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EXISTENCE OF SOLUTIONS OF SYSTEMS OF VOLTERRA
INTEGRAL EQUATIONS VIA BREZIS-BROWDER ARGUMENTS

RAVI P. AGARWAL, DONAL O’REGAN, PATRICIA J. Y. WONG

Abstract. We consider two systems of Volterra integral equations

ui(t) = hi(t) +

Z t

0
gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, 1 ≤ i ≤ n

where t is in the closed interval [0, T ], or in the half-open interval [0, T ). By
an argument originated from Brezis and Browder [8], criteria are offered for
the existence of solutions of the systems of Volterra integral equations. We
further establish the existence of constant-sign solutions, which include positive
solutions (the usual consideration) as a special case. Some examples are also
presented to illustrate the results obtained.

1. Introduction

In this article, we shall consider the system of Volterra integral equations

ui(t) = hi(t) +
∫ t

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, (1.1)

for t ∈ [0, T ], 1 ≤ i ≤ n, where 0 < T < ∞; and the following system on a half-open
interval

ui(t) = hi(t) +
∫ t

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, (1.2)

for t ∈ [0, T ), 1 ≤ i ≤ n, where 0 < T ≤ ∞. Throughout, let u = (u1, u2, . . . , un).
We are interested in establishing the existence of solutions u of the systems (1.1)
and (1.2), in (C[0, T ])n = C[0, T ]×C[0, T ]×· · ·×C[0, T ] (n times), and (C[0, T ))n,
respectively. In addition, we shall tackle the existence of constant-sign solutions
of (1.1) and (1.2). A solution u of (1.1) (or (1.2)) is said to be of constant sign
if for each 1 ≤ i ≤ n, we have θiui(t) ≥ 0 for all t ∈ [0, T ] (or t ∈ [0, T )), where
θi ∈ {−1, 1} is fixed. Note that when θi = 1 for all 1 ≤ i ≤ n, a constant-
sign solution reduces to a positive solution, which is the usual consideration in the
literature.

System (1.1) when hi = 0, 1 ≤ i ≤ n reduces to

ui(t) =
∫ t

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (1.3)
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This equation when n = 1 has received a lot of attention in the literature [9, 10, 11,
13, 14, 15, 19], since it arises in real-world problems. For instance, astrophysical
problems (e.g., the study of the density of stars) give rise to the Emden differential
equation

y′′ − tryq = 0, t ∈ [0, T ]

y(0) = y′(0) = 0, r ≥ 0, 0 < q < 1
(1.4)

which reduces to (1.3) with n = 1 when g1(t, s) = (t−s)sr and f1(t, y) = yq. Other
examples occur in nonlinear diffusion and percolation problems (see [10, 11] and
the references cited therein), and here we obtain (1.3) where gi is a convolution
kernel; i.e.,

ui(t) =
∫ t

0

gi(t− s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (1.5)

In particular, Bushell and Okrasiński [10] investigated a special case of the above
system given by

y(t) =
∫ t

0

(t− s)γ−1f(y(s))ds, t ∈ [0, T ] (1.6)

where γ > 1.
Using an argument originated from Brezis and Browder [8], we shall establish

the existence of solutions as well as constant-sign solutions of the systems (1.1)
and (1.2). Our results extend, improve and complement the existing theory in
the literature [1, 12, 17, 18, 20, 21]. We have generalized the problems to (i)
systems, (ii) more general form of nonlinearities fi, 1 ≤ i ≤ n, and (iii) existence
of constant-sign solutions. Other related work on systems of integral equations can
be found in [2, 3, 4, 5, 6, 7]. Note that the technique employed in Volterra integral
equations [5, 6, 7] is entirely different from the present work. The paper is outlined
as follows. In Section 2, we present an existence result for a system of Fredholm
integral equations which will be used in Section 3 to develop existence criteria for
(1.1) and (1.2). The existence of constant-sign solutions is tackled in Section 4.
Finally, some examples are included in Section 5 to illustrate the results obtained.

2. Preliminary result

We shall obtain an existence result for the following system of Fredholm integral
equations which will be used later in Section 3:

ui(t) = hi(t) +
∫ T

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, (2.1)

for t ∈ [0, T ], 1 ≤ i ≤ n. Let the Banach space B = (C[0, T ])n be equipped with
the norm

‖u‖ = max
1≤i≤n

sup
t∈[0,T ]

|ui(t)| = max
1≤i≤n

|ui|0

where we let |ui|0 := supt∈[0,T ] |ui(t)|, 1 ≤ i ≤ n.

Theorem 2.1. For each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such
that 1

pi
+ 1

qi
= 1. Assume the following conditions hold for each 1 ≤ i ≤ n:

hi ∈ C[0, T ]; (2.2)

fi : [0, T ]× Rn → R is an Lqi-Carathéodory function; (2.3)
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i.e.,
(i) the map u 7→ fi(t, u) is continuous for almost all t ∈ [0, T ],
(ii) the map t 7→ fi(t, u) is measurable for all u ∈ Rn,
(iii) for any r > 0, there exists µr,i ∈ Lqi [0, T ] such that |u| ≤ r implies

|fi(t, u)| ≤ µr,i(t) for almost all t ∈ [0, T ];

gt
i(s) := gi(t, s) ∈ Lpi [0, T ] for each t ∈ [0, T ] (2.4)

and
the map t 7→ gt

i is continuous from [0, T ] to Lpi [0, T ]. (2.5)
In addition, suppose there is a constant M > 0, independent of λ, with ‖u‖ 6= M
for any solution u ∈ (C[0, T ])n to

ui(t) = λ
(
hi(t) +

∫ T

0

gi(t, s)fi(s, u(s))ds
)
, t ∈ [0, T ], 1 ≤ i ≤ n (2.6)

for each λ ∈ (0, 1). Then (2.1) has at least one solution in (C[0, T ])n.

Proof. Let the operator S be defined by

Su(t) =
(
S1u(t), S2u(t), . . . , Snu(t)

)
, t ∈ [0, T ] (2.7)

where

Siu(t) = hi(t) +
∫ T

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (2.8)

Clearly, system (2.1) is equivalent to u = Su, and (2.6) is the same as u = λSu.
Note that S maps (C[0, T ])n into (C[0, T ])n; i.e., Si : (C[0, T ])n → C[0, T ],

1 ≤ i ≤ n. To see this, note that for any u ∈ (C[0, T ])n, there exits r > 0 such that
‖u‖ < r. Since fi is a Lqi-Carathéodory function, there exists µr,i ∈ Lqi [0, T ] such
that |fi(s, u)| ≤ µr,i(s) for almost all s ∈ [0, T ]. Hence, for any t1, t2 ∈ [0, T ], we
find for 1 ≤ i ≤ n,

|Siu(t1)− Siu(t2)| ≤ |hi(t1)− hi(t2)|

+
[ ∫ T

0

|gt1
i (s)− gt2

i (s)|pi ds
]1/pi

‖µr,i‖qi
→ 0

(2.9)

as t1 → t2, where we have used (2.2) and (2.4). This shows that S : (C[0, T ])n →
(C[0, T ])n.

Next, we shall prove that S : (C[0, T ])n → (C[0, T ])n is continuous. Let um =
(um

1 , um
2 , . . . , um

n ) → u in (C[0, T ])n; i.e., um
i → ui in C[0, T ], 1 ≤ i ≤ n. We need

to show that Sum → Su in (C[0, T ])n, or equivalently Siu
m → Siu in C[0, T ], 1 ≤

i ≤ n. There exists r > 0 such that ‖um‖, ‖u‖ < r. Since fi is a Lqi-Carathéodory
function, there exists µr,i ∈ Lqi [0, T ] such that |fi(s, um)|, |fi(s, u)| ≤ µr,i(s) for
almost all s ∈ [0, T ]. Using a similar argument as in (2.9), we obtain for any
t1, t2 ∈ [0, T ] and 1 ≤ i ≤ n,

|Siu
m(t1)− Siu

m(t2)| → 0 and |Siu(t1)− Siu(t2)| → 0 (2.10)

as t1 → t2. Furthermore, Siu
m(t) → Siu(t) pointwise on [0, T ], since, by the

Lebesgue dominated convergence theorem,

|Siu
m(t)− Siu(t)| ≤ sup

t∈[0,T ]

‖gt
i‖pi

[ ∫ T

0

|fi(s, um(s))− fi(s, u(s))|qids
]1/qi

→ 0
(2.11)
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as m →∞. Combining (2.10) and (2.11) and using the fact that [0, T ] is compact,
gives for all t ∈ [0, T ],

|Siu
m(t)− Siu(t)| ≤ |Siu

m(t)− Siu
m(t1)|+ |Siu

m(t1)− Siu(t1)|
+ |Siu(t1)− Siu(t)| → 0

(2.12)

as m →∞. Hence, we have proved that S : (C[0, T ])n → (C[0, T ])n is continuous.
Finally, we shall show that S : (C[0, T ])n → (C[0, T ])n is completely continuous.

Let Ω be a bounded set in (C[0, T ])n with ‖u‖ ≤ r for all u ∈ Ω. We need to show
that SiΩ is relatively compact for 1 ≤ i ≤ n. Clearly, SiΩ is uniformly bounded,
since there exists µr,i ∈ Lqi [0, T ] such that |fi(s, u)| ≤ µr,i(s) for all u ∈ Ω and
a.e. s ∈ [0, T ], and hence

|Siu|0 ≤ |hi|0 + sup
t∈[0,T ]

‖gt
i‖pi · ‖µr,i‖qi ≡ Ki, u ∈ Ω.

Further, using a similar argument as in (2.9), we see that SiΩ is equicontinuous. It
follows from the Arzéla-Ascoli theorem [21, Theorem 1.2.4] that SiΩ is relatively
compact.

We now apply the Nonlinear Alternative [21, Theorem 1.2.1] with Ñ = S, U =
{u ∈ (C[0, T ])n : ‖u‖ < M}, C = E = (C[0, T ])n and p∗ = 0 to obtain the
conclusion of the theorem. �

3. Existence of solutions

In this section, we shall establish the existence of solutions of the systems (1.1)
and (1.2), in (C[0, T ])n and (C[0, T ))n respectively. We shall first apply Theorem
2.1 to obtain an existence result for (1.1).

Theorem 3.1. For each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such
that 1

pi
+ 1

qi
= 1. Assume the following conditions hold for each 1 ≤ i ≤ n:

hi ∈ C[0, T ]; (3.1)

fi : [0, T ]× Rn → R is an Lqi-Carathéodory function; (3.2)

gt
i(s) := gi(t, s) ∈ Lpi [0, t] for each t ∈ [0, T ],

sup
t∈[0,T ]

∫ t

0

|gt
i(s)|pi ds < ∞, 1 ≤ pi < ∞,

sup
t∈[0,T ]

ess sups∈[0,t] |gt
i(s)| < ∞, pi = ∞

(3.3)

and for any t, t′ ∈ [0, T ] with t∗ = min{t, t′}, we have∫ t∗

0

|gt
i(s)− gt′

i (s)|pi ds → 0 as t → t′, 1 ≤ pi < ∞

ess sups∈[0,t∗] |gt
i(s)− gt′

i (s)| → 0 as t → t′, pi = ∞.

(3.4)

In addition, suppose there is a constant M > 0, independent of λ, with ‖u‖ 6= M
for any solution u ∈ (C[0, T ])n to

ui(t) = λ
(
hi(t) +

∫ t

0

gi(t, s)fi(s, u(s))ds
)
, t ∈ [0, T ], 1 ≤ i ≤ n (3.5)

for each λ ∈ (0, 1). Then (1.1) has at least one solution in (C[0, T ])n.
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Proof. For each 1 ≤ i ≤ n, define

g∗i (t, s) =

{
gi(t, s), 0 ≤ s ≤ t ≤ T

0, 0 ≤ t ≤ s ≤ T.

Then (1.1) is equivalent to

ui(t) = hi(t) +
∫ T

0

g∗i (t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (3.6)

In view of (3.3) and (3.4), g∗i satisfies (2.4) and (2.5). Hence, by Theorem 2.1 the
system (3.6) (or equivalently (1.1)) has at least one solution in (C[0, T ])n. �

Remark 3.2. If (3.4) is changed to: for any t, t′ ∈ [0, T ] with t∗ = min{t, t′} and
t∗∗ = max{t, t′}, we have∫ t∗

0

|gi(t, s)− gi(t′, s)|pi ds +
∫ t∗∗

t∗
|gi(t∗∗, s)|pi ds → 0 as t → t′, 1 ≤ pi < ∞,

ess sups∈[0,t∗] |gi(t, s)− gi(t′, s)|+ ess sups∈[t∗,t∗∗] |gi(t∗∗, s)| → 0
(3.7)

as t → t′, pi = ∞; then automatically we have the inequalities in (3.3).

Our subsequent results use an argument originated from Brezis and Browder [8].

Theorem 3.3. Let the following conditions be satisfied: for each 1 ≤ i ≤ n,
(3.1), (3.2)–(3.4) with pi = ∞ and qi = 1, there exist Bi > 0 such that for any
u ∈ (C[0, T ])n, ∫ T

0

[fi(t, u(t))
∫ t

0

gi(t, s)fi(s, u(s))ds]dt ≤ Bi; (3.8)

and there exist r > 0 and αi > 0 with rαi > Hi ≡ supt∈[0,T ] |hi(t)| such that for
any u ∈ (C[0, T ])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for a. e. t ∈ [0, T ] such that ‖u(t)‖ > r, (3.9)

where we denote ‖u(t)‖ := max1≤i≤n |ui(t)|. Then (1.1) has at least one solution
in (C[0, T ])n.

Proof. We shall employ Theorem 3.1, so let u = (u1, u2, . . . , un) ∈ (C[0, T ])n be
any solution of (3.5) where λ ∈ (0, 1). For each z ∈ [0, T ], define

Iz = {t ∈ [0, z] : ‖u(t)‖ ≤ r}, Jz = {t ∈ [0, z] : ‖u(t)‖ > r}. (3.10)

Clearly, [0, z] = Iz ∪ Jz and hence∫ z

0

=
∫

Iz

+
∫

Jz

. (3.11)

Let 1 ≤ i ≤ n. For a.e. t ∈ Iz, by (3.2) there exists µr,i ∈ L1[0, T ] such that
|fi(t, u(t))| ≤ µr,i(t). Thus, we obtain∫

Iz

|fi(t, u(t))|dt ≤
∫

Iz

µr,i(t)dt ≤
∫ T

0

µr,i(t)dt = ‖µr,i‖1. (3.12)

On the other hand, if t ∈ Jz, then it is clear from (3.9) that ui(t)fi(t, u(t)) ≥ 0 for
a.e. t ∈ [0, T ]. It follows that∫

Jz

ui(t)fi(t, u(t))dt =
∫

Jz

|ui(t)fi(t, u(t))|dt ≥ rαi

∫
Jz

|fi(t, u(t))|dt. (3.13)
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Let z ∈ [0, T ]. We now multiply (3.5) by fi(t, u(t)), then integrate from 0 to z,
and use (3.8) to obtain∫ z

0

ui(t)fi(t, u(t))dt

= λ

∫ z

0

hi(t)fi(t, u(t))dt + λ

∫ z

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt

≤ Hi

∫ z

0

|fi(t, u(t))|dt + Bi.

(3.14)

Splitting the integrals in (3.14) using (3.11), and applying (3.13), we obtain∫
Iz

ui(t)fi(t, u(t))dt + rαi

∫
Jz

|fi(t, u(t))|dt

≤ Hi

∫
Iz

|fi(t, u(t))|dt + Hi

∫
Jz

|fi(t, u(t))|dt + Bi

or

(rαi −Hi)
∫

Jz

|fi(t, u(t))|dt ≤ Hi

∫
Iz

|fi(t, u(t))|dt +
∫

Iz

|ui(t)fi(t, u(t))|dt + Bi

≤ (Hi + r)‖µr,i‖1 + Bi

where we have used (3.12) in the last inequality. It follows that∫
Jz

|fi(t, u(t))|dt ≤ (Hi + r)‖µr,i‖1 + Bi

rαi −Hi
≡ ci. (3.15)

Now, it is clear from (3.5) that for t ∈ [0, T ] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi +
∫ t

0

|gi(t, s)fi(s, u(s))|ds

= Hi +
( ∫

It

+
∫

Jt

)
|gi(t, s)fi(s, u(s))|ds

≤ Hi +
(

sup
t∈[0,T ]

ess sups∈[0,t] |gi(t, s)|
)
(‖µr,i‖1 + ci) ≡ di

where we have applied (3.12) and (3.15) in the last inequality. Thus, |ui|0 ≤ di

for 1 ≤ i ≤ n and ‖u‖ ≤ max1≤i≤n di ≡ D. It follows from Theorem 3.1 (with
M = D + 1) that (1.1) has a solution u∗ ∈ (C[0, T ])n. �

Our next result replaces condition (3.8) with condition (3.16) which involves the
integral of fi in the right side.

Theorem 3.4. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.2)–(3.4) with pi = ∞ and qi = 1, there exist constants ai ≥ 0 and bi such that
for any z ∈ [0, T ],∫ z

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt ≤ ai

∫ z

0

|fi(t, u(t))|dt + bi; (3.16)

and there exist r > 0 and αi > 0 with rαi > Hi+ai such that for any u ∈ (C[0, T ])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for a.e. t ∈ [0, T ] such that ‖u(t)‖ > r. (3.17)

Then (1.1) has at least one solution in (C[0, T ])n.
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Proof. The proof is the same as that of Theorem 3.3 until (3.13). Let z ∈ [0, T ]
and 1 ≤ i ≤ n. Multiplying (3.5) by fi(t, u(t)) and then integrating from 0 to z,
we use (3.16) to get∫ z

0

ui(t)fi(t, u(t))dt

≤
∫ z

0

|hi(t)fi(t, u(t))|dt + λ

∫ z

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt

≤ (Hi + ai)
∫ z

0

|fi(t, u(t))|dt + |bi|.

(3.18)

Splitting the integrals in (3.18) and applying (3.13), we obtain

(rαi −Hi − ai)
∫

Jz

|fi(t, u(t))|dt

≤ (Hi + ai)
∫

Iz

|fi(t, u(t))|dt +
∫

Iz

|ui(t)fi(t, u(t))|dt + |bi|

≤ (Hi + ai + r)‖µr,i‖1 + |bi|

where we have used (3.12) in the last inequality. It follows that∫
Jz

|fi(t, u(t))|dt ≤ (Hi + ai + r)‖µr,i‖1 + |bi|
rαi −Hi − ai

≡ c∗i . (3.19)

The rest of the proof proceeds as in the proof of Theorem 3.3. �

The next result is for general pi, qi (i.e., 1 ≤ pi ≤ ∞ and 1
pi

+ 1
qi

= 1), it
also replaces condition (3.9) or (3.17) with conditions (3.20) and (3.21). Note that
in Theorems 3.3 and 3.4 the conditions (3.2)–(3.4) hold for pi = ∞, whereas in
Theorem 3.5 the conditions (3.2)–(3.4) hold for 1 ≤ pi ≤ ∞.

Theorem 3.5. Let the following conditions be satisfied: for each 1 ≤ i ≤ n: (3.1)–
(3.4), (3.8), there exist r > 0 and βi > 0 such that for any u ∈ (C[0, T ])n,

ui(t)fi(t, u(t)) ≥ βi|ui|0 · |fi(t, u(t))|
for a.e. t ∈ [0, T ] such that ‖u(t)‖ > r,

(3.20)

where we denote |ui|0 := maxt∈[0,T ] |ui(t)|; and there exist ηi > 0, γi ≥ qi − 1 > 0
and φi ∈ Lpi([0, T ], R) such that for any u ∈ (C[0, T ])n,

|ui|0 ≥ ηi|fi(t, u(t)|γi + φi(t) for a.e. t ∈ [0, T ] such that ‖u(t)‖ > r. (3.21)

Then (1.1) has at least one solution in (C[0, T ])n.

Proof. As in the proof of Theorem 3.3, we consider the sets Iz and Jz where z ∈
[0, T ] (see (3.10)). Let 1 ≤ i ≤ n. If t ∈ Iz, then by (3.2) there exists µr,i ∈ Lqi [0, T ]
such that |fi(t, u(t))| ≤ µr,i(t). Consequently, we have∫

Iz

|fi(t, u(t))|dt ≤
∫

Iz

µr,i(t)dt ≤
∫ T

0

µr,i(t)dt ≤ T 1/pi‖µr,i‖qi . (3.22)
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On the other hand, if t ∈ Jz, then noting (3.20) we have ui(t)fi(t, u(t)) ≥ 0 for a.e.
t ∈ [0, T ], and so∫

Jz

ui(t)fi(t, u(t))dt =
∫

Jz

|ui(t)fi(t, u(t))|dt

≥ βi

∫
Jz

|ui|0 · |fi(t, u(t))|dt

≥ βiηi

∫
Jz

|fi(t, u(t))|γi+1dt + βi

∫
Jz

φi(t)|fi(t, u(t))|dt

(3.23)

where we have used (3.21) in the last inequality.
Let z ∈ [0, T ]. Multiplying (3.5) by fi(t, u(t)) and then integrating from 0 to z,

we use (3.8) to get (3.14). Splitting the integrals in (3.14) and applying (3.23), we
find ∫

Iz

ui(t)fi(t, u(t))dt + βiηi

∫
Jz

|fi(t, u(t))|γi+1dt + βi

∫
Jz

φi(t)|fi(t, u(t))|dt

≤ Hi

∫
Iz

|fi(t, u(t))|dt + Hi

∫
Jz

|fi(t, u(t))|dt + Bi

or

βiηi

∫
Jz

|fi(t, u(t))|γi+1dt

≤ βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + Hi

∫
Jz

|fi(t, u(t))|dt + Bi

+
∫

Iz

(|ui(t)|+ Hi)|fi(t, u(t))|dt

≤ βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + Hi

∫
Jz

|fi(t, u(t))|dt + Bi

+ (r + Hi)T 1/pi‖µr,i‖qi

= βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + Hi

∫
Jz

|fi(t, u(t))|dt + B′i

(3.24)

where (3.22) has been used in the last inequality and B′i ≡ Bi+(r+Hi)T 1/pi‖µr,i‖qi .
Next, an application of Hölder’s inequality gives∫

Jz

|φi(t)| · |fi(t, u(t))|dt

≤
[ ∫ T

0

|φi(t)|(γi+1)/γidt
]γi/(γi+1)

·
[ ∫

Jz

|fi(t, u(t))|γi+1dt
]1/γi+1

.

(3.25)

Another application of Hölder’s inequality yields∫ T

0

|φi(t)|
γi+1

γi dt ≤ T
γipi−γi−1

piγi

[ ∫ T

0

|φi(t)|pidt
] γi+1

γipi
,

which upon substituting into (3.25) leads to∫
Jz

|φi(t)|·|fi(t, u(t))|dt ≤ T
γipi−γi−1

pi(γi+1) ‖φi‖pi

[ ∫
Jz

|fi(t, u(t))|γi+1dt
]1/(γi+1)

. (3.26)
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Similarly, we have∫
Jz

|fi(t, u(t))|dt ≤ T
γipi−γi−1

pi(γi+1) + 1
pi

[ ∫
Jz

|fi(t, u(t))|γi+1dt
]1/(γi+1)

. (3.27)

Substituting (3.26) and (3.27) into (3.24), we obtain

βiηi

∫
Jz

|fi(t, u(t))|γi+1dt ≤ Ai

[ ∫
Jz

|fi(t, u(t))|γi+1dt
]1/(γi+1)

+ B′i (3.28)

where

Ai = T
γipi−γi−1

pi(γi+1)
(
βi‖φi‖pi + HiT

1/pi
)
.

Since 1
γi+1 < 1, from (3.28) there exists a constant c∗∗i such that

∫
Jz

|fi(t, u(t))|γi+1dt ≤ c∗∗i . (3.29)

Now, it is clear from (3.5) that for t ∈ [0, T ] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi +
∫ t

0

|gi(t, s)fi(s, u(s))|ds

= Hi +
∫

It

|gi(t, s)fi(s, u(s))|ds +
∫

Jt

|gi(t, s)fi(s, u(s))|ds

≤ Hi +
(

sup
t∈[0,T ]

‖gt
i‖pi

)
‖µr,i‖qi

+ T
γipi−γi−1

pi(γi+1)
(

sup
t∈[0,T ]

‖gt
i‖pi

)[ ∫
Jt

|fi(s, u(s))|γi+1ds
]1/(γi+1)

≤ d∗i (a constant),

where in the second last inequality a similar argument as in (3.26) is used and
in the last inequality we have used (3.29). Thus, |ui|0 ≤ d∗i for 1 ≤ i ≤ n and
‖u‖ ≤ max1≤i≤n d∗i ≡ D∗. It follows from Theorem 3.1 (with M = D∗ + 1) that
(1.1) has a solution u∗ ∈ (C[0, T ])n. �

The next result is also for general pi, qi, and here the condition (3.8) is replaced
by (3.16).

Theorem 3.6. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1)–
(3.4), (3.16), (3.20) and (3.21). Then (1.1) has at least one solution in (C[0, T ])n.

Proof. The proof is similar to that of Theorem 3.5 until (3.23). Let z ∈ [0, T ] and
1 ≤ i ≤ n. Multiplying (3.5) by fi(t, u(t)) and then integrating from 0 to z, we use
(3.16) to get (3.18).
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Splitting the integrals in (3.18) and applying (3.23), we find

βiηi

∫
Jz

|fi(t, u(t))|γi+1dt

≤ βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + (Hi + ai)
∫

Jz

|fi(t, u(t))|dt + |bi|

+
∫

Iz

(|ui(t)|+ Hi + ai)|fi(t, u(t))|dt

≤ βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + (Hi + ai)
∫

Jz

|fi(t, u(t))|dt + |bi|

+ (r + Hi + ai)T 1/pi‖µr,i‖qi

= βi

∫
Jz

|φi(t)| · |fi(t, u(t))|dt + (Hi + ai)
∫

Jz

|fi(t, u(t))|dt + B′′i

(3.30)

where B′′i ≡ |bi| + (r + Hi + ai)T 1/pi‖µr,i‖qi . Substituting (3.26) and (3.27) into
(3.30) then leads to

βiηi

∫
Jz

|fi(t, u(t))|γi+1dt ≤ A′i

[ ∫
Jz

|fi(t, u(t))|γi+1dt
]1/(γi+1)

+ B′′i (3.31)

where
A′i = T

γipi−γi−1
pi(γi+1)

[
βi‖φi‖pi + (Hi + ai)T 1/pi

]
.

Since 1
γi+1 < 1, from (3.31) we obtain∫

Jz

|fi(t, u(t))|γi+1dt ≤ c̄i (3.32)

where c̄i is a constant. The rest of the proof proceeds as in that of Theorem 3.5. �

We shall now tackle the system (1.2). Our next theorem is a variation of an
existence principle of Lee and O’Regan [16].

Theorem 3.7. For each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such
that 1

pi
+ 1

qi
= 1. Assume the following conditions hold for each 1 ≤ i ≤ n: (3.1),

(3.3), (3.4) and

fi : [0, T )× Rn → R is a locally Lqi-Carathéodory function; (3.33)

i.e., the conditions (i)–(iii) in (2.3) hold when fi is restricted to I × Rn, where
I is any compact subinterval of [0, T ). Also let {tk} be a positive and increasing
sequence such that limk→∞ tk = T . For each k = 1, 2, . . . , suppose there exists
uk = (uk

1 , uk
2 , . . . , uk

n) ∈ (C[0, tk])n that satisfies

uk
i (t) = hi(t) +

∫ t

0

gi(t, s)fi(s, uk
1(s), uk

2(s), . . . , uk
n(s))ds, (3.34)

for t ∈ [0, tk], 1 ≤ i ≤ n. Further, for 1 ≤ i ≤ n and ` = 1, 2, . . . , there are bounded
sets B` ⊆ R such that k ≥ ` implies uk

i (t) ∈ B` for each t ∈ [0, t`]. Then (1.2) has
a solution u∗ ∈ (C[0, T ))n such that for 1 ≤ i ≤ n, u∗i (t) ∈ B` for each t ∈ [0, t`].

Proof. First we shall show that for each 1 ≤ i ≤ n and ` = 1, 2, . . . ,

the sequence {uk
i }k≥` is uniformly bounded and equicontinuous on [0, t`]. (3.35)
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The uniform boundedness of {uk
i }k≥` follows immediately from the hypotheses,

therefore we only need to prove that {uk
i }k≥` is equicontinuous. Let 1 ≤ i ≤ n.

Since for all k ≥ `, uk
i (t) ∈ B` for each t ∈ [0, t`], there exists µB`

∈ Lqi [0, t`] such
that |fi(s, uk(s))| ≤ µB`

(s) for almost every s ∈ [0, t`]. Fix t, t′ ∈ [0, t`] with t < t′.
Then, noting (3.4), from (3.34) we find

|uk
i (t)− uk

i (t′)|

≤ |hi(t)− hi(t′)|+
∫ t

0

|gt
i(s)− gt′

i (s)| · |fi(s, uk(s))|ds

+
∫ t′

t

|gt′

i (s)| · |fi(s, uk(s))|ds

≤ |hi(t)− hi(t′)|+
[ ∫ t

0

|gt
i(s)− gt′

i (s)|pids
]1/pi

[ ∫ t

0

(
µB`

(s)
)qi

ds
]1/qi

+
[ ∫ t′

t

|gt′

i (s)|pids
]1/pi

[ ∫ t′

t

(
µB`

(s)
)qi

ds
]1/qi

→ 0

as t → t′. Therefore, {uk
i }k≥` is equicontinuous on [0, t`].

Let 1 ≤ i ≤ n. Now, (3.35) and the Arzéla-Ascoli Theorem yield a subsequence
N1 of N = {1, 2, . . . } and a function z1

i ∈ C[0, t1] such that uk
i → z1

i uniformly
on [0, t1] as k → ∞ in N1. Let N∗

2 = N1\{1}. Then (3.35) and the Arzéla-Ascoli
Theorem yield a subsequence N2 of N∗

2 and a function z2
i ∈ C[0, t2] such that

uk
i → z2

i uniformly on [0, t2] as k → ∞ in N2. Note that z2
i = z1

i on [0, t1] since
N2 ⊆ N1. Continuing this process, we obtain subsequences of integers N1, N2, . . .
with

N1 ⊇ N2 ⊇ · · · ⊇ N` ⊇ . . . , where N` ⊆ {`, ` + 1, . . . },

and functions z`
i ∈ C[0, t`] such that uk

i → z`
i uniformly on [0, t`] as k →∞ in N`,

and z`+1
i = z`

i on [0, t`], ell = 1, 2, . . . .
Let 1 ≤ i ≤ n. Define a function u∗i : [0, T ) → R by

u∗i (t) = z`
i (t), t ∈ [0, t`]. (3.36)

Clearly, u∗i ∈ C[0, T ) and u∗i (t) ∈ B` for each t ∈ [0, t`]. It remains to prove that
u∗ = (u∗1, u

∗
2, . . . , u

∗
n) solves (1.2). Fix t ∈ [0, T ). Then choose and fix ` such that

t ∈ [0, t`]. Take k ≥ `. Now, from (3.34) we have

uk
i (t) = hi(t) +

∫ t

0

gi(t, s)fi(s, uk
1(s), uk

2(s), . . . , uk
n(s))ds, t ∈ [0, t`]. (3.37)

Since fi is a locally Lqi-Carathéodory function and uk
i (t) ∈ B` for each t ∈ [0, t`],

there exists µB`
∈ Lqi [0, t`] such that |fi(s, uk(s))| ≤ µB`

(s) for almost every s ∈
[0, t`]. Hence, we have

|gi(t, s)fi(s, uk
1(s), uk

2(s), . . . , uk
n(s))| ≤ |gt

i(s)|µB`
(s), a.e. s ∈ [0, t]

and |gt
i |µB`

∈ L1[0, t]. Let k →∞ in (3.37). Since uk
i → z`

i uniformly on [0, t`], an
application of Lebesgue Dominated Convergence Theorem gives

z`
i (t) = hi(t) +

∫ t

0

gi(t, s)fi(s, z`
1(s), z

`
2(s), . . . , z

`
n(s))ds, t ∈ [0, t`]
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or equivalently (noting (3.36))

u∗i (t) = hi(t) +
∫ t

0

gi(t, s)fi(s, u∗1(s), u
∗
2(s), . . . , u

∗
n(s))ds, t ∈ [0, t`]. (3.38)

Finally, letting ` →∞ in (3.38) yields

u∗i (t) = hi(t) +
∫ t

0

gi(t, s)fi(s, u∗1(s), u
∗
2(s), . . . , u

∗
n(s))ds, t ∈ [0, T ).

Hence, u∗ = (u∗1, u
∗
2, . . . , u

∗
n) is a solution of (1.2). �

Our subsequent results make use of Theorem 3.7 and an argument originated
from Brezis and Browder [8].

Theorem 3.8. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33) with pi = ∞ and qi = 1. Moreover, suppose the following
conditions hold for each 1 ≤ i ≤ n and any w ∈ (0, T ): there exist Bi > 0 such that
for any u ∈ (C[0, w])n,∫ w

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt ≤ Bi ; (3.39)

and there exist r > 0 and αi > 0 with rαi > Hi(w) ≡ supt∈[0,w] |hi(t)| such that for
any u ∈ (C[0, w])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for a.e. t ∈ [0, w] such that ‖u(t)‖ > r, (3.40)

where we denote ‖u(t)‖ := max1≤i≤n |ui(t)|. Then (1.2) has at least one solution
in (C[0, T ))n.

Proof. We shall establish the existence of ‘local’ solutions before we can apply
Theorem 3.7. Indeed, we shall show that the system

ui(t) = hi(t) +
∫ t

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, w], 1 ≤ i ≤ n (3.41)

has a solution for any w ∈ (0, T ). Let w ∈ (0, T ) be fixed. From the hypotheses,
we see that (3.1)–(3.4) are satisfied with T replaced by w. We shall employ a
similar technique as in the proof of Theorem 3.3, with T replaced by w. Let
u = (u1, u2, . . . , un) ∈ (C[0, w])n be any solution of

ui(t) = λ
(
hi(t) +

∫ t

0

gi(t, s)fi(s, u(s))ds
)
, t ∈ [0, w], 1 ≤ i ≤ n (3.42)

where λ ∈ (0, 1). We define for each z ∈ [0, w],

Iz = {t ∈ [0, z] : ‖u(t)‖ ≤ r}, Jz = {t ∈ [0, z] : ‖u(t)‖ > r}.

Following the proof of Theorem 3.3, we obtain, corresponding to (3.15),∫
Jz

|fi(t, u(t))|dt ≤
[Hi(w) + r]

∫ w

0
µr,i(s)ds + Bi

rαi −Hi(w)
≡ ci(w), 1 ≤ i ≤ n. (3.43)

Consequently, from (3.42) it follows that for t ∈ [0, w] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi(w) + [ sup
t∈[0,w]

ess sups∈[0,t] |gi(t, s)|]
[ ∫ w

0

µr,i(s)ds + ci(w)
]

≡ di(w).
(3.44)
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Thus, |ui|0 = supt∈[0,w] |ui(t)| ≤ di(w) for 1 ≤ i ≤ n and ‖u‖ = max1≤i≤n |ui|0 ≤
max1≤i≤n di(w) ≡ D(w). It follows from Theorem 3.1 (with M = D(w) + 1) that
(3.41) has a solution u∗ ∈ (C[0, w])n. Hence, we have shown that (3.41) has a
solution for any w ∈ (0, T ).

Now, let {tk} be a positive and increasing sequence such that limk→∞ tk = T .
For each k = 1, 2, . . . , let uk = (uk

1 , uk
2 , . . . , uk

n) ∈ (C[0, tk])n be a solution of (3.34).
If we restrict z ∈ [0, t`] and k ≥ `, then using the same arguments as before, we can
obtain (3.43) and (3.44) with w = t` and u = uk. So for k ≥ ` we have

|uk
i (t)| ≤ di(t`), t ∈ [0, t`], 1 ≤ i ≤ n.

All the conditions of Theorem 3.7 are satisfied and hence it follows that (1.2) has
at least one solution in (C[0, T ))n. �

Our next result replaces condition (3.39) with condition (3.45) which involves
the integral of fi in the right side.

Theorem 3.9. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33) with pi = ∞ and qi = 1. Moreover, suppose the following
conditions hold for each 1 ≤ i ≤ n and any w ∈ (0, T ): there exist constants ai ≥ 0
and bi such that for any z ∈ [0, w],∫ z

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt ≤ ai

∫ z

0

|fi(t, u(t))|dt + bi; (3.45)

and there exist r > 0 and αi > 0 with rαi > Hi(w) + ai such that for any u ∈
(C[0, w])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for a.e. t ∈ [0, w] such that ‖u(t)‖ > r. (3.46)

Then (1.2) has at least one solution in (C[0, T ))n.

Proof. As in the proof of Theorem 3.8, we shall first show that the system (3.41) has
a solution for any w ∈ (0, T ). Let w ∈ (0, T ) be fixed and let u = (u1, u2, . . . , un) ∈
(C[0, w])n be any solution of (3.42). Using a similar argument as in the proof of
Theorem 3.4, with T replaced by w, we obtain, corresponding to (3.19),∫

Jz

|fi(t, u(t))|dt ≤
[Hi(w) + ai + r]

∫ w

0
µr,i(s)ds + |bi|

rαi −Hi(w)− ai
≡ c∗i (w), (3.47)

for 1 ≤ i ≤ n, and subsequently ‖u‖ ≤ D∗(w) (a constant). Then, it follows from
Theorem 3.1 that (3.41) has a solution for any w ∈ (0, T ). The rest of the proof
proceeds as in the proof of Theorem 3.8. �

The next result is for general pi, qi, it also replaces condition (3.40) or (3.46)
with conditions (3.48) and (3.49).

Theorem 3.10. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33). Moreover, suppose the following conditions hold for each
1 ≤ i ≤ n and any w ∈ (0, T ): (3.39), there exist r > 0 and βi > 0 such that for
any u ∈ (C[0, w])n,

ui(t)fi(t, u(t)) ≥ βi|ui|0 · |fi(t, u(t))| for a.e. t ∈ [0, w] such that ‖u(t)‖ > r,
(3.48)



14 R.P. AGARWAL, D. O’REGAN, P. J. Y. WONG EJDE-2011/104

where we denote |ui|0 := maxt∈[0,w] |ui(t)—; and there exist ηi > 0, γi ≥ qi − 1 > 0
and φi ∈ Lpi([0, w], R) such that for any u ∈ (C[0, w])n,

|ui|0 ≥ ηi|fi(t, u(t)|γi + φi(t) for a.e. t ∈ [0, w] such that ‖u(t)‖ > r. (3.49)

Then (1.2) has at least one solution in (C[0, T ))n.

Proof. Once again we shall employ Theorem 3.1 to show the existence of ‘local’
solutions; i.e., the system (3.41) has a solution for any w ∈ (0, T ). For this, we use
a similar argument as in the proof of Theorem 3.5, with T replaced by w, to get an
analog of (3.29), viz.,∫

Jz

|fi(t, u(t))|γi+1dt ≤ c∗∗i (w), 1 ≤ i ≤ n (3.50)

which leads to ‖u‖ ≤ D∗(w) (a constant). The rest of the proof follows as in the
proof of Theorem 3.8. �

The next result is also for general pi, qi, and here the condition (3.39) is replaced
by (3.45).

Theorem 3.11. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33). Moreover, suppose the following conditions hold for each
1 ≤ i ≤ n and any w ∈ (0, T ): (3.45), (3.48) and (3.49). Then (1.2) has at least
one solution in (C[0, T ))n.

Proof. To prove that the system (3.41) has a solution for any w ∈ (0, T ), we use a
similar argument as in the proof of Theorem 3.6, with T replaced by w, to get an
analog of (3.32), viz.,∫

Jz

|fi(t, u(t))|γi+1dt ≤ c̄i(w), 1 ≤ i ≤ n (3.51)

and subsequently ‖u‖ ≤ D∗(w) (a constant). The rest of the proof proceeds as in
the proof of Theorem 3.8. �

4. Existence of constant-sign solutions

In this section, we shall establish the existence of constant-sign solutions of the
systems (1.1) and (1.2), in (C[0, T ])n and (C[0, T ))n respectively. Once again we
shall employ an argument originated from Brezis and Browder [8].

Throughout, let θi ∈ {−1, 1}, 1 ≤ i ≤ n be fixed. For each 1 ≤ j ≤ n, we define

[0,∞)j =

{
[0,∞), θj = 1
(−∞, 0], θj = −1.

Our first result is for the system (1.1) and is ‘parallel’ to Theorem 3.3.

Theorem 4.1. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.2)–(3.4) with pi = ∞ and qi = 1, (3.8), (3.9),

θihi(t) ≥ 0, t ∈ [0, T ]; (4.1)

gi(t, s) ≥ 0, 0 ≤ s ≤ t ≤ T ; (4.2)

θifi(t, u) ≥ 0, (t, u) ∈ [0, T ]×
n∏

j=1

[0,∞)j . (4.3)

Then (1.1) has at least one constant-sign solution in (C[0, T ])n.
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Proof. First, we shall show that the system

ui(t) = hi(t) +
∫ t

0

gi(t, s)f∗i (s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n (4.4)

has a solution in (C[0, T ])n. Here,

f∗i (t, u1, . . . , un) = fi(t, v1, . . . , vn), t ∈ [0, T ], 1 ≤ i ≤ n (4.5)

where

vj =

{
uj , θjuj ≥ 0
0, θjuj ≤ 0.

Clearly, f∗i (t, u) : [0, T ]× Rn → R and f∗i satisfies (3.2).
We shall employ Theorem 3.1, so let u = (u1, u2, . . . , un) ∈ (C[0, T ])n be any

solution of

ui(t) = λ
(
hi(t) +

∫ t

0

gi(t, s)f∗i (s, u(s))ds
)
, t ∈ [0, T ], 1 ≤ i ≤ n (4.6)

where λ ∈ (0, 1). Using (4.1)–(4.3), we have for t ∈ [0, T ] and 1 ≤ i ≤ n,

θiui(t) = λ
(
θihi(t) +

∫ t

0

gi(t, s)θif
∗
i (s, u(s))ds

)
≥ 0.

Hence, u is a constant-sign solution of (4.6), and it follows that

f∗i (t, u(t)) = fi(t, u(t)), t ∈ [0, T ], 1 ≤ i ≤ n. (4.7)

For each z ∈ [0, T ], define Iz and Jz as in (3.10). Noting (4.7), we see that (4.6) is
the same as (3.5). Therefore, using a similar technique as in the proof of Theorem
3.3, we obtain (3.12)–(3.15) and subsequently |ui|0 ≤ di for 1 ≤ i ≤ n. Thus,
‖u‖ ≤ max1≤i≤n di ≡ D. It now follows from Theorem 3.1 (with M = D + 1) that
(4.4) has a solution u∗ ∈ (C[0, T ])n.

Noting (4.1)–(4.3), we have for t ∈ [0, T ] and 1 ≤ i ≤ n,

θiu
∗
i (t) = θihi(t) +

∫ t

0

gi(t, s)θif
∗
i (s, u∗(s))ds ≥ 0.

So u∗ is of constant sign. From (4.5), it is then clear that

f∗i (t, u∗(t)) = fi(t, u∗(t)), t ∈ [0, T ], 1 ≤ i ≤ n.

Hence, the system (4.4) is actually (1.1). This completes the proof. �

Based on the proof of Theorem 4.1, we can develop parallel results to Theorems
3.4–3.6 as follows.

Theorem 4.2. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.2)–(3.4) with pi = ∞ and qi = 1, (3.16), (3.17) and (4.1)–(4.3). Then (1.1) has
at least one constant-sign solution in (C[0, T ])n.

Theorem 4.3. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1)–
(3.4), (3.8), (3.20), (3.21) and (4.1)–(4.3). Then (1.1) has at least one constant-sign
solution in (C[0, T ])n.

Theorem 4.4. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1)–
(3.4), (3.16), (3.20), (3.21) and (4.1)–(4.3). Then (1.1) has at least one constant-
sign solution in (C[0, T ])n.
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We shall now establish the existence of constant-sign solutions of the system
(1.2). The next result is ‘parallel’ to Theorem 3.8.

Theorem 4.5. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33) with pi = ∞ and qi = 1, and (4.1)–(4.3). Moreover, suppose
the following conditions hold for each 1 ≤ i ≤ n and any w ∈ (0, T ): (3.39) and
(3.40). Then (1.2) has at least one constant-sign solution in (C[0, T ))n.

Proof. To apply Theorem 3.7, we should show the existence of ‘local’ solutions by
considering the following analog to (3.41),

ui(t) = hi(t) +
∫ t

0

gi(t, s)f∗i (s, u(s))ds, t ∈ [0, w], 1 ≤ i ≤ n (4.8)

where w ∈ (0, T ) and f∗i is given in (4.5). The rest of the proof models that of
Theorems 4.1 and 3.8. �

Based on the proof of Theorem 4.5, parallel results to Theorems 3.9–3.11 are
established as follows.

Theorem 4.6. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4) and (3.33) with pi = ∞ and qi = 1, and (4.1)–(4.3). Moreover, suppose
the following conditions hold for each 1 ≤ i ≤ n and any w ∈ (0, T ): (3.45) and
(3.46). Then (1.2) has at least one constant-sign solution in (C[0, T ))n.

Theorem 4.7. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4), (3.33) and (4.1)–(4.3). Moreover, suppose the following conditions hold
for each 1 ≤ i ≤ n and any w ∈ (0, T ): (3.39), (3.48) and (3.49). Then (1.2) has
at least one constant-sign solution in (C[0, T ))n.

Theorem 4.8. Let the following conditions be satisfied for each 1 ≤ i ≤ n: (3.1),
(3.3), (3.4), (3.33) and (4.1)–(4.3). Moreover, suppose the following conditions hold
for each 1 ≤ i ≤ n and any w ∈ (0, T ): (3.45), (3.48) and (3.49). Then (1.2) has
at least one constant-sign solution in (C[0, T ))n.

5. Examples

We shall now illustrate the results obtained through some examples.

Example 5.1. Consider system (1.1) where for 1 ≤ i ≤ n,

fi(t, u1(t), u2(t), . . . , un(t))

=

{
ρi(t, u1(t), u2(t), . . . , un(t)), u1(t), u2(t), . . . , un(t) > δ

0, otherwise.

(5.1)

Here, δ > 0 is a given constant, and ρi is such that
(a) the map u 7→ fi(t, u) is continuous for almost all t ∈ [0, T ];
(b) the map t 7→ fi(t, u) is measurable for all u ∈ Rn;
(c) ρi(t, u(t)) ∈ L1[0, T ] and ui(t)ρi(t, u(t)) ≥ 0 for any u ∈ K where

K = {u ∈ (C[0, T ])n : u1(t), u2(t), . . . , un(t) > δ, t ∈ [0, T ]}.
Moreover, suppose hi ∈ C[0, T ], 1 ≤ i ≤ n fulfills

Hi ≡ sup
t∈[0,T ]

|hi(t)| < δ. (5.2)
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Clearly, conditions (3.1) and (3.2) with qi = 1 are fulfilled. We shall check that
condition (3.9) is satisfied. Pick r > δ and αi = δ

r , 1 ≤ i ≤ n. Then, from (5.2),
we have rαi = δ > Hi.

Let u ∈ K. Then, from (5.1), we have fi(t, u) = ρi(t, u). Consider ‖u(t)‖ > r
where t ∈ [0, T ]. If ‖u(t)‖ = |ui(t)|, then

ui(t)fi(t, u(t)) = |ui(t)| · |fi(t, u(t))| = ‖u(t)‖ · |fi(t, u(t))|
> r|fi(t, u(t))|

> r · δ

r
· |fi(t, u(t))|

= rαi|fi(t, u(t))|.

(5.3)

If ‖u(t)‖ = |uk(t)| for some k 6= i, then

ui(t)fi(t, u(t)) = |ui(t)| · |fi(t, u(t))| = r · |ui(t)|
r

· |fi(t, u(t))|

> r · δ

r
· |fi(t, u(t))|

= rαi|fi(t, u(t))|.

(5.4)

Therefore, from (5.3) and (5.4) we see that condition (3.9) holds for u ∈ K.
For u ∈ (C[0, T ])n\K, we have fi(t, u) = 0 and (3.9) is trivially true. Hence, we

have shown that condition (3.9) is satisfied.

The next example considers an gi(t, s) of which the particular case when n = 1
(see (1.6)) has been investigated by Bushell and Okrasiński [10].

Example 5.2. Consider system (1.1) with (5.1), (5.2), and for 1 ≤ i ≤ n,

gi(t, s) = (t− s)γi−1 (5.5)

where γi > 1.
Clearly, gi satisfies (3.3) and (3.4) with pi = ∞. Next, for u ∈ K (K is given in

Example 5.1) we have∫ T

0

[
fi(t, u(t))

∫ t

0

gi(t, s)fi(s, u(s))ds
]
dt

=
∫ T

0

[
ρi(t, u(t))

∫ t

0

(t− s)γi−1ρi(s, u(s))ds
]
dt

≤ T γi−1

∫ T

0

[
ρi(t, u(t))

∫ t

0

ρi(s, u(s))ds
]
dt ≤ Bi

(5.6)

since ρi(t, u(t)) ∈ L1[0, T ] for any u ∈ K. This shows that condition (3.8) holds
for u ∈ K. For u ∈ (C[0, T ])n\K, we have fi(t, u) = 0 and (3.8) is trivially true.
Therefore, condition (3.8) is satisfied. It now follows from Theorem 3.3 that the
system (1.1) with (5.1), (5.2) and (5.5) has at least one solution in (C[0, T ])n.

The next example considers an gi(t, s) of which the particular case when n = 1
comes from the Emden differential equation (1.4).

Example 5.3. Consider system (1.1) with (5.1), (5.2), and for 1 ≤ i ≤ n,

gi(t, s) = (t− s)sri (5.7)

where ri ≥ 0.
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Clearly, gi satisfies (3.3) and (3.4) with pi = ∞. Next, for u ∈ K (K is given in
Example 5.1), corresponding to (5.6) we have∫ [

0

fi(t, u(t))
∫ t

0

gi(t, s)fi(s, u(s))ds]dt

=
∫ T

0

[ρi(t, u(t))
∫ t

0

(t− s)sriρi(s, u(s))ds]dt

≤ T ri+1

∫ T

0

[ρi(t, u(t))
∫ t

0

ρi(s, u(s))ds]dt ≤ Bi.

(5.8)

Hence, by Theorem 3.3 the system (1.1) with (5.1), (5.2) and (5.7) has at least one
solution in (C[0, T ])n.

Example 5.4. Let θi = 1, 1 ≤ i ≤ n. Consider system (1.1) with (5.1), (5.2), and
for 1 ≤ i ≤ n,

hi(t) ≥ 0, t ∈ [0, T ]. (5.9)

Clearly, conditions (4.1) and (4.3) are fulfilled. Moreover, both gi(t, s) in (5.5) and
(5.7) satisfy condition (4.2). From Examples 5.1–5.3, we see that all the conditions
of Theorem 4.1 are met. Hence, we conclude that system (1.1) with (5.1), (5.2),
(5.5) and (5.9) and system (1.1) with (5.1), (5.2), (5.7) and (5.9) each has at least
one positive solution in (C[0, T ])n.

We remark that Examples 5.1–5.4 can easily be extended to the system (1.2).
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