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ESTIMATES AND UNIQUENESS FOR BOUNDARY BLOW-UP
SOLUTIONS OF P-LAPLACE EQUATIONS

MONICA MARRAS, GIOVANNI PORRU

ABSTRACT. We investigate boundary blow-up solutions of the p-Laplace equa-
tion Apu = f(u), p > 1, in a bounded smooth domain Q C RN. Under ap-
propriate conditions on the growth of f(t) as t approaches infinity, we find an
estimate of the solution u(z) as = approaches 92, and a uniqueness result.

1. INTRODUCTION

Let f(t) be a C1(0,00) function, positive, non decreasing, satisfying f(0) = 0
and the condition )
/
t(fr1(t
lim M = a, (1.1)
GG
with p > 1 and a > 1. It is well known (see [0, page 282]) that a smooth function
f which satisfies (|1.1)) has the following representation

t
F(t) = Ot° exp(/ @dT), (1.2)
to T
where C and t, are positive constants and g(t) — 0 as ¢ — oo. Functions which
have this representation are said to be normalized regularly varying at co. More
1
precisely, f7=1(¢) is regularly varying of index «, and f(¢) is regularly varying of
index a(p — 1). Since

BNy ()
(ftiﬁ(t)):tﬂ fpl(t)[W—ﬁ},

1
if f satisfies (|1.1) then the function “;7;“) is increasing for large ¢ whenever 5 < a.

In particular, since a > 1, the function t’;(f)l is increasing for large t. Furthermore,

condition (|1.1)) implies the generalized Keller-Osserman condition

o) dt t
/1 W<oo, F(t)ffof(T)dT. (1.3)
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Consider the Dirichlet problem
Apu=f(u) inQ, wulz)—o00 aszx— 0N (1.4)

It is well known that when f satisfies condition , problem has a solution
(see for example [9]). In the present paper, assuming condition , we find a
quite precise estimate for a solution near the boundary 0f), and we derive a result
of uniqueness.

In case of p = 2, problems about the existence of boundary blow-up solutions
have been investigated for a long time, see the classical papers [I1], 7], and the
recent survey [I8]. We refer to the paper [I4] for a description of spatial hetero-
geneity models, including historical hints. For the investigation of the boundary
behaviour of blow-up solutions we refer to [T, Bl 4, [5l [6l 12]. The case of weighted
semilinear equations has been discussed in [13| 15, 20]. The case p > 1, has been
treated in [9, 10, 16]. In the present paper, assuming condition 7 we find an
estimate of the solution up to the second order.

In case of p = 2, condition (|1.1)) appears in the paper [7], where the author proves
a uniqueness result for proble. We emphasize that the method used in [7] is
not applicable in the present case because of the nonlinearity of the p-Laplacian.

For s > 0, define the function ¢(s) as

o0 dt
——— =35, (1.5)
/¢(s) (qF (t))\/P
where ¢ = ]%. If u is a solution to problem (1.4)), we prove the estimate
u(z) = ¢(6)[1 + O(1)d], (1.6)

where 0 = 6(z) = operatornamedist(x,0§) and O(1) denotes a bounded quantity.
Estimate implies, in particular, that if u; and uy are two solutions of problem
then

uy (z)

=1.
z— 00 ’LLQ(IL')

By using this result, the monotonicity of f(¢) for ¢ > 0 and the monotonicity of

tfp(_t)l for large t we prove the uniqueness of the solution to problem (|1.4)).

2. MAIN RESULTS

We have already noticed that if f(¢) satisfies (|1.1)) then the representation (|1.2))
holds. By (1.2) it follows that, for € > 0, we can find positive constants C; and Cy
such that for ¢ large we have

Cytep=Nti—e o F(t) < CoteP=DF1te, (2.1)
where F' is defined as in ([1.3). Furthermore, the function ¢ defined in (L.5)), for s
small satisfies

1\ z=h@=1 1\ 5=He=D
cl(g) < é(s) < cg(g) . (2.2)

Lemma 2.1. Let A(p, R) C RN, N > 2, be the annulus with radii p and R centered
at the origin. Let f(t) > 0 be smooth, increasing for t > 0 and such that holds
with o > 1. If u(z) is a radial solution to problem in Q = A(p,R) and
v(r) = u(z) forr =|z|, then

v(r) < ¢(R—7r)[14+C(R—r)], 7<r<R, (2.3)
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and,
v(r) > ¢(r—p)1=C(r—p)l, p<r<7, (2.4)
where ¢ is defined as in (1.5)), p <7 < R and C is a suitable positive constant.

Proof. We have

(1 p=2) 4

S = (), olp) = v(R) = oo, (2.5)

It is easy to show that there is r¢ such that v(r) is decreasing for p < r < ro and
increasing for ro < r < R, with v’(rg) = 0. For r > ¢ we have

_ i _ !/ —
(|U/|p 2,0/) — ((U/)p 1) — (p _ 1)(U/>p QUH.
Therefore, multiplying (2.5)) by v' and integrating over (rg,r) we find

S

(v(;)” + (N —1) /r (u/)pds = F(v) — F(vy), vo=uv(ro). (2.6)

To
Since F'(vg) > 0, (2.6 implies that
v < (gF()YP, 1€ (ro, R). (2.7)

As a consequence we have

T (v\P 1 r 1/q v
/ O s < — / (@F(0)Vav'ds < L— [ (F(t))/adt. (2.8)
ro S To ro To 0
On the other hand, by (2.6) we find
Wy . (N=1) [ ©ds+ F(w)
qF (v) F(v) '
The above equation yields
U/
————=1-T 2.9

where,

To

F(r):l—(l— )

By using the inequality 1 — (1 —#)'/? < t (true for 0 < t < 1), and (2.8) we find,
for some constant M,

(N — 1)fr (U;)pds-i-F(Uo))l/P

(N =) fy, O ds+ Fleo) _ o (F ()" /adt

Hr < o) < M50
Since )
ljﬂmwwgmem
we have u ( )
T0) < Fom) T (2.10)

By using (2.1) (with € small enough) one finds that I'(r) — 0 as » — R. Further-
more, using (|1.2)) one proves that
F(t 1

tlggo tf(t) - alp—1)+1°
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Hence, since

(ot oy tf(t) Tﬂﬂ_ﬂ
EON " () O P

and m < %, the function W is decreasing for large t. As a consequence,
the function % tends to zero monotonically as r tends to R.

The inverse function of ¢ is the following
- [ b
CJe (@F@)Ve
Integration of (2.9) over (r, R) yields

R
Y)=R—r— / I'(s)ds, (2.11)
from which we find
R
o) = (R = 1) = ) [ T (2.12)
with
R
Rfr>w>Rfo/ I'(s)ds.
Since

—¢' () = (¢F (p(w) "7,

and since the function ¢ — F(¢(t)) is decreasing we have

, R 1/p 1/
@) < (B (@R -~ [ 1) = @),
where (2.11]) has been used in the last step. Hence, by (2.12)) and ([2.10) we find

R
0lr) < 0(R = 1)+ @FO)? [ s

Recalling that the function i Mu()__ g decreasing for r close to R, the latter

F(u(r)))t/»
estimate implies
v(r) < ¢(R—r) +¢" /" Mo(r)(R - r),
and
p(R—r)
1—q/?PM(R—7)’

v(r) <

from which inequality (2.3]) follows.
For r < 79 we have v’ < 0 and, instead of equation (2.6]), we find
I\p T0 |,/ |P
[ :F(v)—F(vo)Jr(Nfl)/ 1" 4
q S
with p < 7 < 79. Note that, since [v'(r)[? — oo as r — p and v" > 0, we have
(Lemma 2.1 of [12])

, (2.13)

S ear N

lim
P T
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Hence, ([2.13) implies [v/| < q(F(v))'/? for r near to p. Using equation (2.13) again
we find .
e (N1 [ ds — F(w)

+
qF(v) F(v)
The above equation yields

O 1+T(r), (2.14)

where
!’ |p

(N—-1)[" | P F(vo))l/P

I(r) = (1 +

T S

F(v)
Since (1+t)'/? —1 < t (true for ¢ > 0), we have
- =1 e s — F(w)
r r__* .
(T‘) < F(U)

Using the estimate [v'| < q(F(v))Y/? we find |[v'|P < qp_l(F(v))pT?l(—v'). There-
fore, I'(r) satisfies

- Mu(r)
0= T
where M is a suitable constant (possible different from that of (2.10])). It follows
that T'(r) — 0 as 7 — p.
Integration of over (p,r) yields

Yw)=r—p+ /T I'(s)ds,

(2.15)

from which we find
v(r) = ¢(r — p) + ¢'(w1) /T [(s)ds, (2.16)
with '
r—p<uw <rfp+/rl~“(s)ds.
Since ¢/(s) is increasing we have ’

1
¢'(w1) > ¢/(r = p) = —(aF (o(r = )"
This estimate, (2.15)) and ([2.16)) imply
1 " Muo(s
vu(r) > o(r — p) = (aF(o(r - p))) /p/ %dé‘
r (F(v(s)))
Since the function W is decreasing for ¢ large and the function v(r) is decreas-

ing for r close to p, it follows that is increasing. Therefore,
Mou(r)

(F(o(r))"”

v(r)
(Flo(r)7?

v(r) > ¢(r — p) — (¢F (6(r — p))) "/ (r—p). (2.17)

On the other hand, by (2.14) we have

— <2 <r <7,
(qF())r =5 PSS
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Integrating over (p,r) we find

Y(v) <2(r —p),

whence,
o(r) > 6(2(r — p)). (2.18)
We claim that, for some M > 1 and § small, we have
1
— < . .
76(0) < 6(20) (219)

Indeed, putting ¢(d) = ¢, we can write (2.19) as

= < 06(),
0(0) < 30()

for t large. To prove this inequality, we write

w)= [ are)ear =1 [ “qr (o)

t

Since f(¢) is regularly varying with index a(p — 1), F(t) is regularly varying with
index a(p — 1) + 1, and (see [6])

F(Mt) _ 5 rap-1)+1

% " F(1)
Therefore, for ¢ large we have
- (E(r)~ /7
(F(MT)) 1/p§W~
Hence,
M e _ M t
P(t) < W/ (qF (7))~ "/Pdr = —n—Y(gg)
M~ > — 174 M~ -1

The claim follows with M such that
M 1

Using (2.18), (2.19)), and recalling that F(t) is regularly varying with index a(p —
1) + 1 we find, for r close to p,

F(o(r=p) . _F@r=p) _ _Fr—p)
F@) = FORO =) = F (40— p)

Insertion of the latter estimate into (2.17)) yields

o(r) > ¢(r — p) — Mu(r)(r — p),
from which (2.4]) follows. The lemma is proved. ([l

< Me=1+1 4 9
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Theorem 2.2. Let Q C RN, N > 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (1.1) with « > 1. If u(x) is a solution to

problem then we have
#(0)[1 - C8] < u(x) < $(6)[1+ Cé], (2.20)

where ¢ is defined as in (1.5)), § denotes the distance from x to 9 and C is a
suitable positive constant.

Proof. If P € 0N) we consider a suitable annulus of radii p and R contained in §2
and such that its external boundary is tangent to 9 in P. If v(z) is the solution
of problem in this annulus, by using the comparison principle for elliptic
equations [8, Theorem 10.1] we have u(x) < v(z) for = belonging to the annulus.
Choose the origin in the center of the annulus and put v(z) = v(r) for r = |z|. By
, for r near to R we have

v(r) < ¢(6)[1+ C4].
The latter estimate together with the inequality u(z) < v(x) yield the right hand

side of ([2.20)).

Consider a new annulus of radii p and R containing € and such that its internal
boundary is tangent to 9 in P. If v(x) is the solution of problem in this
annulus, by using the comparison principle for elliptic equations we have u(x) >
v(z) for = belonging to Q. Choose the origin in the center of the annulus and put
again v(z) = v(r) for r = |z|. By (2.4), for r near to p we have

v(r) > ¢(6)[1 - C4].

The latter estimate together with the inequality u(x) > v(z) yield the left hand
side of (2.20). The theorem is proved. d

Theorem 2.3. Let Q C RN, N > 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (L.1) with o > 1. If u(x) is a solution to
problem (1.4) then, |Vu| — oo as x — S

Proof. By Theorem [2.2] we have
) u(x)
lim =
202 ¢(0())
In particular, for § < dg, dp small, we have
1 u(x)
- < —5 <2
2 ¢(0(x))
Now we follow the argument described in [2| page 105], using the same notation
(with 8 = p and p < pg). For & € D(p), define

o) = 4.
For & € D(p) we have
N GEL! (221)
We find
Vo = < Vu(pg),
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and
p* PP P’
Ayjp=—-—"—"—"A)u =——f(u =——f(v .
With v(t) = p we have
((t))” ¥(t) P f(v(§)t)
Ayv = v(é)t) = . 2.22
e = (COLR = = o =) (2:22)
Since f(t) is regularly varying with index a(p — 1) we have
. f(©)?) (p—1)
lim ————= = (v(£))*P~. 2.23
Jim FEE = (o) (2.23)
Furthermore, we have
¥(t) _ v (tf(t)f/p.
ET(f) e HEE) T N E )
We have already observed that implies
L)
ti)rgom =a(p-—-1)+1.
Using de I’'Hospital rule and the latter estimate we get
1/q
lim () - = 4 .
SR yR@) T el
Hence,
1/q
m —— v(®) _ (alp—1)+ 1)1/”. (2.24)
T (f) e o]
By (2.24), (2.23) and (2.21f), (2.22) implies that
Cy < Ay < Oy, €€ D(p) (2.25)
where C and Cy are suitable positive constants independent of p.
Let z; € Q, z; — 09, and let p; = dist(z;,09Q). By (2.25) with v;(¢) = u((pplf)),

and standard regularity results (see [19]), we find that the C'*: '8 (D (pz)) norm of the
sequence v;(§) is bounded far from zero. In particular,

[Vi(§)] = ¢,
with ¢ > 0 independent of . Hence,

[Vu(a;)| = |sz-(§)|¢i5i) > C¢(pﬂzz)

% — 00 as i — 00, the theorem follows. O

Since

Let us discuss now the uniqueness of problem (1.4). Observe that if « > 1+ p’%l
then

: : t°
fim ¢(0)0 = Jim ty(t) = Jim i =0

where (2.1) withe < (a —1)(p—1) —p has been used in the last step. Hence, if
u(z) and v(z) are solutions to problem (L.4) in case of v > 1+ -2, by Theorem
2.2 we have

xli%b[“(x) —ov(z)] = 0.
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Since f(t) is non decreasing, the comparison principle yields u(x) = v(x) in 2.
For general o > 1, we have the following result.

Theorem 2.4. Let Q C RN, N > 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (1.1) with o > 1. If u(x) and v(x) are positive
large solutions to problem (1.4) then u(x) = v(x).

Proof. Theorem [2.2] implies
u(z)

o200 v(z)

Let to large enough so that t];(,t)l is increasing for ¢t > tg, and let n > 0 such that
u(xz) >ty in Q, = {x € Q:6(x) <n}. For e >0 define

Dep={z€Qy:(1+eu(x) <v(z)}.

If D, is empty for any € > 0 then we have u(z) > v(z) in ,,. Define Q" = {z €
Q:6(x) > n}. Using the equations for v and v in 2" and the monotonicity of f(t)
one proves that u(z) > v(z) in Q7. Hence, in this case, u(z) > v(z) in Q. Changing
the roles of u and v we get u(z) = v(x).

f(t)

tp—1

Suppose D, , is not empty for € < €. In this open set, since
for large t, we have

Ap((l + e)u) =14+ f(u) < f((l + e)u),
Apv = f(v).
By the comparison principle we have

v(r) — (1+€)u(z) < 51(21)327][11(96) — (1+eu(z)] in De,.

is increasing

Letting e — 0 we find
v(z) —u(z) < max [v(z) —u(z)] in Q,.
6(z)=n
Put

61(1;?577[11(@ —u(x)] =v(x1) —u(zy) = C.

Using the equations for 4 and v in Q" and the monotonicity of f(t) one proves that
v(z) —u(z) < Cin Q. Then, v(z) —u(x) < C in Q. We observe that decreasing
7 and arguing as before we find z,, — 02 such that

v(z) —u(z) <v(z,) —u(z,) inQ,

with v(z,) — u(z,) = constant. In other words, v(z) — u(x) attains its maximum
value in the set described by x, (which approaches 992). By Theorem Vu and
Vv do not vanish in 2,, for n small. Hence, the strong comparison principle applies
(see [8]) and we must have v(z) —u(xz) = C in €.
Since
Apv = f(v) = flu+C)

and

Apv = Apu = f(u),

we must have f(u) = f(u+ C) in ,,. Since f(t) is strictly increasing for ¢ large,
we find C' = 0. The theorem follows. O
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