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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A
FIRST-ORDER NON-HOMOGENEOUS DELAY DIFFERENTIAL

EQUATION

QIYUAN ZHOU

Abstract. In this article, we study the asymptotic behavior of solutions to
the delay differential equation

x′(t) = f(t, x(t), x(t− r(t))) .

It is shown that every solution tends to either ∞ or a constant as t→∞.

1. Introduction

Consider the delay differential equation

x′(t) = f(t, x(t), x(t− r(t))), (1.1)

where f ∈ C(R × R × R) and r ∈ C(R). In this article, we assume the following:
f(t, u, v) is non-increasing in u; the delay may be unbounded from above, but it
is bounded from below by a positive constant, 0 < τ ≤ r(t); the function λ(t) :=
t− r(t) is non-decreasing, and limt→∞ λ(t) = ∞. Let

α(s) = sup{t : λ(t) = s}. (1.2)

Then α(λ(t)) ≥ t and α(s) > s, and when λ(t) is strictly increasing, α is the inverse
function of λ; i.e., α(λ(t)) = t.

The initial condition for (1.1) is a continuous function φ such that

x(t) = φ(t) for t ∈ Et0 := {t0} ∪ {t− r(t) < t0 : t ≥ t0}.
Examples of equation (1.1) include the following:

x′(t) = −x1/3(t) + x1/3(t− r(t)), (1.3)

x′(t) = p(t)[−x1/3(t) + x1/3(t− r(t))] + q(t), (1.4)

where r, p and q are continuous functions. For r(t) a positive constant, Bernfeld
and Haddock [1] proposed the conjecture:

Every solution of (1.3) tends to a constant as t→∞,
which was proved by Ding [5]. Chen [3] obtained the following result:

If p(t) is bounded and q ∈ L1[0,∞), then every solution of (1.4)
tends to a constant as t→∞.
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Subsequently, Chen [7] considered (1.1) and obtained the following result.

Theorem 1.1. Assume that f(t, u, v) is strictly decreasing in u, and

f(t, u, v) ≤ p(t)G(u, v) + q1(t)u+ q2(t)v + q3(t),

where G(u, v) ∈ C(R × R) and p, qi ∈ C(R) satisfying the following conditions:
G(u, v) is strictly decreasing in u, and strictly increasing in v; G(u, u) ≡ 0 for all
u ∈ R; G(u1, u2) > 0 for all u2 > u1; qi ∈ L1[0,∞) (i = 1, 2, 3), p, q1, q2; and∫ α(t)

t

p(s)ds ≤M, t ∈ R . (1.5)

Then every solution of (1.1) is bounded above, and tends to either a constant or to
−∞, as t→∞.

Recently, Yi [7] pointed out a mistake in [3, Proposition 4]. Unfortunately, the
similar mistake appears in [2, Lemma 1] and [3, Lemma 2]. Moreover, we found
that [3, condition (1.5)] should be strengthened to be

p(t) > 0,
∫ α(t)

t

p(s)ds ≤M, ∀t ∈ R . (1.6)

The main purpose of this paper is to show the convergence of the solutions of (1.1).
Our approach is quite different from the one in [5, 7], and our conditions are weaker
than those in [7]. Ofcourse, our proofs ovoid the mistakes in [2, 3].

2. Preliminary results

We start with a well known result in differential equations.

Lemma 2.1 (See [6]). Let x0 ∈ R, β > 0, h ∈ C([x0, x0 + β] × R,R), and h be a
non-increasing in the second variable. Then the initial value problem

dy

dx
= h(x, y)

y(x0) = y0

(2.1)

has a unique solution on the interval [x0, x0 + β].

Lemma 2.2. Assume φ : Et0 → R is a continuous function. Then the initial-value
problem

x′(t) = f(t, x(t), x(t− r(t))), t ≥ t0

x(t) = φ(t), t ∈ Et0

(2.2)

has a unique solution on [t0,∞).

Proof. We find the solution on intervals of length τ , where τ is the lower bound for
the delay r(t). For t ∈ [t0, t0 + τ ], let

h(t, x(t))) = f(t, x(t), x(t− r(t))) = f(t, x(t), φ(t− r(t))).

Then by Lemma 2.1, there exists a unique solution x(t) on [t0, t0 + τ ]. Recursively,
we can build a unique solution of (2.2) for any interval [t0, T ]. The proof is complete.

�

Using the same argument as in [5, Proposition 3], we can prove the following
result.
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Lemma 2.3. Suppose that G(u, u) ≡ 0 for all u ∈ R, G(u, v) is non-increasing in
u, and non-decreasing in v. Then the initial-value problem

du

dt
= G(u, k), (2.3)

u(t0) = u0, (2.4)

where k is constant in R, has a unique solution u = u(t, k) on [t0,+∞), and the
function φ(k) = u(t, k) is continuous in k.

Lemma 2.4. Suppose that G(u, u) ≡ 0 for all u ∈ R, G(u, v) is non-increasing in
u, and non-decreasing in v. Consider the initial-value problem

du

dt
= p(t)G(u, c+ ε), (2.5)

u(t0) = u0, u0 < c, (2.6)

where c is a nonzero constant and ε is a parameter such that 0 ≤ ε ≤ |c|/2. Let
u(t, t0, ε) denote the solution to (2.5)-(2.6). Assume that

(A1) for each η 6= 0, and t0 in R, the initial-value problem du
dt = G(u, η), u(t0) =

η has a unique left-hand solution.
Moreover, assume that there exists a postive constant M such that

p(t) > 0,
∫ α(t)

t

p(s)ds ≤M for all t ∈ R , (2.7)

where α(t) is defined by (1.2). Then there exists a positive constant µ, independent
of t0 and ε, such that

u(t, t0, ε) ≤ c+ ε− µ, for t0 ≤ t ≤ α(t0) .

Proof. The change of variables

s =
∫ t

t0

p(ξ)dξ, v(s) = u(t) (2.8)

transform (2.5)–(2.6) into

dv

ds
= G(v(s), c+ ε), s ≥ 0, (2.9)

v(0) = u0, u0 < c. (2.10)

From Lemma 2.3, there exists a unique solution v(s, ε) defined on [0,∞). Since
c+ ε is a continuous function in ε, it follows that

ψ(ε) = (c+ ε)− ū(M, ε)

is also a continuous function in ε. Note that because G(u, u) = 0, the constant c+ε
is also solution to (2.9). From the uniqueness of the solutions to (2.9)–(2.10), and
u0 < c < c+ ε, we obtain

v(s, ε) < c+ ε for all s ∈ [0,+∞). (2.11)

This implies ψ(ε) > 0. Let

µ = min
0≤ε≤|c|/2

ψ(ε) > 0. (2.12)
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It follows from (2.11), (2.9), G(u, u) = 0, and G(u, v) being non-increasing in u,
that ∂v

∂sv(s, ε) ≥ 0, and

v(s, ε) ≤ v(M, ε) for all s ∈ [0,M ],

which implies

v(s, ε) ≤ c+ ε− ψ(ε) ≤ c+ ε− µ for all s ∈ [0,M ]. (2.13)

By the relationship between the initial value problems (2.5)-(2.6) and (2.9)–(2.10),
it follows from (2.7) that

u(t, t0, ε) ≡ v(s(t), ε) for t0 ≤ t ≤ α(t0). (2.14)

Again from (2.7) and (1.2), we obtain

s(α(t0)) ≤M. (2.15)

By (2.13), (2.14) and (2.15), we have

u(t, t0, ε) ≤ c+ ε− µ for t0 ≤ t ≤ α(t0).

SinceM is independent of t0, and µ is independent of t0 and ε, the proof is complete.
�

By a similar argument, we can prove the following result.

Lemma 2.5. Suppose that G(u, u) ≡ 0 for all u ∈ R, G(u, v) is non-increasing in
u, and non-decreasing in v. Consider the initial-value problem

du

dt
= p(t)G(u, c− ε), (2.16)

u(t0) = u0, u0 > c, (2.17)

where c is a nonzero constant and ε is a parameter such that 0 ≤ ε ≤ |c|/2. Denote
by u = u(t, t0, ε) be the solution of the initial value problem. If (A1) and (2.7) hold,
then there exists a positive constant ν independent of t0 and ε such that

u(t, t0, ε) ≥ (c− ε) + ν for t0 ≤ t ≤ α(t0).

Remark 2.6. If (A1) holds for all η ∈ R and ε ∈ [0, 1], using the method in the
proof of Lemma 2.4, we can show that the conclusions in Lemmas 2.4 and 2.5 hold
for any c ∈ R.

3. Main results

Theorem 3.1. Assume that f(t, u, v) non-increasing in u, and

f(t, u, v) ≤ p(t)G(u, v) + q1(t)u+ q2(t)v + q3(t). (3.1)

where G(u, v) ∈ C(R × R) and p, qi ∈ C(R) satisfying the following conditions:
G(u, v) is non-increasing in u, and non-decreasing in v; G(u, u) ≡ 0 for all u ∈ R;
qi ∈ L1[0,∞) (i = 1, 2, 3); and p, q1, q2 are non-negative; and (A1) and (2.7) hold.
Then every solution of (1.1) is bounded above. Furthermore, if lim supt→∞ x(t) 6= 0,
then x(t) tends to either a constant or to −∞ as t→∞.
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Proof. We first prove that every solution of (1.1) is bounded above. Let

y1(t) = max{ max
t0−r(t0)≤s≤t

x(s), 1}, S1 = {t ≥ t0 : y1(t) = x(t)}.

Let D+ denote the upper right derivative. Then D+y1(t) = 0 for t ∈ [t0,+∞)\S1,
and D+y1(t) ≤ max{x′(t), 0} a.e. on S1. From (1.1) and (3.1),

x′(t) ≤ p(t)G(x(t), x(t− r(t))) + q1(t)x(t) + q2(t)x(t− r(t)) + q3(t)

≤ p(t)G(x(t), y1(t)) + q1(t)y1(t) + q2(t)y1(t) + q3(t)

≤ p(t)G(x(t), y1(t)) + q1(t)y1(t) + q2(t)y1(t) + |q3(t)| ∀t ≥ t0.

(3.2)

Since G(u, u) ≡ 0 for all u ∈ R, and D+y1(t) ≤ max{x′(t), 0} a.e. on [t0,+∞), we
obtain

D+y1(t) ≤ q1(t)y1(t) + q2(t)y1(t) + |q3(t)| a.e. on [t0,+∞).

From y1(t) ≥ 1, we have

D+y1(t)
y1(t)

≤ q1(t) + q2(t) + |q3(t)| a.e. on [t0,+∞).

Again from the monotonicity of y1(t), we obtain that y1(t) is differentiable almost
everywhere on [t0,∞). Thus

ln
( y1(t)
y1(t0)

)
≤

∫ +∞

t0

q1(t)dt+
∫ +∞

t0

q2(t)dt+
∫ +∞

t0

|q3(t)|dt < +∞ ∀t ≥ t0,

which implies y1(t) is bounded above; thus x(t) is also bounded above. Set A =
lim supt→∞ x(t) < ∞. If lim supt→∞ x(t) = −∞, then limt→∞ x(t) = −∞, which
implies that Theorem 3.1 holds.

Next we assume that A is a nonzero real number and show that limt→∞ x(t) = A.
By contradiction, assume that limt→∞ x(t) does not exist. For each µ1 ∈ [0, |A|/2],
there exists let t∗ > t0 large enough such that

x(t) ≤ A+ µ1, x(t− r(t)) ≤ A+ µ1 ∀t ≥ t∗, (3.3)∫ +∞

t∗
[(q1(t) + q2(t))A+ µ1 + |q3(t)|]dt ≤ µ1. (3.4)

For t ≥ t∗, let

n1(t) = x(t)−
∫ t

t∗
[(q1(s) + q2(s))A+ µ1 + |q3(s)|]ds . (3.5)

Obviously, n1(t) is bounded above, and limt→∞ n1(t) does not exist. Let B =
lim supt→∞ n1(t) and b = lim supt→∞ n1(t); Thus b < B ≤ A. For b < H < B,
there exists a sequence {tm}∞m=1 satisfying n1(tm) = H, tm > t∗ and tm → ∞ as
m→∞. It follows from (3.1) and (3.3) that

x′(t) ≤ p(t)G(x(t), A+ µ1) + (q1(t) + q2(t))A+ µ1 + |q3(t)| for all t ≥ t∗.

From (3.5), we obtain x(t) ≥ n1(t) and

n′1(t) ≤ p(t)G(n1(t), A+ µ1) for all t ≥ t∗. (3.6)

For each m, we consider the initial-value problem

u′(t) = p(t)G(u(t), A+ µ1)

u(tm) = H, H < A .
(3.7)



6 Q. ZHOU EJDE-2011/103

By Lemma 2.4, this problem has a unique solution u = u(t) on [tm,+∞), and there
exists a µ > 0 independent of tm and of µ1, such that

u(t) ≤ A+ µ1 − µ for tm ≤ t ≤ α(tm).

Then, by the comparison theorem and (3.6), we obtain

n1(t) ≤ u(t) ≤ A+ µ1 − µ for tm ≤ t ≤ α(tm),

thus x(t) ≤ A+ 2µ1 − µ for tm ≤ t ≤ α(tm). Choosing µ1 ∈ (0, µ/4], we have

x(t) ≤ A− µ

2
for tm ≤ t ≤ α(tm), m = 1, 2, . . . . (3.8)

On the other hand, define

y2(t) = max
λ(t)≤s≤t

x(s), S2 = {t : t ∈ [t∗,∞), y2(t) = x(t)}.

Then D+y2(t) ≤ 0 for all t ∈ [t∗,∞)\S2, and D+y2(t) ≤ max{x′(t), 0} for all
t ∈ S2. Hence

D+y2(t) ≤ (q1(t) + q2(t))(A+ µ1) + |q3(t)| ∀t ≥ t∗. (3.9)

For t ≥ t∗, denote

n2(t) = y2(t)−
∫ t

t∗
[(q1(s) + q2(s))(A+ µ1) + |q3(s)|]ds.

From (3.9), we obtain D+n2(t) ≤ 0 for all t ≥ t∗; therefore, n2(t) is non-increasing.
Since lim supt→∞ x(t) > −∞,

lim
t→∞

y2(t) = lim
t→∞

n2(t) + lim
t→∞

∫ t

t∗
[(q1(s) + q2(s))(A+ µ1) + |q3(s)|]ds

exists as real number. From the definition of y2 and the the fact that {s : λ(t) ≤
s ≤ t, t ≥ t0} ⊃ [t0,∞), it follows that

lim
t→∞

y2(t) = lim
t→∞

max
λ(t)≤s≤t

x(s) = lim sup
t→∞

x(t) = A. (3.10)

Since λ(t) → +∞ as t → +∞, for each tm there exists t′m such that tm = λ(t′m).
Then α(tm) = α(λ(t′m)) ≥ t′m and t′m ≥ tm ≥ t∗. By (3.8),

y2(t′m) ≤ A− µ

2
for m = 1, 2, . . . . (3.11)

However, (3.10) implies limm→+∞ y2(t′m) = A which contradicts (3.11). Hence
limt→∞ x(t) exists, and limt→∞ x(t) = A. This completes the proof. �

In a similar fashion, by using Lemma 2.5, we can show the following result.

Theorem 3.2. Assume f(t, u, v) non-increasing in u, and

f(t, u, v) ≥ p(t)G(u, v) + q1(t)u+ q2(t)v + q3(t), (3.12)

where G(u, v) ∈ C(R × R) and p, qi ∈ C(R) satisfying the following conditions:
G(u, v) non-increasing in u, and non-decreasing in v; G(u, u) ≡ 0 for all u ∈ R;
qi ∈ L1[0,∞) (i = 1, 2, 3), p, q1, q2 are nonnegative; and (A1) and (2.7) hold. Then
every solution of (1.1) is bounded below. Furthermore, if lim supt→∞ x(t) 6= 0, then
x(t) tends to either a constant or to ∞ as t→∞.
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Theorem 3.3. Consider the differential equation

x′(t) = p(t)G(x(t), x(t− r(t))) + q1(t)x(t) + q2(t)x(t− r(t)) + q3(t), (3.13)

where G(u, v) ∈ C(R × R) and p, qi ∈ C(R) satisfying the following conditions:
G(u, v) is non-increasing in u, and non-decreasing in v; G(u, u) ≡ 0 for all u ∈ R;
qi ∈ L1[0,∞) (i = 1, 2, 3), p, q1, q2 are nonnegative; and (A1) and (2.7) hold. Then
every solution of (3.13) tends to a constant as t→∞.

The proof of the above theorem follows immediately from Theorems 3.1 and 3.2.

Remark 3.4. Let G(u, v) = −uθ + vθ, where θ is the ratio of two odd positive
integers. Then G(u, v) is strictly decreasing in u, and is strictly increasing in v.
Moreover, G(u, η) is continuously differentiable when u 6= 0. Applying Cauchy’s
uniqueness and existence theorem, we conclude that assumption (A1) holds. There-
fore, Theorem 3.3 confirms the Bernfeld-Haddock conjecture.

From Remark 2.6, and using a similar argument as in the proof of Theorem 3.1,
we can also show the following result, under the assumption

(A1’) For each η and t0 in R, the initial-value problem du
dt = G(u, η), u(t0) = η

has a unique left-hand solution.

Theorem 3.5. Assume (A1’). Under the hypotheses of Theorem 3.1, every solution
of (1.1) is bounded above, and tends to either a constant or to −∞, as t→∞.

Theorem 3.6. Assume (A1’). Under the hypotheses of Theorem 3.2, every solution
of (1.1) is bounded below, and tends to either a constant or to +∞, as t→∞.

The proofs of the two theorems above are similar to the proof of Theorem 3.1:
Replace µ1 ∈ [0, |A|/2] with µ1 ∈ [0, 1], and then use Remark 2.6.

Remark 3.7. Note that the results in [2, 3] can be obtained only by assuming
condition (A1’), and the strengthened condition (2.7). Since the function G(u, v)
in this article satisfies weaker conditions than those in [2, 3], their results there
are special cases in this article. When r(t) is constant and p(t) is a bounded and
positive function, (2.7) holds naturally. Hence, our results include those in [5, 7],
and naturally extend the Bernfeld-Haddock conjecture.
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