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GORDON TYPE THEOREM FOR MEASURE PERTURBATION

CHRISTIAN SEIFERT

ABSTRACT. Generalizing the concept of Gordon potentials to measures we
prove a version of Gordon’s theorem for measures as potentials and show ab-
sence of eigenvalues for these one-dimensional Schrodinger operators.

1. INTRODUCTION

According to [2], the one-dimensional Schrodinger operator H = —A + V has
no eigenvalues if the potential V' € Lq1oc(R) can be approximated by periodic
potentials (in a suitable sense). The aim of this paper is to generalize this result to
measures p instead of potential functions V; i.e., to more singular potentials.

Although all statements remain valid for complex measures we only focus on real
(but signed) measures p, since we are interested in self-adjoint operators.

In the remaining part of this section we explain the situation and define the
operator in question. We also describe the class of measures we are concerned with.
Section 2] provides all the tools we need to prove the main theorem: H = —A+y has
no eigenvalues for suitable y. In section [3] we show some examples for Schrodinger
operators with measures as potentials.

We consider a Schrodinger operator of the form H = —A + p on Ly(R). Here,
W= iy — pu— is a signed Borel measure on R with locally finite total variation |u|.

We define H via form methods. To this end, we need to establish form bound-
edness of p_. Therefore, we restrict the class of measures we want to consider.

Definition 1.1. A signed Borel measure p on R is called uniformly locally bounded,
if
l4lhoc == sup |u|([z, z +1]) < oo,
z€R

We call p a Gordon measure if p is uniformly locally bounded and if there exists
a sequence (u™)men of uniformly locally bounded periodic Borel measures with
period sequence (p,,) such that p,, — oo and for all C' € R we have

Jim P — (=, 20m]) = 0

ie.,, (u™) approximates p on increasing intervals. Here, a Borel measure is p-
periodic, if = p(- + p).
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Clearly, every generalized Gordon potential V' € L 1o as defined in [2] induces
a Gordon measure u = VA, where A is the Lebegue measure on R. Therefore, also
every Gordon potential (see the original work [4]) induces a Gordon measure.

Lemma 1.2. Let o be a uniformly locally bounded measure. Then |u| is —A-form
bounded, and for all 0 < ¢ < 1 there is v > 0 such that

/Rlul2 dlul < clle/[5 +llull3  (u€ Wy (R)).

Proof. For § € (0,1) and n € Z we have
2 Sl 112 400
[l S, s, 1y8) < 401U N7, (o, (g 1)s) + 5||U||L2(n5,(n+1)5)

by Sobolev’s inequality.
Now, we estimate

) (n+1)0 )
/R w2l = 3 / P

neE”Z

< Z 12l Z s, 18 | 4l
nez

4
< Nalhoe Y (401013 i sysy + 5 1l )
ne”Z

4| plhoc
= 46|llhoelv'[13 + 5 3.

Let p be a Gordon measure and define

D(r) = WAR), (u,v) ::/u’a'+/umu.

Then 7 is a closed symmetric semibounded form. Let H be the associated self-
adjoint operator.

In [I], Ben Amor and Remling introduced a direct approach for defining the
Schrédinger operator H = —A + p. Since we will use some of their results we sum
up the main ideas: For u € W}, (R) define Au € Ly joc(R) by

Au(o)i= ') = [ u(t)aute),
where

B B f[ ] u(t) du(t) if z >0,
/o u(t) du(t) = {_0 (w0 (B du(t) if z <0.

Clearly, Au is only defined as an Lj joc(R)-element. We define the operator T' in
L>(R) by

D(T) == {u € Ly(R); u, Au € W} 1,.(R), (Au)’ € Ly(R)}, Tu:= —(Au)'.
Lemma 1.3. H CT.



EJDE-2011/111 GORDON TYPE THEOREM 3

Proof. Let u € D(H). Then u € Wy (R) € W} .(R) and Au € Ly 0oc(R). Let
v € CX(R) C D(7). Using Fubini’s Theorem, we compute

[ @@= [ (v~ [ ) dut) @) ao
- [w@y@d~ [ [ utyduo)e @ da
- [ v [ OOO /( | F et dute)

-/ h JaRCr
0 [t,00)
0 [e%)
- / () () di + / ultolt) dutt) + / u(t)p(t) dp(t)
= [+ [ut@ypla) o

= (wP) = (Hu|9) = [ Hula)o(w) do
Hence, (Au)’ = —Hu € Ly(R). We conclude that Au € Wll,loc(R) and therefore
uw € D(T), Tu = —(Au) = Hu. O
Remark 1.4. For u € D(H) we obtain

u'(x) = Au(x) + /OI u(t) du(t)

for a.a. z € R. Since Au € W} (R) and = — [ u(t)du(t) is continuous at all
xz € R with p({z}) =0, «' is continuous at z for all x € R\ sptp,, where p, is the
point measure part of u.

2. ABSENCE OF EIGENVALUES

We show that H has no eigenvalues. The proof is based on two observations.
The first one is a stability result and will be achieved in Lemma[2.6] the second one
is an estimate of the solution for periodic measure perturbations, see Lemma [2.8

As in [2] we start with a Gronwall Lemma, but in a more general version for
locally finite measures. For the proof, see [3].

Lemma 2.1 (Gronwall). Let p be a locally finite Borel measure on [0,00), u €
L110c([0,00), ) and o : [0,00) — [0, 00) measurable. Suppose, that

u@) ale)+ [ ul)dals) (a2 0).

[0,2]
Then

u(@) < alo) + /[ ) exp(u(s, ) du) (20,
0,z
For x € R we abbreviate
I, ;=[x A0, zV0], I(t):=ILn(tz]U[zt]) (teR).
Let p be uniformly locally bounded. Then
lul(Lz) < ([2[ + Dllplhoe (2 € R).
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Furthermore, if p is periodic and locally bounded, p is uniformly locally bounded.

Let H := —A+ pand E € R. Then u € Wllloc( ) (= D(A)) is a solution
of Hu = FEu, if —(Au)’ = Fu in the sense of distributions (i.e., u satisfies the

eigenvalue equation but without being an Lo-function).

Lemma 2.2. Let p1, po be two uniformly locally bounded measures, E € R and uy

and ug solutions of
H1u1 = Eul, HQUQ = EUQ
subject to
ur(0) = uz(0), wy(0+) = up(0+), |ua(0)* + |uf (04)* = 1.
Then there are Cy,C > 0 such that for all z € R

H (u;(w)) _ (u;(m)) H

<Coct [ Ol ~ el

0 [ (Cot [ Tl = paf) 4B+ — BN (),
Proof. Write
(o)~ wa(o) = [ (w10 - us(0) de
0
and

uf () = uy(x) = u (0+) = uy(0+) = (ur (0)pa ({0}) — u2(0)u2({0}))

+/0Iu1(t)dul(t) _/Ow t) dua(t) / E(ui(t) — ua(t)) dt

— u2(0) (12({0}) — p ({0}))
+ [ o = )0+ [ a0 =) dgn - 23,

<Zig; - ZZEB) B <U2(10) (Nz({O(;) - m({O}))> - /0”’ (uf(t)) d(p1 — p2)(t)
TN o o
We conclude, that

[ (50) = () [ = o [ matotatin =l
w0 [ () = (20 403+ s = 2300,

An application of Lemma with a(z) = Cy + fIm |ua ()| dlpr — po|(t) and u
C(A+ |1 — EX|) yields the assertion.

Remark 2.3. Regarding the proof of Lemma [2.2] we can further estimate Cy
|ug(0)[|1 — po|(Le) (2 € R).
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Lemma 2.4. Let E € R and ug be a solution of —Aug = Fug. Then there is
C > 0 such that |ug(z)| < CeCl*! for all x € R.

In the following lemmas and proofs the constant C' may change from line to line,
but we will always state the dependence on the important quantities.

Lemma 2.5. Let 1 be a locally bounded p-periodic measure, E € R, uy a solution
of Hyuy = Fuy. Then there is C' > 0 such that

luy (z)| < CeCl*l (2 € R).

Proof. Let ug be a solution of —Aug = Eug subject to the same boundary condi-
tions at 0 as u;. By Lemma [2.2] we have

ur () — uo ()]

<0+ / o ()] dlpa | (1)

- C/ (C+ [ luo(s)ldlpu](s) )OO+ =BT g(x + |y — EXJ)(2)
I, Iy
< O+ || (1) CeCl*!

+ [ (€4 Cll (1) OB IO 3y — BN
I

< (€ + Climl(L)e!) (14 eOHIm =B (X |y — BXJ)(L,))

Since p; is periodic and locally bounded it is uniformly locally bounded and we
have |u1|(1z) < (Jz| + 1)||pe1]jioc. Furthermore, py — EX is periodic and uniformly
locally bounded, so |u1 — EA|)(Iz) < (|z] + 1)||p1 — EX|lloc. We conclude that

fur (2) = wo(@)] < (€ + C(la] + 1)l 1oce”)

X (1 + e(lw\+1)(1+llu1—EAII10u)(m + 1)1+ |1 — E>\H1oc))
< cellel,
where C' is depending on FE, ||p1|[loc and ||p1 — EA|j10c. Hence,
Jur ()] < Jua (@) = uo(@)] + |ug(x)| < Cel.
(]

Lemma 2.6. Let p be a Gordon measure and (u™) the p,,-periodic approzimants,
E € R. Letwu be a solution of Hu = Eu, uy, a solution of Hpytm = Euy, form € N
(obeying the same boundary conditions at 0). Then there is C > 0 such that

(D) - Gt < ccrtu-wminn wem

m

Proof. By Lemma [2.2] and Remark 2.3] we know that
[ () = () | = b @l =112+ [ @l = im0

U,

x

€ [ (lunOla= 11 + [ = 7))

x eCOFIR=EAN L) (X 4 | — EX|)(¢).
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‘We have

M := sup || |J1oc < 00,
meN

since (™) approximates p. Hence, also

sup ||u™ — EX|ioc < 00
meN

and Lemma [2.5] yields

Jum ()] < CeCl2l,

where C' can be chosen independently of m. Therefore

() = () || = (0= emicra) + 0¥l = micr)

Since

X <1 4 eCOH=BADU) (X 4|y — E)\\)(Iz))

[ = EA(L) < ([ + Dl = EAlloc,

we further estimate

H (5(3)) - (Zmﬁg) | < cectel— pmr,)

m

where C' is depending on || — EM||10c (and of course on M, ||p|oc and E). O

Lemma can be regarded as a stability (or continuity) result: if the measures
converge in total variation, the corresponding solutions converge as well.

Now, we focus on periodic measures and estimate the solutions. This will then
be applied to the periodic approximations of our Gordon measure .

Remark 2.7. (a) Let f,g be two solutions of the equation Hu = Fu. De-

(b)

fine their Wronskian by W(f,g)(z) := f(z)g'(z+) — f'(z+)g(x). By [1I,
Proposition 2.5, W(f, g) is constant.

Let u be a solution of the equation Hu = Fu. Define the transfer matrix
Tr(x) mapping (u(0),%' (0+))" to (u(x),u'(x+))". Consider now the two
solutions uy, up subject to

(ion) = (6)- (ane) = ()

To(w) - (“W) up () )

Wy (z+) up(z+)

Then

We obtain det T () = W(un,up)(x) and det Ty is constant, hence equals
1 for all z € R.

Lemma 2.8. Let p be p-periodic and E € R. Let u be a solution of Hu = Fu
subject to

Then

[u(O)] + [ (0+)]? = 1.

el (G ML G2 =&

The proof of this lemma is completely analoguous to the proof of [2, Lemma 2.2].
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Lemma 2.9. Let v € Ly N BVip(R) and assume that for all r > 0 we have
lv(z) —v(@+7)[ =0 (Jz] = o0).
Then |v(x)| — 0 as |z| — oo.
Proof. Without restriction, we can assume that v > 0. We prove this lemma by
contradiction. Assume that v(z) — 0 does not hold for # — oco. Then we can find

d > 0 and (gx) in R with g — oo such that v(gy) > § for all £ € N. By square
integrability of v we have [[v1, g,+1]ll2 — 0. Therefore, we can find a subsequence

(rn) of (gx) satisfying
[0, rpailla < 27572 (n € N).
Now, Chebyshev’s inequality implies
M{z € [rn,rn +1]; v(z) >27"}) < 2°M|oly,, ,o4qll3 <277 (n€N).
Denote A, := {x € [ry,r, +1]; v(z) > 27"} — 7, C[0,1]. Then A\(4,) < 27" and

A Upss Ay,) ZA ) <272 <1,

n>3
Hence, G := [ 1]\ (Un>3A4,,) has positive measure. For r € G, r > 0 it follows
v(r, +1r) < 27" (n > 3). Therefore,
liminf |v(r,) —v(r, + )| > >0,
a contradiction. g

Lemma 2.10. Let pu be a Gordon measure, E € R, w € D(H) a solution of
Hu = Eu. Then u(z) — 0 as ¢ — oo and v/(z) — 0 as x — oo.

Proof. Since u € D(H) C D(1) C W3 (R) we have u(z) — 0 as |z| — co. Lemma
yields uw € D(T) and —(Au)’ = Hu = Eu. Let r > 0. Then, for almost all
z € R,

u(x+71)—u(z) = Au(z + 1) — Au(x) + / u(t) dp(t)

(z,z+7]
4T
[ @ [ a@da)
T (z,z+7]
Hence,

We+n @l <iel [ wldy+ [ uoldp

< |E|r”uHOO,[z,m+r] + ||u‘|00,[z,m+r}|/‘|([x’x + 7“])
< ulloo fz,ztr) (B + (r + Dlplhoc) -

By Sobolev’s inequality, there is C' € R (depending on r, but r is fixed anyway)
such that
||u||oo,[m,:r+r] < OHU||W21(T,T+T) —0 (‘LE| - OO)

Thus,
/(2 + 1) —u'(z)] = 0 (Jz] — o0).
An application of Lemma [2.9) with v := « yields v/(z) — 0 as |z| — oo. O

Now, we can state the main result of this paper.
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Theorem 2.11. Let p be a Gordon measure. Then H has no eigenvalues.

Proof. Let (™) be the periodic approximants of u. Let E € R and u be a solution
of Hu = FEu. Let (u,,) be the solutions for the measures (). By Lemma [2.6| we

find mg € N such that
() - Gl =3

for m > mg and almost all z € [—py,, 2p]. By Lemma we have

1
limsup (Ju(z)? + v/ (z)]?) > 1> 0.
|z|— 00
Hence, u cannot be in D(H) by Lemma O

3. EXAMPLES

Remark 3.1 (periodic measures). Every locally bounded periodic measure on R
is a Gordon measure. Thus, for p = 0n41 the operator H := —A + p has
no eigenvalues.

ne”Z

Some examples of quasi-periodic L joc-potentials can be found in [2].
For a measure p and « € R let Ty := pu(- — z). If p is periodic with period p,
then Ty, = p.

Example 3.2. Let a € (0,1) \ Q. There is a unique continued fraction expansion

1
a= +—1
P
1 a2+ asi%
with a,, € N. For m € N we set a,,, = Z’", where
m

po=0, p1=1, pm=0ampm-1+Dm—2,

@0=1 q=a, g¢n=0omPm-1+qm-2-
The number « is called Liouville number, if there is B > 0 such that
| — | < Bm™ 9.

The set of Liouville numbers is a dense Gj.
Let v, v be 1-periodic measures and assume that there is v > 0 such that

(- =) =v[([0,1]) < |z[" (z €R).
Define pp := v +voa and p™ := v +voa,, for m € N. Then u™ is g,,-periodic and
1= 1" ([=gm) 2qm]) = v o = v o am|([=Gm, 2¢m])

= v o — = v|([=pm:2pm])

2pm—1

Z ‘1/0 @ —u‘([n,n—&— 1)).

«
n=—pm m

IN



EJDE-2011/111 GORDON TYPE THEOREM 9

Now, we have

vo———v|([n,n+1)) = T_ulvo —— —v[(0,1))

a’n’b a77l

= |T_n(l/ o a&) - T—nV|([Ov 1])

m

- |T_n(yo%) — ([0, 1))

With gmn(y) ==y + (ﬁ — 1)(y + n) and using periodicity of v we obtain

«
Tfn(l/o 7) =VOodmn-
Am

Hence,

o = —vl(fn,n+1]) = [vo g — vI([0, 1)).

m

For y € [0,1] and n € {—pm,...,2pm — 1} we have

m

«Q (0% _
|(a7 - 1)(y+n)| < |a - 1| < 2¢,,Bm |

Thus,

|V O 9m,n — V|([Ov 1}) < (quBqum)'Y = (2qu)’ym7qm'y.

We conclude that

i = 1™ ([~ 2Gm]) < 3Pm (2gm B) m ="

and therefore for arbitrary C' > 0

e“m | — ™ ([~ ms 2¢m]) — 0 (m — o0).

Hence p is a Gordon potential and H := —A + p does not have any eigenvalues.
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