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EXISTENCE OF SOLUTIONS OF SYSTEMS OF VOLTERRA
INTEGRAL EQUATIONS VIA BREZIS-BROWDER ARGUMENTS

RAVI P. AGARWAL, DONAL O’'REGAN, PATRICIA J. Y. WONG

ABSTRACT. We consider two systems of Volterra integral equations

t
ui(t):hi(t)'i‘/o gi(t, 8) fi(s,u1(s),u2(s),...,un(s))ds, 1<i<mn

where t is in the closed interval [0, 7], or in the half-open interval [0,7). By
an argument originated from Brezis and Browder [§|, criteria are offered for
the existence of solutions of the systems of Volterra integral equations. We
further establish the existence of constant-sign solutions, which include positive
solutions (the usual consideration) as a special case. Some examples are also
presented to illustrate the results obtained.

1. INTRODUCTION

In this article, we shall consider the system of Volterra integral equations

u; (t) = hi(t) +/0 9i(t, s) fi(s,u1(s), ua(s),...,u,(s))ds, (L.1)

fort € [0,T],1 < i< n,where 0 < T < oo; and the following system on a half-open
interval

ui(t) = hi(t) + /0 9i(t, 8) fi(s,u1(s),ua(s), ..., un(s))ds, (1.2)

for t € [0,7), 1 <4 <n, where 0 < T < oo. Throughout, let u = (u1,usg, ..., uy,).
We are interested in establishing the existence of solutions w of the systems
and (L.2)), in (C[0,T])" = C[0,T]x C[0,T] x - --x C[0,T] (n times), and (C[0,T))",
respectively. In addition, we shall tackle the existence of constant-sign solutions
of and (T.2). A solution u of (or (L.2) is said to be of constant sign
if for each 1 < ¢ < n, we have 6;u;(t) > 0 for all ¢t € [0,T] (or ¢t € [0,T)), where
0; € {-1,1} is fixed. Note that when 6; = 1 for all 1 < ¢ < n, a constant-
sign solution reduces to a positive solution, which is the usual consideration in the
literature.
System when h; =0, 1 <1 < n reduces to

ui(t):/o gt ) (5, un(s), ua(s), - un(s))ds, €[0T, 1<i<n. (13)
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This equation when n = 1 has received a lot of attention in the literature [9] L0} LT,
13, 14}, (15, 9], since it arises in real-world problems. For instance, astrophysical
problems (e.g., the study of the density of stars) give rise to the Emden differential
equation
y// - tryq =0, te [OvT}

y(0)=¢(0)=0, r>0,0<qg<1
which reduces to ((1.3]) with n = 1 when g;(¢,s) = (¢t —s)s" and fi(¢,y) = y?. Other
examples occur in nonlinear diffusion and percolation problems (see [I0, II] and
the references cited therein), and here we obtain (1.3)) where g; is a convolution
kernel; i.e.,

(1.4)

ui(t) = /0 9i(t — 8) fi(s,u1(s), ua(s),...,un(s))ds, te€[0,T],1<i<n. (1.5)

In particular, Bushell and Okrasiniski [10] investigated a special case of the above
system given by

y(t) = / (t— ) f(y()ds, te[0.T] (16)

where v > 1.

Using an argument originated from Brezis and Browder [8], we shall establish
the existence of solutions as well as constant-sign solutions of the systems (1.1
and (1.2). Our results extend, improve and complement the existing theory in
the literature [Il, 12 17, I8, 20, 2I]. We have generalized the problems to (i)
systems, (ii) more general form of nonlinearities f;, 1 < i < n, and (iii) existence
of constant-sign solutions. Other related work on systems of integral equations can
be found in 2] 3[4} [5 [0 [7]. Note that the technique employed in Volterra integral
equations [Bl 6] [7] is entirely different from the present work. The paper is outlined
as follows. In Section 2, we present an existence result for a system of Fredholm
integral equations which will be used in Section 3 to develop existence criteria for
and . The existence of constant-sign solutions is tackled in Section 4.
Finally, some examples are included in Section 5 to illustrate the results obtained.

2. PRELIMINARY RESULT

We shall obtain an existence result for the following system of Fredholm integral
equations which will be used later in Section 3:

T
ui(t) = hi(t) + /0 gi(t, s) fi(s,ur(s),u2(s),...,un(s))ds, (2.1)

for t € [0,T], 1 < i < n. Let the Banach space B = (C[0,T])" be equipped with
the norm

Il = v, 2 P01 = g, P
where we let [u;]o := sup,¢jo py [ui(t)], 1 < i < n.
Theorem 2.1. For each 1 < i < n, let 1 < p; < 0o be an integer and q; be such
that ﬁ + qi = 1. Assume the following conditions hold for each 1 <1i < n:

h; € C[O,T], (22)
fi 10, T] x R® = R is an LY -Carathéodory function; (2.3)
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i.e.,
(i) the map u— fi(t,u) is continuous for almost all t € [0,T7,
(ii) the map t — f;(t,u) is measurable for all u € R™,
(iii) for any r > 0, there exists p,; € L%[0,T] such that |u| < r implies
|fi(t,u)| < pri(t) for almost all t € [0, T7;

gi(s) == gi(t,s) € LP'[0,T] for each t € [0,T) (2.4)
and
the map t — gt is continuous from [0,T] to LP*[0,T). (2.5)
In addition, suppose there is a constant M > 0, independent of X\, with ||u|| # M
for any solution u € (C[0,T])™ to

T
u;(t) = )\(hi(t) +/ gi(t,s)fi(s,u(s))ds), tel0,7],1<i<n (2.6)
0
for each A € (0,1). Then has at least one solution in (C[0,T])™.

Proof. Let the operator S be defined by
Su(t) = (Siu(t), Sou(t),. .., Spu(t)), te0,T] (2.7)

where ;
Sult) = ha(t) + /0 Gt ) fi(s,u(s))ds, te[0.T], 1<i<n.  (2.8)

Clearly, system is equivalent to u = Su, and is the same as u = ASu.

Note that S maps (C[0,T])™ into (C[0,T])"; i.e., S; : (C[0,T])" — C[0,T],
1 < ¢ < n. To see this, note that for any u € (C[0,T])™, there exits r > 0 such that
|lu|]| < r. Since f; is a L%-Carathéodory function, there exists u,; € L%[0,T] such
that |fi(s,u)] < pri(s) for almost all s € [0,T]. Hence, for any ¢1,t2 € [0,T], we
find for 1 < i < n,

|Siu(ts) — Siu(t2)] < [hi(t1) — hi(t2)]

T i ) 1/pi
[ et =gt as) "

as t1 — t2, where we have used and (2.4). This shows that S : (C[0,T])" —
(o, )"

Next, we shall prove that S : (C[0,T])" — (C[0,T])™ is continuous. Let u™ =
(Wl uft, ..., ul) — win (C[0,T])"™; ie., ul* — u; in C[0,T], 1 < i < n. We need
to show that Su™ — Su in (C[0,T])", or equivalently S;u™ — S;u in C[0,T], 1 <
i <n. There exists r > 0 such that ||u™]|, ||u|| < r. Since f; is a L%-Carathéodory
function, there exists p,; € L%[0,T] such that |fi(s,u™)|,|fi(s,w)| < pri(s) for
almost all s € [0,7]. Using a similar argument as in , we obtain for any
t1,t2 €10, T and 1 <i < n,

|Sium(t1) - Szum(tg)‘ — 0 and |S7,U(t1) - Szu(t2)| — 0 (210)

as t; — to. Furthermore, S;u™(t) — S;u(t) pointwise on [0,T], since, by the
Lebesgue dominated convergence theorem,

T
S (0) = Seult) < sup gl [ 1o, (5) = fils,u(s)
te[0,T) 0

— 0

(2.9)

Qi_)o

1/q;
Qids

(2.11)
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as m — oo. Combining (2.10) and (2.11)) and using the fact that [0,T] is compact,
gives for all ¢ € [0, T,

|Siu™ (t) — Spu(t)| < [Spu™(t) — Siu™ (t1)] + [Su™ (t) — Syu(ty)]

+ |S;u(ty) — S;u(t) — 0 (2.12)

as m — oo. Hence, we have proved that S : (C[0,T])™ — (C[0,T])™ is continuous.

Finally, we shall show that S : (C[0,T])™ — (C[0,T])™ is completely continuous.
Let © be a bounded set in (C[0,T])™ with ||ul| < r for all u € . We need to show
that S;2 is relatively compact for 1 < ¢ < n. Clearly, S;€2 is uniformly bounded,
since there exists p,;, € L%[0,T] such that |f;(s,u)| < pr,(s) for all w € Q and
a.e. s € [0,T], and hence

qiEK’iv u € Q.

|Siulo < |hilo+ sup llgfllp, - ller
te[0,T7]

Further, using a similar argument as in (2.9)), we see that S;Q is equicontinuous. It
follows from the Arzéla-Ascoli theorem [21, Theorem 1.2.4] that S;( is relatively
compact.

We now apply the Nonlinear Alternative [2I, Theorem 1.2.1] with N=SU-=
{u € (Cl0,T)™ : JJul| < M}, C = E = (C[0,T])™ and p* = 0 to obtain the
conclusion of the theorem. (]

3. EXISTENCE OF SOLUTIONS

In this section, we shall establish the existence of solutions of the systems (|1.1))
and (1.2), in (C[0,T])™ and (C[0,T))™ respectively. We shall first apply Theorem
to obtain an existence result for (L.1)).

Theorem 3.1. For each 1 < i < mn, let 1 < p; < oo be an integer and q; be such
that i + i = 1. Assume the following conditions hold for each 1 < i < n:

h; € C[0,T]; (3.1)
fi 1[0, T] x R™ — R is an LY -Carathéodory function;

gl(s) := gi(t,s) € LP*[0,t] for each t € [0,T],

t
sup / 19(s)
t€[0,71 J0

sup esssup,e(oq |95 (s)| < o0, pi =00
t€[0,T]

and for any t,t' € [0,T] with t* = min{t,t'}, we have

Pids < oo, 1<p; <0, (3.3)

-
t t’ i /
i(8)—g; (s)|Pids =0 ast—1t,1<p;, <oo
| i —af o) p o

gi(s) = gf (5) = 0 ast— 1, p; = oo,

€8s supse[o,t*]

In addition, suppose there is a constant M > 0, independent of A, with ||u|| # M
for any solution u € (C[0,T])™ to

wi(t) = A(hi(t) + /O gilt, 5) fi(s,u(s))ds), tel0,T], 1<i<n (3.5)

for each A € (0,1). Then has at least one solution in (C[0,T])™.
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Proof. For each 1 < i < n, define

. gi(t,s), 0<s<t<T
gi<t78):
0, 0<t<s<T.

Then (1.1]) is equivalent to
T
u;(t) = hi(t) —|—/ g; (t,s) fi(s,u(s))ds, t€]0,T],1<i<n. (3.6)
0
In view of (3.3) and (3.4), g; satisfies (2.4) and (2.5). Hence, by Theoremthe
system (3.6) (or equivalently (1.1))) has at least one solution in (C[0,T])". O

Remark 3.2. If (3.4) is changed to: for any ¢,¢' € [0,T] with ¢* = min{¢,¢'} and
t** = max{t,t'}, we have

/ 0:(t,5) — gi(t', )P ds + / ()P ds =0 ast—t, 1<p<oo
0 t*

g:i(t"",s)| =0

esSSUPse(o 4+ |9i(t, 8) — gi(t', s)| 4 esssupgeppe 4oe)

(3.7)
as t — t’, p; = oo; then automatically we have the inequalities in (3.3]).

Our subsequent results use an argument originated from Brezis and Browder [§].

Theorem 3.3. Let the following conditions be satisfied: for each 1 < i < n,

(3.1), (3.2)—(3.4) with p; = oo and q; = 1, there exist B; > 0 such that for any
u e (Cfo,T])",

T ¢
[ Uit [ gt s, uts)aslar < B (39
0 0
and there exist r > 0 and a; > 0 with rey; > H; = supyepo ry |hi(t)| such that for
any u € (C[0, T))",
wi(t) fi(t,u(t)) > rag|fi(t,u(t))|  for a. e. t € [0,T] such that ||u(t)]] >r, (3.9)
where we denote ||u(t)|| := maxi<;<n |ui(t)]. Then (L.1)) has at least one solution
in (C[0, T])™.
Proof. We shall employ Theorem so let u = (uy,ug,...,uy) € (C[0,T]))™ be
any solution of (3.5) where A € (0,1). For each z € [0,T], define
L={te[0,z]:|ul®)] <r}, J.={t€][0,2]:|ul)] >r}. (3.10)
Clearly, [0, 2] = I, U J, and hence

/022/12-1-/]2. (3.11)

Let 1 <4 < n. For a.e. t € I, by (3.2)) there exists u,; € L'[0,7] such that
| fi(t,u(t))] < prs(t). Thus, we obtain

/Iz it u(t)ldt < /Izur,xt)dtg / foa Ot = il (3.12)

On the other hand, if t € J,, then it is clear from (3.9)) that w;(¢)f;(¢,u(t)) > 0 for
a.e. t € [0,T]. It follows that

| ws o= [ sz ra; [ o) @
J, J. J=
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Let z € [0,T]. We now multiply (3.5) by f;(¢,u(t)), then integrate from 0 to z,
and use (3.8)) to obtain

Almmwmmﬁ
= [ mosaa e [ nea) [ oo neaoala 6
<t [ 15t u(o)ldt + B
0
Splitting the integrals in (3.14)) using , and applying , we obtain
/ ws(t) f(t, u(t))dt + rou / (e, u(t)]dt
1. J
i i(t, d i i(t, d i
SHAJH“MMt+HLJN“Mmt+B

<mimeJmemmsmﬂJme»afAmwm@mmm+31
< (Hi + )l + B,

where we have used (3.12)) in the last inequality. It follows that

H; i B;
/ £, u(t))|dt < (Hs + )llpriln + Bi _ (3.15)

To; — Hl

Now, it is clear from (3.5) that for ¢t € [0,7] and 1 < i < n,

IMMSE+AMN@MWMM%

:HH-A+A|MmM@mwm

< H; + ( sup esssupepo ¢ |9i(t, 5)|)(

te[0,T]
where we have applied (3.12) and in the last inequality. Thus, |u;|o < d;
for 1 <4i < n and |ul < maxj<;<n di = D. It follows from Theorem [3.1] (with
M = D +1) that (L)) has a solution u* € (C[0,T])". O

)Edz

Our next result replaces condition (3.8]) with condition (3.16]) which involves the
integral of f; in the right side.

Theorem 3.4. Let the following conditions be satisfied for each 1 <i < n: (3.1)),
(13.2)—(3.4) with p; = 0o and q; = 1, there exist constants a; > 0 and b; such that
for any z € [0, T,

z t z
| [t [ gt orsitsutsnas]ae < as [ 5 ueyiar v .0
0 0 0
and there existr > 0 and a; > 0 with ra; > H;+a,; such that for anyu € (C[0,T])",
wi () fi(t,u(t)) > rag|fi(t,u(t))|  for a.e. t € [0,T] such that ||u(t)| >r. (3.17)
Then has at least one solution in (C[0,T])™.
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Proof. The proof is the same as that of Theorem [3.3| until (3.13). Let z € [0,7]
and 1 <4 < n. Multiplying (3.5) by fi(¢t,u(t)) and then integrating from 0 to z,

we use to get
| st e
/ IBe () £ (£, u(t))|dt + )\/ Filt ult / gi(t, ) fi(s,u(s))ds|dt (3.18)
< (Hr-+a) [ 1 u)dr+ b
Splitting the integrals in and applying (3.13)), we obtain
(ra; — H; — a;) /J | fi(t,u(t))|dt

<+ a) [ a)lar+ [ @il + b
< (Hi +ai +7) ||l + 104

where we have used (3.12)) in the last inequality. It follows that

(Hi + ai + 1) |lprill + 106 _
’L

(¢, u(t))|dt < =c 3.19

/| Ittt < SR (319)

The rest of the proof proceeds as in the proof of Theorem O
The next result is for general i, ¢ (e, 1 < p; S oo and — i =1),1i

also replaces condition | or - Wlth condltlons and Note that
in Theorems (3 E and |3 - the condltlons . hold for p; = 00, whereas in

Theorem [3.5| - the conditions (| . hold for 1 <p; <o0.

Theorem 3.5. Let the following conditions be satisfied: for each 1 < i <n: (3.1))-
(3.4), (3.8)), there exist r > 0 and B; > 0 such that for any u € (C[0,T])",

ui(t) fi(t,u(t)) > Biluilo - [ fi(t, u(t))]

3.20
for a.e. t € [0,T] such that ||u(t)|| > r, (8:20)

where we denote |u;|o := max;epo, 71 |ui(t)|; and there exist n; >0, v; > q; —1 >0
and ¢; € LPi(]0,T],R) such that for any u € (C[0,T])",

[uilo = na|fi(t, u(®)|[ + ¢i(t)  for a.e. t €[0,T] such that ||u(t)] >r.  (3.21)
Then has at least one solution in (C[0,T])™.

Proof. As in the proof of Theorem [3.3] we consider the sets I, and J, where z €
[0,T7] (see (3.10). Let 1 <4 <mn. Ift € I,, then by (3.2) there exists u,; € L%[0,T]
such that |f;(¢,u(t))| < pri(t). Consequently, we have

T
it u®)ldr < [ a0t < [ sttt < T il (322
IZ Iz 0
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On the other hand, if ¢ € J,, then noting (3.20) we have w;(¢) f; (¢, u(t)) > 0 for a.e.
t € 10,77, and so

/ wi(t) fi(t u(t))dt = / g () £ (8, (1)) .

J. J.
Z&[”MWMWMWW (3.23)
z&mLIﬁwMﬂW”WVH%AAMQMUm@Mﬁ

where we have used (3.21) in the last inequality.
Let z € [0,T]. Multiplying (3.5) by fi(t,u(t)) and then integrating from 0 to z,

we use (3.8) to get (3.14]). Splitting the integrals in (3.14) and applying (3.23)), we
find

[ wse s g [ 1@ s | ool )

1.
< H, /I it u()|dt + H; /J it u(t)dt + B

or

@m/'m@quW“w
/ |9i ()] - 1 fi(t, u(t ))|dt+H/ | fi(t, u(t))|dt + B;

+ / (Jui ()] + H;)| fi(t, u(t))|dt o

< B; . |¢a(B)] - 1£:(t, u(t))|dt + H, . |fi(t, u(t))|dt + B;

+ (r+ H,)Tl/m

Mri”qz
—@/W@ |ﬁtm»w+H/Wﬂtw»w+H

where ([3:22) has been used in the last inequality and B! = B;+(r+H;) TP || iyl .-
Next, an application of Holder’s inequality gives
/01 e e
3.25)
T /Oit1) 1/vi+1 (
<[ [t ar]” / it uo) ]
0
Another application of Holder’s inequality yields
Yipi=vi—1 T ’1,1;1
[ sorsa <=2 [ a]
0
which upon substituting into (3.25)) leads to
YiPi—=Yi—1 it 1/(vi+1)
/J |6s (D)1 it ult))|dt < T PG |6 p[/ (il ()] . (3.26)
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Similarly, we have

iPi=Yi—l 1 1/(vi+1)
| st epiar < 7] [ g wnpea] T s
J= J=
Substituting (3.26]) and (3.27) into (3.24]), we obtain
_— IRURTVICE V.
o | Ve u(@) e < A [ 1 (o) ] B, (328)
where
Py — Y5 —1
A; = Twpf(win (/67:||¢ini T HiTl/pi)_
Since ﬁ < 1, from ({3.28)) there exists a constant ¢;* such that
[ 1< (3.29)
Jz

Now, it is clear from (3.5)) that for ¢t € [0,7] and 1 < i < n,

|Mm§m+/WM@MW$W@
0
—Hi+ mm&memw+memmemw

I,
< H; +( sup ||th Pi)
te€[0,T

‘Mhi qi

YiPi—=vi—1 ¢ 1/(vi+1)
+ T pilyitD) ( sup ng ]
te[0,T]

][ satenras

<d;

* (a constant),

where in the second last inequality a similar argument as in (3.26]) is used and
in the last inequality we have used (3.29)). Thus, |u;lo < df for 1 < i < n and
lu|| < maxi<i<n,d; = D*. It follows from Theorem (with M = D* 4 1) that
(1.1) has a solution u* € (C[0,T])™. O

The next result is also for general p;, ¢;, and here the condition (3.8) is replaced
by (3.16).

Theorem 3.6. Let the following conditions be satisfied for each 1 < i < n: (3.1)-
(3-4), (3.16]), (3.20) and (3.21). Then (1.1)) has at least one solution in (C[0,T])™.

Proof. The proof is similar to that of Theorem until (3.23). Let z € [0,7] and
1 <4 < n. Multiplying (3.5) by f;(¢,u(t)) and then integrating from 0 to z, we use
(3-16) to get (3.18).
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Splitting the integrals in (3.18)) and applying (3.23)), we find

B / it u(t))

i+l gt

< ﬂz’/J s (t)] - | fit, u(t))|dt + (H; + ai)/] | fi(t, u(t))|dt + [bi]

*/ (ls(8)] + H; + ai)| it u(t)) e (3.30)

<@/ (64(8)] - fs(t, u(t)) dt + (H; + a / (it u(t))ldt + b

(r+ H; + az)Tl/pl

—ﬂz/ ldi ()] - | fi (8, u(t))|dt + (H; + a; / |fi(t,u(t))|dt + B
. Substituting (3.26]) and ( into

where BY = |b;| + (r + H; + a;)T/Pi

- then leads to
gon [ Ihtt.u(o)

where

1/(vi+1)
] +B' (331)

< 4y / [t () s
J.

YiPi—vi—1 1p:
A =T #GH0 (B dillp, + (Hi + ai)T /pz]_
Slnce — <1, from we obtain

/ it u() e < (3.3
Jz
where ¢; is a constant. The rest of the proof proceeds as in that of Theorem (Il

We shall now tackle the system (1.2]). Our next theorem is a variation of an
existence principle of Lee and O’Regan [10].

Theorem 3 7. For each 1 <i<mn,letl <p; < oo be an integer and q; be such
that 1 —|— = = 1. Assume the following conditions hold for each 1 <i < mn: (3.1,

E3). G and

fi 110, T) x R™ = R is a locally LY -Carathéodory function; (3.33)

i.e., the conditions (i)-(iii) in (2.3) hold when f; is restricted to I x R™, where
I is any compact subinterval of [0,T). Also let {tx} be a positive and increasing

sequence such that limy_ .ty = T. For each k = 1,2,..., suppose there exists
uf = (uf,ub, ... uk) € (C[0,t])" that satisfies
t
uf (t) = hi(t) + / gi(t,s) fi(s,uf(s),ul(s),...,uk(s))ds, (3.34)
0
fort €10,tg], 1 <i<mn. Further, for 1 <i<mnandf=1,2,..., there are bounded

sets By C R such that k > £ implies u¥(t) € By for each t € [0, tg Then ) has
a solution u* € (C[0,T))"™ such that for 1<i<mn,ui(t) € By for each t € [0 tg]

Proof. First we shall show that for each 1 <i<mand £=1,2,...,

the sequence {ul};> is uniformly bounded and equicontinuous on [0,#]. (3.35)
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The uniform boundedness of {u¥},>, follows immediately from the hypotheses,
therefore we only need to prove that {uf},>, is equicontinuous. Let 1 < i < n.
Since for all k > ¢, u¥(t) € By for each t € [0, 1], there exists up, € L9[0,t,] such
that | f;(s,u*(s))| < up,(s) for almost every s € [0,¢,]. Fix t,t' € [0,t,] with ¢ < #'.

Then, noting (3.4)), from (3.34]) we find

Juf (t) — u ()]

< halt) — hat)] + / 19(s) — gt (3)] - (s, u(s)\ds

/ 97 (5)] - (s (s) s

o) / s gl )pid5:|1/pi {/Ot (ﬂBe(S))qidS}l/qi

i [/tt ' (+) pzds]lm [/tt (11.(5))™ ds] "o

as t — t'. Therefore, {u¥},>, is equicontinuous on [0, ¢,].

Let 1 < i < n. Now, and the Arzéla-Ascoli Theorem yield a subsequence
N; of N = {1,2,...} and a function z} € C[0,#] such that u}f — 2! uniformly
on [0,#1] as k — oo in Ny. Let Ny = N1\{1}. Then and the Arzéla-Ascoli
Theorem yield a subsequence Ny of N3 and a function z2 € C]0,t;] such that
uf — 22 uniformly on [0,%s] as k — oo in Na. Note that 22 = 2} on [0,#;] since
Ny C N;. Continuing this process, we obtain subsequences of integers Ny, Vs, ...
with

NiDNy;D---DNyD ..., WhereNgg{E,ﬁ—i—l,...},

and functions z¢ € C[0,,] such that u¥ — z¢ uniformly on [0,t,] as k — oo in Ny,
and z”l = 2{ on [0,t0], ell = 1,2,....
Let 1 <4 < n. Define a function v} : [0,7) — R by

up(t) =z (t), te[0,t. (3.36)

Clearly, v} € C[0,T) and v} ( ) € By for each t € [0,t,]. It remains to prove that
u* = (uj,ud,...,uk) solves Fix t € [0,T). Then choose and fix ¢ such that

n

t € [0,te]. Take k > £. Now, from we have

ul (t +/ gi(t,s) fi(s,ul(s),ul(s),...,uk(s))ds, te[0,t].  (3.37)
0

Since f; is a locally L%-Carathéodory function and uf(t) € B, for each t € [0, ],
there exists up, € L%[0,t,] such that |f;(s,u*(s))| < up,(s) for almost every s €
[0,t¢]. Hence, we have

|gi(t’S)fi(svulf(s)7u§(5)v' ) n( ))‘ < |gz( )‘/JBZ(S)’ a.e. s € [O’t]

and |gt|up, € L1[0,t]. Let k — oo in (3.37). Since uf — 2¢ uniformly on [0,,], an
application of Lebesgue Dominated Convergence Theorem gives

zf(t) = h;(t) +/() gi(t, s) fi(s, zf(s), zg(s), el zﬁ(s))ds, t € [0,1,]
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or equivalently (noting (3.36))

ui (t) = hi(t) + /Ot gi(t, 8) fi(s,ui(s),us(s),...,ur(s))ds, te€l0,tg. (3.38)
Finally, letting £ — oo in yields
w; (t) = hy(t) + /Ot gi(t, 8) fi(s,ui(s),us(s),...,ur(s))ds, te€][0,T).
Hence, u* = (uf, u,...,u},) is a solution of (L.2). O

Our subsequent results make use of Theorem and an argument originated
from Brezis and Browder [g].

Theorem 3.8. Let the following conditions be satisfied for each 1 < i <n: (3.1)),

13-3), (3.4) and (3.33) with p; = 0o and ¢; = 1. Moreover, suppose the following
conditions hold for each 1 <i <n and any w € (0,T): there exist B; > 0 such that

for any u € (C[0, w])™,

w t
/ [fi(t,u(t))/ gi(t, 5)fi(s, u(s))ds| dt < By (3.39)
0 0
and there exist v > 0 and a; > 0 with roy; > H;(w) = supyeo,,) [hi(t)| such that for
any u € (C[0,w])",
wi () fi(t,u(t)) > rag|fi(t,u(t))| for a.e. t € [0,w] such that ||u(t)| >r, (3.40)

where we denote ||u(t)| := maxi<;<n |u;(t)]. Then (1.2 has at least one solution
in (C[0,T))™.

Proof. We shall establish the existence of ‘local’ solutions before we can apply
Theorem [3.7] Indeed, we shall show that the system

u;(t) = hi(t) +/O 9i(t,s) fi(s,u(s))ds, te[0,w],1<i<n (3.41)

has a solution for any w € (0,7T"). Let w € (0,T) be fixed. From the hypotheses,
we see that 7 are satisfied with T replaced by w. We shall employ a
similar technique as in the proof of Theorem [3.3] with T replaced by w. Let
u = (ug,us,...,u,) € (C[0,w])™ be any solution of

t
ui(t) = A(hi(t) +/ gi(t,s)fi(s,u(s))ds>, teow, 1<i<n  (3.42)
0
where A € (0,1). We define for each z € [0, w],
L ={te|0,z]: Ju®)]| <r}, J.={tel0,z]:|u(@)|]>r}.
Following the proof of Theorem we obtain, corresponding to (3.15]),

/ | fi(t, u(t))|dt < [Hi(w) + 7]y iri()ds + Bi =ci(w), 1<i<n. (3.43)
7. ra; — H;(w)

Consequently, from (3.42)) it follows that for ¢ € [0,w] and 1 < i < n,

(0] < Hw) + | sup esssup,cipg st [ [ ns(s)ds + cxtw)]

te[0,w)] (3.44)

= d;(w).
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Thus, [uilo = sup,cjo,) [ui(t)] < di(w) for 1 < i < n and ||lul| = maxi<i<n |uilo <
maxj<;<n di(w) = D(w ) It follows from Theorem B.1] (with M = D(w) + 1) that
- ) has a solution u* € (C[0,w])"™. Hence, we have shown that (3.41) has a
solution for any w € (0,7).

Now, let {t;} be a pObltlve and increasing sequence such that limy_, .t =
For each k = 1,2,..., let u* = (uf,uk, ... uk) € (C[0,¢1])" be a solution of -

r N
If we restrict z € [0, t[] and k > £, then using the same arguments as before, we can

obtain ([3.43)) and (3.44)) with w = t; and u = u*. So for k > £ we have
@) < dilte), te€0,t], 1<i<n.

All the conditions of Theorem [3.7] are satisfied and hence it follows that (1.2 has
at least one solution in (C0,T))". O

Our next result replaces condition (3.39)) with condition (3.45) which involves
the integral of f; in the right side.

Theorem 3.9. Let the following conditions be satisfied for each 1 <i < n: (3.1),

, ) and ( with p; = oo and q; = 1. Moreover, suppose the following
condztzons hold for each 1<i<nand anyw € (0,T): there exist constants a; > 0

and b; such that for any z € [0, w],

z t z
| [tu) [ gt onitsutsnas]e < as [ syl vs 3.9
0 0 0
and there exist r > 0 and «; > 0 with ra; > H;(w) + a; such that for any u €
(C1o,w])",
wi () fi(t, u(t)) > rog|fi(t,u(t))| for a.e. t € [0,w] such that ||u(t)| >r. (3.46)
Then has at least one solution in (C[0,T))".

Proof. Asin the proof of Theorem we shall first show that the system has
a solution for any w € (0,7T). Let w € (0,T) be fixed and let u = (u1,us,...,u,) €
(C[0,w])"™ be any solution of (3.42). Using a similar argument as in the proof of
Theorem with T replaced by w, we obtain, corresponding to ,

[ ity < B2 A OB LB, )

for 1 < i < n, and subsequently ||u|]| < D*(w) (a constant). Then, it follows from
Theorem that (3.41) has a solution for any w € (0,7'). The rest of the proof
proceeds as in the proof of Theorem O

The next result is for general p;, g;, it also replaces condition (3.40) or (|3.46))
with conditions (3.48) and (3.49).

Theorem 3.10. Let the following conditions be satisfied for each 1 <1 < n: ,
, and - Moreover, suppose the following conditions hold for each
1 < i < n and any w € (0,T): -, there exist r > 0 and 3; > 0 such that for
any u € (C[0,w])",

wi () fi(t, u(t)) > Biluilo - | fi(t,u(t))|  for a.e. t € [0,w] such that ||u(t)|| > r,
(3.48)
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where we denote |u;|o := maxe(o,w] [ui(t) —; and there exist n; >0, v; > ¢, —1>0
and ¢; € LPi(]0,w],R) such that for any u € (C[0,w])",

luilo = mil fi (8, w()|* + ¢i(t)  for a.e. t € [0,w] such that ||u(t)|| >r.  (3.49)
Then has at least one solution in (C[0,T))™.
Proof. Once again we shall employ Theorem to show the existence of ‘local’

solutions; i.e., the system (3.41)) has a solution for any w € (0,T). For this, we use
a similar argument as in the proof of Theorem with T replaced by w, to get an

analog of (3.29)), viz.,
/ ol u() it < ¢ (w), 1<i<n (3.50)
J

which leads to ||ul]] < D*(w) (a constant). The rest of the proof follows as in the
proof of Theorem [3.8] O

The next result is also for general p;, ¢;, and here the condition (3.39) is replaced
by (3.45)).
Theorem 3.11. Let the following conditions be satisfied for each 1 < i < n: (3.1,

(13-3), (3.4) and (3.33). Moreover, suppose the following conditions hold for each
1<i<nand any w € (0,T): (3.45), (3.48) and (3.49). Then (L.2) has at least

one solution in (C[0,T))".

Proof. To prove that the system (3.41)) has a solution for any w € (0,T"), we use a
similar argument as in the proof of Theorem [3.6, with T replaced by w, to get an
analog of (3.32), viz.,

/ it u(®))
J=

and subsequently |lu|| < D*(w) (a constant). The rest of the proof proceeds as in
the proof of Theorem O

itldt < g(w), 1<i<n (3.51)

4. EXISTENCE OF CONSTANT-SIGN SOLUTIONS

In this section, we shall establish the existence of constant-sign solutions of the
systems and (L.2), in (C[0,T])" and (C[0,T))™ respectively. Once again we
shall employ an argument originated from Brezis and Browder [§].

Throughout, let 6; € {—1,1}, 1 <14 < n be fixed. For each 1 < j < n, we define

0,00), 6;=1
[0, OO)j _ [ OO) J
(—OO,O}7 9j =—-1.
Our first result is for the system ([L.1]) and is ‘parallel’ to Theorem

Theorem 4.1. Let the following conditions be satisfied for each 1 < i <n: (3.1)),
B2)-BA) with p; = 00 and g = 1, (B:5), (-9),

Hihi<t) >0, te [O,T]; (41)
9i(t,s) >0, 0<s<t<T; (4.2)
Gifi(t,u) >0, (t,u) S [O,T] X ﬁ[o, OO)j. (43)

Then (L.1)) has at least one constant-sign solution in (C[0,T])™.
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Proof. First, we shall show that the system

w;(t) = hi(t) +/0 gi(t, ) fi(s,u(s))ds, te[0,T],1<i<n (4.4)

has a solution in (C[0,T])™. Here,

fi*(tﬂula"'?un):fi(tvvlv~~'avn)v tE[OvT]v 1<i<n (45)
where
Uyj, Hjuj > 0
v =
O7 Gjuj SO

Clearly, f(t,u) : [0,T] x R™ — R and f; satisfies (3.2)).
We shall employ Theorem so let u = (uy,uz,...,u,) € (C[0,T])™ be any
solution of

ui(t) = )\(hi(t) +/O gi(t,s)f;(s,u(s))ds), tel0,T), 1<i<n (4.6)

where A € (0,1). Using (4.1)—(4.3)), we have for t € [0,7] and 1 < i < n,

¢
O;u;(t) = )\(Qihi(t) —|—/ gi(t,s)Gifi*(&u(s))ds) >0
0
Hence, u is a constant-sign solution of (4.6)), and it follows that
frtu() = filt,u(t)), t€]0,T],1<i<n. (4.7

For each z € [0, 7], define I, and J, as in (3.10). Noting (4.7), we see that is
the same as . Therefore, using a similar technique as in the proof of Theorem

we obtain (3.12)-(3.15) and subsequently |u;|o < d; for 1 < i < n. Thus,
|u] < maxi<i<nd; = D. It now follows from Theorem [.1] (with M = D + 1) that
has a solution u* € (C[0,T])™.

Noting 7, we have for t € [0,T] and 1 < i <n,

t
O;u;(t) = 0;h;(t) +/ gi(t, $)0: f (s,u”(s))ds > 0.
0
So u* is of constant sign. From (4.5)), it is then clear that
fr,u* () = filt,u™(t), te€[0,T],1<i<n.
Hence, the system (4.4]) is actually (1.1). This completes the proof. O

Based on the proof of Theorem [£.1] we can develop parallel results to Theorems

[3.4H3.6] as follows.
Theorem 4.2. Let the following conditions be satisﬁed for each 1 <i< n ,

7 with p; = 00 and ¢; =1, , and ( . Then has

at least one constant-sign solution in (C[O,T])

Theorem 4.3. Let the following conditions be satisﬁed foreach 1 <i<mn: .7

., ., - and (4.1 . Then (1.1) has at least one constant-sign

solution in (C[O,T])
Theorem 4.4. Let the followmg condztwns be satzsﬁed for each 1 <i<m: .f

., |3 16|) 1|3 20| |3 21|) and Then ) has at least one constant-

sign solution in (C[0,T])"™
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We shall now establish the existence of constant-sign solutions of the system
(.2). The next result is ‘parallel’ to Theorem [3.8]

Theorem 4.5. Let the following conditions be satisfied for each 1 <i <n: (3.1)),

(13.3), (3.4) and (3.33)) with p; = 00 and q¢; = 1, and (4.1)-(4.3). Moreover, suppose
the following conditions hold for each 1 < i < n and any w € (0,T7): (3.39) and
(3.40). Then (1.2) has at least one constant-sign solution in (C[0,T))".

Proof. To apply Theorem we should show the existence of ‘local’ solutions by
considering the following analog to (3.41]),

wit) = ha(t) +/O Gilt,$)fr (s,ul(s))ds, tel0w], 1<i<n  (48)

where w € (0,T) and f is given in (4.5). The rest of the proof models that of
Theorems [£.] and O

Based on the proof of Theorem [4.5] parallel results to Theorems [3.9H3.11] are
established as follows.

Theorem 4.6. Let the following conditions be satisfied for each 1 < i <n: (3.1)),

(13-3), (3.4) and (3.33)) with p; = 0o and q; = 1, and (4.1)—(4.3)). Moreover, suppose
the following conditions hold for each 1 < i < n and any w € (0,T): (3.45) and
(3.46). Then (1.2) has at least one constant-sign solution in (C[0,T))™.

Theorem 4.7. Let the following conditions be satisfied for each 1 < i <n: (3.1)),

(13.3), (3.4), (3.33) and (4.1)—(4.3). Moreover, suppose the following conditions hold
for each 1 <i<n and any w € (0,T): (3.39)), (3.48) and (3.49). Then (1.2) has

at least one constant-sign solution in (C[0,T))™.

Theorem 4.8. Let the following conditions be satisfied for each 1 <i <n: (3.1)),
(13.3), (3.4), (3.33) and (4.1))—(4.3). Moreover, suppose the following conditions hold

for each 1 < i <mn and any w € (0,T): (3.45)), (3.48) and (3.49). Then (1.2)) has
at least one constant-sign solution in (C[0,T))™.
5. EXAMPLES
We shall now illustrate the results obtained through some examples.

Example 5.1. Consider system (1.1)) where for 1 <i < n,

filtyur (t),ua(t), ..., un(t))

_ pi(t,ur (), us(t), ..., un(t)), wi(t),us(t),...,u,(t) >0 (5.1)

0, otherwise.

Here, § > 0 is a given constant, and p; is such that

(a) the map u — f;(¢,u) is continuous for almost all ¢ € [0, T];
(b) the map t — f;(t,u) is measurable for all u € R™;
(c) pi(t,u(t)) € L0, T] and u;(t)p;(t,u(t)) > 0 for any u € K where

K = {ue (C[0,T))" : w1 (), ua(t), ..., un(t) > 5, t € 0,T]}.
Moreover, suppose h; € C[0,T], 1 <14 < n fulfills

H; = sup |hi(t)] <. (5.2)
te[0,7]
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Clearly, conditions and with ¢; = 1 are fulfilled. We shall check that
condition is satisfied. Pick r > 6 and oy = ¢, 1 < i < n. Then, from (5.2),
we have ra; = 6 > H;,.

Let u € K. Then, from (5.1), we have f;(t,u) = p;(t,u). Consider |lu(t)|| > r
where t € [0,T]. If [|u(t)|| = |ui(t)], then

ui(t) fi(t, u(t)) = [ui(t)] - [ fit, u(t))

= llu(@®I] - [fat, u(®))]
> | fit, u(t))]

5.3
> Ot u) o
= rai|fi(t, u(t))]-
If [|u(t)|| = Jug(t)| for some k # i, then
wi(t) fi(t, u(t)) = lus(t)] - | fi(t, u(t))| =7 |Ui£t)| it u(?))]
>0 ) o4
= rai| fi(t, u(t))]-

Therefore, from (5.3) and (5.4) we see that condition (3.9)) holds for u € K.
For u € (C[0,T])"\K, we have f;(t,u) =0 and (3.9) is trivially true. Hence, we
have shown that condition (3.9) is satisfied.

The next example considers an g;(t, s) of which the particular case when n =1
(see (|1.6)) has been investigated by Bushell and Okrasiiski [10].

Example 5.2. Consider system (1.1)) with (5.1}, (5.2)), and for 1 <14 < n,
gi(t,s) = (t —s)7i! (5.5)

where v; > 1.
Clearly, g; satisfies (3.3)) and (3.4)) with p; = co. Next, for v € K (K is given in
Example we have

/OT [Fu(tu() /Ot 0(t,) (s, u(s))ds | di
T t
- /0 {pi(t,u(t)) /0 (t—s)”*lpi(s,u(s))ds}dt (5.6)
T t
§T7i_1/0 [pi(t,u(t))/o pi(s,u(s))ds}dtSBi

since p;(t,u(t)) € L'0,T] for any u € K. This shows that condition holds
for v € K. For u € (C[0,T])"\K, we have f;(t,u) = 0 and is trivially true.
Therefore, condition (3.8)) is satisfied. It now follows from Theorem that the
system with and has at least one solution in (C[0,T])™.

The next example considers an g;(t, s) of which the particular case when n =1
comes from the Emden differential equation ([1.4)).

Example 5.3. Consider system (1.1)) with (5.1}, (5.2)), and for 1 <14 < n,
gi(t,s) = (t — s)s™ (5.7)

where r; > 0.
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Clearly, g; satisfies (3.3)) and (3.4)) with p; = co. Next, for v € K (K is given in
Example , corresponding to ([5.6) we have

/ filt,ut / gi(t, ) i, u(s))ds)dt
:/ it () / (t — )™ pa(s, u(s))ds]dt (5.8)
0 0

T ¢
< it / [ps(t, u(t) / pi(s, uls))dsldt < Bi.
0 0
Hence, by Theorem [3.3] the system (L.I)) with (5.1)), (5.2) and (5.7) has at least one

solution in (C[0,T])"

Example 5.4. Let 6; =1, 1 <i < n. Consider system (1.1]) with . .7 and
for 1 <i<n,

hi(t) >0, tel0,T]. (5.9)
Clearly, conditions (4.1)) and (4.3) are fulfilled. Moreover, both g;(¢, s) in (5.5)) and
. satisfy condition (4.2)). From Examples E—- we see that all the conditions

of Theorem [4.1| are met. Hence we conclude that system 1 ) with (5.1), (5.2).
(5.5) and (5.9 i and system (L.1)) with (5.1)), (5.2), (5.7) and ( D each has at least

one positive solution in (C]0, T]

We remark that Examples can easily be extended to the system ((1.2)).

Acknowledgements. The authors would like to thank the anonymous referee for
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