div(F )/fi depends only on xi, for some i ∈ {1, 2} and
is continuous;

(ii) The function β := div(F )/
(
f1x2 + f2x1

)
depends on z := x1x2 and is

continuous.

Proof. We consider the case (i) with α1 depending only on x1. We seek an inverse
integrating factor, using the associated equation

f1
∂ϑ

∂x1
+ f2

∂ϑ

∂x2
=

( ∂f1

∂x1
+

∂f2

∂x2

)
ϑ.

Assume that ϑ depends only on x1. Thus the previous equation reduces to

f1
∂ϑ

∂x1
=

( ∂f1

∂x1
+

∂f2

∂x2

)
ϑ,

which is rewritten as
∂ log ϑ

∂x1
=

1
f1

( ∂f1

∂x1
+

∂f2

∂x2

)
= α1.

From our hypothesis ϑ = exp(
∫ x1 α1(s)ds) is an inverse integrating factor and

ϑ−1(0) = ∅, therefore by Theorem 1.2 system (1.1) has no limit cycles. The proof
is complete. �
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Example 1.4. Consider the system

ẋ1 = −x2 + ax2
1 + bx3

2 cos(x2),
ẋ2 = x1.

We have that div(F )
f2

= 2a is a function of x2 so by Proposition 1.3(i). Then the
system contains no limit cycles.

Example 1.5. Consider the system

ẋ1 = 2x1x2,

ẋ2 = x3
1x

2
2 − x2

2 − 1.

We have that div(F )
f1

= x2
1, by Proposition 1.3, this system contains no limit cycles.

We also have the following immediate result (well known in the literature [6,
page 18]).

Corollary 1.6. Let F be a C1 vector field on U . If div(F ) = 0, then (1.1) does
not have limit cycles in U .

Now we use Proposition 1.3 to study some special systems. Consider the equation
ẋ1 = r1(x1)r2(x2),

ẋ2 = s1(x1).
(1.6)

We establish the following result.

Corollary 1.7. If r1(x1) > 0(< 0), then (1.6) does not have limit cycles in U .

Proof. Indeed, the expression
div(F )

f1
=

r′1(x1)
r1(x1)

,

is continuous and depends only on x1, hence the result follows from Proposition
1.3(i). �

Example 1.8. Consider the system

ẋ1 = (2 + sin(x1))(x3
2 − x2

2 + x2),

ẋ2 = x4
1 + 5x1.

It contains no limit cycles.

Recall that the phase portrait of differential equation is essentially unchanged if
we multiply the vector field by a nonzero function.

Lemma 1.9. Suppose that system (1.1) has a limit cycle α and B : U → R is a
positive (negative) real valued function. Then α is a limit cycle of the system

ẋ1 = Bf1,

ẋ2 = Bf2.
(1.7)

Now using the above lemma, we obtain slightly general versions of our results.

Proposition 1.10. Let U be a simply connected open set. Suppose that B : U → R
is a C1 positive (negative) function such that div(BF )/Bfi depends only on xi, for
some i ∈ {1, 2} and is continuous. Then (1.1) does not have limit cycles in U .
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In particular from the preceding proposition or from Corollary 1.6, we have the
following result.

Corollary 1.11. Let U be a simply connected open set. Suppose that B : U → R is
a C1 positive (negative) function such that div(BF ) = 0, then (1.1) does not have
limit cycles in U .

2. Polynomial vector fields

In this section we are mainly interested in studying polynomial vector fields. We
start presenting some basic concepts. Let R[x1, x2] be the polynomial ring over R
in two variables. Given f ∈ R[x1, x2], define its zero set by

V (f) := {(x1, x2) ∈ R2 : f(x) = 0}.
If S ⊂ R[x1, x2], we let V (S) be the set of common zeros

V (S) = ∩f∈SV (f).

A set of this form is called algebraic, in particular V (f) is known as algebraic curve.

Lemma 2.1. Let P ∈ R[x1, x2] be a non-zero homogeneous polynomial, then V (P )
contains no subset homeomorphic to S1.

Proof. If P := c 6= 0, then V (P ) = ∅ and the result is valid, so consider P a
homogeneous polynomial of degree ≥ 1, then note that 0 ∈ V (P ).

Suppose V (P ) contains a subset α homeomorphic to S1. If it happens that
0 ∈ int(α) (the region bounded by α), then P ≡ 0 which is a contradiction.

On the other hand, if we have 0 /∈ int(α), then we would have the cone C(α) :=
{λx : λ ≥ 0, x ∈ α} ⊂ V (P ) which is a contradiction to Bézout’s theorem [4],
because there are lines without common components with V (P ), but an infinite
number of points of intersection. This completes the proof. �

Based on this lemma we can prove the following result.

Theorem 2.2. If a non-zero homogeneous polynomial is an inverse integrating
factor of the differential equation (1.1), then it has no limit cycles.

Proof. Let ϑ be an inverse integrating factor of system (1.1) and is homogeneous
polynomial. Suppose the system (1.1) has a limit cycle α, then α ⊂ ϑ−1(0) which
contradicts Lemma 2.1. This concludes the proof. �

We have an alternative proof of the following result, which is proven in [5].

Corollary 2.3. If f1, f2 are homogeneous polynomials of same degree, then (1.1)
has no limit cycles.

Proof. It is easy to check that

ϑ(x1, x2) := x1f2(x1, x2)− x2f1(x1, x2),

is an inverse integrating factor of (1.1). It is clear that ϑ is a homogeneous poly-
nomial, the result follows from Theorem 2.2. �

Example 2.4. Consider the system

ẋ1 = 3x5
2 − x3

1x
2
2 + 6x1x

4
2,

ẋ2 = x2
1x

3
2 − 2x5

1.
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This is a homogeneous vector field, by the above corollary, it contains no limit
cycles.

In particular, we have the following well known result.

Corollary 2.5. The linear differential equation
ẋ1 = ax1 + bx2,

ẋ2 = cx1 + dx2,
(2.1)

contains no limit cycles.

Another application of Theorem 2.2 is based on one of the main results in [2].

Theorem 2.6 ([2]). Consider the polynomial system

ẋ1 = Pn(x1, x2) + x1Ad−1(x1, x2),

ẋ2 = Qn(x1, x2) + x2Ad−1(x1, x2),
(2.2)

where Pn, Qn, Ad−1 ∈ R[x1, x2] are homogeneous and their degrees satisfy d > n ≥
1. Assume that H(x1, x2) is a p-degree homogeneous first integral of the system

ẋ1 = Pn(x1, x2),

ẋ2 = Qn(x1, x2).
(2.3)

Then, the function

ϑ(x1, x2) := (x2Qn(x1, x2)− x1Pn(x1, x2))H(x1, x2)(d−n)/p (2.4)

is an inverse integrating factor of (2.2).

Now combining Theorem 2.2 and 2.6, we have the following consequence.

Corollary 2.7. Under the hypotheses of Theorem 2.6, if d−n
p ∈ N, then (2.2) is

free of limit cycles.

Proof. From the assumptions in Theorem 2.6 and (d − n)/p ∈ N, it follows that
H(x1, x2)(d−n)/p is homogeneous; therefore,

ϑ(x1, x2) := (x2Qn(x1, x2)− x1Pn(x1, x2))H(x1, x2)(d−n)/p

is a homogeneous polynomial, so the result follows from Theorem 2.2. �

Now we consider the differential equation

ẋ1 = r1(x1)r2(x2),

ẋ2 = s1(x1)s2(x2).
(2.5)

Proposition 2.8. If r1 and s2 are polynomial functions then (2.5) has no limit
cycles.

Proof. A calculation gives that the function

ϑ(x1, x2) := r1(x1)s2(x2)

is an inverse integrating factor of system (2.5). Now V (ϑ) = V (r1)∪V (s2). Taking
the factorization in irreducible polynomials, one has that V (r1) consists of a finite
union of vertical lines, similarly V (s2) is a finite union of horizontal lines. So every
subset of V (ϑ) homeomorphic to S1 must contain points in V (r1) ∩ V (s2); i.e.,
critical points therefore can not be limit cycles. �
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Example 2.9. Consider the predator-prey equation

ẋ1 = x1(a− bx2)

ẋ2 = (cx1 − d)x2,

where a, b, c, d are positive constants. By Proposition 2.8 this system contains no
limit cycles.
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