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MULTIPLE SYMMETRIC POSITIVE SOLUTIONS FOR
SYSTEMS OF HIGHER ORDER BOUNDARY-VALUE
PROBLEMS ON TIME SCALES

PUTCHA. V. S. ANAND, PENUGURTHI MURALI, KAPULA R. PRASAD

ABSTRACT. In this article, we find multiple symmetric positive solutions for a
system of higher order two-point boundary-value problems on time scales by
determining growth conditions and applying a fixed point theorem in cones
under suitable conditions.

1. INTRODUCTION

Symmetry creates beauty in nature and in nature every thing is almost sym-
metric. One can observe that symmetry in the structure of fruits, the structure
of human body, the revolution of planets and the structure of atoms. Due to the
importance of symmetric properties in both theory and applications, the study of
existence of symmetric solutions of boundary value problems gained momentum.

In this paper, we address the question of the existence of at least three symmetric
positive solutions for the system of dynamical equations on symmetric time scales,

(_1)ny§AV)” = fl(t7y17y2)7 te [a> b]T

AV m
(_1)my§ ) = f2(t>ylay2)7 te [CLb]’I[‘
subject to the two-point boundary conditions

(1.1)

ygAV)i(a) :OzygAV)i(b)’ i=0,1,2,...,n—1, (1.2)
B2 (@)= 0=V (), j=0.12..m -1,

where f; : [a,b]T x R? — [0, 00) are continuous and f;(t,y1,y2) = fi(a+b—t,y1,y2)
fori =1,2, a € Ty, b € T* for a time scale T, and also o(a) < p(b).

By an interval time scale, we mean the intersection of a real interval with a given
time scale; i.e.,

[a,b]T = [a,b] N'T.

For time scale calculus, we refer the reader to Bohner and Peterson [8] [9].

An interval time scale T = [a, b]r is said to be a symmetric time scale if t € T <
a+b—teT.
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If T=RorT=hZ,(h > 0) then the symmetry definition is always satisfied.
In addition to, the interval time scale T = [1,2] U {3,4,5} U [6,7] U {8} U [9,10] U
{11,12,13}U[14, 15] has the symmetrical property. But the time scale T = {0}U{2 :
n € N} is not a symmetric time scale.

By a symmetric solution (y1,y2) of the system of boundary value problem -

(1.2), we mean (y1,ys2) is a solution of (1.1])-(1.2) and satisfies
yi(t) =y1(b+a—1) and ya2(t) = y2(b+a—1), tE€la,br.

The development of the theory has gained attention by many researchers; To men-
tion a few, we list some papers, Erbe and Wang [15], Eloe and Henderson [12| [13],
Eloe, Henderson and Sheng [14], Henderson and Thompson [20], Avery and Hen-
derson [4, 5l [6], Avery, Davis and Henderson [7], Davis and Henderson [10], Davis,
Henderson and Wong [I1], Anderson [2], Henderson and Wong [19], and Henderson,
Murali and Prasad [18].

This article is organized as follows. In Section 2, we establish certain lemmas
and inequalities on Green’s function which are needed later. In Section 3, by using
the cone theory techniques, we establish the existence of at least three symmetric
positive solutions to -. The main tool in this paper is an application of
the Avery’s generalization of the Leggett-Williams fixed point theorem for operator
leaving a Banach space cone invariant.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous SBVP
corresponding to -. We estimate bounds of the Green’s function, and
establish some lemmas, in which we prove some inequalities on the Green’s function,
which are needed in our main result.

Let us denote the Green’s function of the problem

—yAV(t) =0, té€la,br,
y(a) =0 =y(b),
as G1(t, s), and it is given by
bos)tza) 4 o g

Gi (t7 S) = { (b—(zt))_(g)—a)’

O—ay > S=t

for all ¢, s € [a,b]r. Then, we can recursively define
b
Gj(t,s) = / Gj_1(t,r)G1(r,s)Vr, forallt, s € [a,b]r, (2.1)

for j =2,3,...,p, and p = max{m, n}, where G;(t,s) is the Green’s function for
the problem

(—1)7y @YY (1) =0, t€ [a,b]r,
y A (@) =y AV (B) =0, i=01,2...j-1,

and G,(t,s) > 0 for all t,s € [a, b]r. For details we refer to [2] [I§].
The following lemmas are needed to establish our main result.
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Lemma 2.1. Letl €| s)ela+1,b—1r x [a,b]r,

s)(s —a)

,b%hr and (t

b—a
8
G, (t,9)] = L =

T b_—a forj=1.2,....p, (2.2)
where p is mazimum of {m,n}, L; = %a and ¢; = f:Hl st
Proof. For j =1 the 1nequahty . holds provided that L; = . Next for fixed

b—a-
J, assuming that is true, from we have for (¢, s) € [a+1,b— |1 x [a, b]T,

b
Gyt 5)] = | / Gt 1)G (r, 5)Vr]
b—1

> | G;(t,r)G1(r,s)Vr|
a-+l
b—1 _ -~ _ _ _
s [ D 00,
atl b—a b—a
1,5 (b—5)(s —a)
=L b—a '
Hence, by induction the result is true for all j < p —1. (I

Lemma 2.2. For (t,s) € [a,b]r X [a,b]T,

(b—s)(s—a)

i—1
Gyt )| < g R,

forj=1,2,...p, (2.3)

where ¢o = f; 7@_2)}2_@ Vs.

Proof. For j = 1 the inequality (2.3]) is obvious. Next for fixed j, assume that (2.3)
is true, then from ([2.1) we have

b
Gra(t.s)| =1 [ Gi(t.r)Galro)r

b —r)(ir—a —s)(s—a
S/d)é’fl(b Jr—a) (b-s)(s—a)g

b—a b—a

— qs_] ( )(Sa_ a).

Hence, by induction the result is true for all 7 < p— 1. (I

Lemma 2.3. Let t), = 1""7“ and t; € |a, HT(I]T, 1 <4 < 3 withty < ty. For
s € [a, b]T,

G1(t1,8) > t1—a and G1(tg, s) < tk—a.
Gl(tz,s) t2 —a Gl(tg,s) tg —a
Gi(t1,8) _ G1(ty,s) b—t
Proof. For t < s, we have Gi(t;s) = tz . And for s < t, we have ﬁ i
Since t; < to, we get 2:2 > 2:2

o G1(tr,s) _ tp— Gi(tr,s) _
Similarly, for ¢t < s, we have Gi(tz,s) = t’;_g. And for s < t, we have Gi(t’;s) =
Z e Since t; < to, we get ¢ b= t3 < ?;:Z O

Lemma 2.4. Fort,s € [a,b]r, the Green’s function G;(t, s) satisfies the symmetric
property,
G;(t,s) =Gj(b+a—t, b+a—s), forj=12,...,p. (2.4)
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Proof. By the definition of G;(¢,s), (j =2,3,...,p—1),
b
G,(t,s) = / Gj-1(t,7)G1(r,s)Vr, forallt,s € [a,b]r.
a

Clearly, G1(t,s) = G1(a+b—1t,a+b—s). Now, the proof is by induction. For
j = 2 the inequality (2.4)) is obvious. Next, assume that (2.4) is true, for fixed j
(j=1,2,...,p—1), then from (2.1) we have

b
Gj+1(t75)=/ Gj(t,T)Gl(T,S)VT
b
:/ Gjla+b—t,a+b—r)Gi(a+b—r,a+b—s)Vr

= /b Gjla+b—t,r)Gi(r1,a+b—s)Vr
= Gaj+1(a+b—t,a+b—s),
by using a transformation 1 =a+b —r. O
Let D = {v | v : [a,b]r — Ris continuous function}. We define the operator
F;: D — D by
(Fyo)(t) = /b G,(t, $)o(s)Vs, L€ [ablr, for j=1,2,....p—1.
By the construction of F; and properties of G;(t, s), it is clear that
(~17 (Eo) &Y (6) = v(t). ¢ € [a, b,
(Fjv) AV (a) = (Fu) AV (b)) =0, i=0,1,...,5— 1.
Lemma 2.5. Fort € [a,b]r, the operator F; satisfies the symmetric property
Fiy(t) = Fjylb+a—t) forj=12,...,p—1L

Proof. By definition of F}, and using the transformation s; = b+ a — s,
b
Fiy(t) = / G;(t,s)v(s)Vs
ab
= / Gijla+b—t,a+b—s)v(s)Vs

b
=/ Gila+b—t,s1)v(s1)Vsi
= jy(b+a’_t)v
from Lemma. O

By using the above transformations and lemmas, we can reduce the SBVP

(1.1),(1.2) into SBVP (2.5)-(2.6) and vice-versa.
Hence, we see that SBVP (|1.1)-(1.2]) has a solution if and only if the following

problem has a solution:
UlAv +f1(t7anlvlva71’U2) :07 te [(I,bh‘
0,

(2.5)
UQAV +f2(taFn71U1aFm71’U2) = t e [a,b]'ﬂ‘,
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with boundary conditions
vi(a) =0=wv1(b), 2(a)=0=uv2(b). (2.6)

(n—1) (m—1)
Indeed, if (y1, y2) is a solution of . ., then (vq = y§Av) , Vg = (Av) )

is a solution of ( . ([2:6). Conversely, if (vy,vs) is a solution of [2:5)- . then
(y1 = Fno1v1,y2 = Fp_1v9) is a solution of . . In fact, we have the
representation

/Gnltsvl() s, /Gmltsvg()v

where

b
= / Gl (8, T)fl (T, Fn_l’l)l, Fm_]_'UQ)vT,

b
s)z/ G1(s,7) fo(7, F_1v1, Fry_1v2)VT.

It is also noted that a solution (vi,vs) of (2.5)-(2.6) is symmetric; i. e.,
vi(t) =vi(b+a—t) and wva(t) =ve(b+a—t), tEa,bd|r,
and it gives rise to a symmetric solution (y1,y2) of (1.1])-(1.2).

3. EXISTENCE OF MULTIPLE SYMMETRIC POSITIVE SOLUTIONS

In this section, we establish the existence of at least three symmetric positive
solutions for —, by using Avery’s generalization of the Leggett-Williams
fixed point theorem. Let B be a real Banach space with cone P. We consider
the nonnegative continuous convex functionals v, 3,6 and nonnegative continuous
concave functionals o, ) on P, for nonnegative numbers a’,b’, ¢/, d’ and h', we define
the following sets

P(y,d)={ye P:y(y) <},
P(y,e,a',d)={yeP:d <afy), y(y) <},
Qy,B,d' ) ={ye P:ply) <d', 7(y) <},
P(y,0,0,d V) ={y € P:d' < a(y), 0(y) <V, v(y) <},
Q(y. B, w, '\ d' ') ={y € P <4(y), Bly) <d’, v(y) <}
For obtaining multiple symmetric positive solutions of -, we state the

following fundamental theorem the so called Five Functionals Fixed Point Theorem
[3].

Theorem 3.1. Let P be a cone in a real Banach space E. Suppose o and v are
nonnegative continuous concave functionals on P and 7, and 6 are nonnegative
continuous conver functionals on P such that, for some positive numbers ¢’ and ¢,

aly) <By) and |yl < g'v(y) forally € P(y,c).

Suppose further that T : P(v,c') — P(vy,c) is completely continuous and there
exist constants ', d',a’ ;b > 0 with 0 < d' < a’ such that each of the following is
satisfied.
(B1) {y € P(~,0,a,a',b',)|a(y) > a'} #0 and a(Ty) > a for
y G P("Y?e’a7 al? b/’cl)’
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(B2) {y € Q(v,B,, 1", d',c)|B(y) < d'} # 0 and B(T'y) < d’ for
y G Q(V’ 67 1/)7 hl? dl7cl)’

(B3) a(Ty) > a' provided y € P(v,a,d’,c") with 6(Ty) >V,

(B4) B(Ty) < d' provided y € Q(v,B,d', ') with w(Ty) < h'.

Then T has at least three fized points y1,y2,ys € P(7, ) such that B(y1) < d', a<
aly2), and d' < B(y3) with a(ys) < a'.

To apply the fixed point theorem for our problem we need the space
Co = {(v1, v2)|v1,v2 : [a, bl — R are continuous functions }
equipped with the norm
(v, v2) |l = llvillo + [lv2lo

where [|vlo = maxe(qp, [v(t)|. For afixed ko € [25%, 25%]r, define the cone P C Cy
by

P = {(v1,v2) € Cplv1(t), v2(t) are nonnegative convex symmetric functions for

ko
t b d i t t)|) >
€ [a,blr an te[afal}l}ikoh(|”1( )+ [v2(2)]) = e a||(”1:”2)||},

where t;, = HTG. Let k; € [b_T‘ﬂb_T“]qL 1 < i <3, be fixed and k7 < ko. Also let
ti =a+ ki, 0<i<3. Clearly, t; < ts and t; < t, ¢ = 0,1,2,3. Define the
nonnegative continuous concave functionals «, and the nonnegative continuous
convex functionals 3,60,y on P by

V)= o max @l @) = e to)l + vs (o),
Ylonv) = min (o] [a(8)]) = foilts)] + [va(ts)],
Blove) = max - (jui(®)] + |o2(8)]) = [or (te)] + [va(te)],

min v1(t)| + |va(t)]|) = |vi(t1)] + |va(t1)],
e e (0] () = for ()] ()

0 = t t)|) = t t2)|.
e = max ()] ) = )] + )]

We observe that for any (vq,vs) € P,

a(v1,v2) = | ()] + [v2(t2)] < Jvr(te)| + |va(te)| = B(v1, v2), (3.1)
and
(w1, v2)ll = lvr ()| + [va(te)| < Z; — Z(|U1(t0)|+|v2(t0)|) = Zj :ZW(vhvz)- (3.2)

Let us denote

— b—3s)(s—a
| bt —ag,
s€la,blr\[a+z,b—2z]r —a

We are now ready to present the main theorem of the paper.

Theorem 3.2. Suppose there exist 0 < a’ < b < (if%z)b’ < ¢ such that f1 and fo
satisfy the following conditions:
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(A1) |fit un—1,wpn1)| < (=Esstlllo@Coll ) for all (¢, [up—1 ], |wm-1])
m

Cl(tk - (L) n—27

Tt —a 0 Ory 1]

a(ts—a) o (e —a) oo
X [ﬁ k3+1¢k3+17 81 ¢k3+1 + —— 0"

a’(t3 - ) —
[a, bl x [tki—a ks+1¢kd+1a 0 2 brgt1 +

Orog1)y 1=1,2.

(A2) | fi(t, tn—1, wim—1)| > frmaimgy for all (¢, [un—1], [wpn-1]) in

n n— b/ ta—a n—
la+1,b = x B Ly L o2 (Shy 1 — Brava), % 02 (Bry 11 — Pra2)

Aty —a) ,_o0 —
N ﬂ g 2(¢k1+1 + ¢k2+2)} [b/ngm1+11¢k1+1(¢k1+1 ¢k2+2)7

V(ts—a) It =) ym—2(5
% 2(dhy+1 — Phara) + ot —a) 0 (Ghy 41+ Pray2)],
1—a to —a

eitheri =1 or ¢ = 2. )
(A3) |fi(t, un—1,wWm—1)| < m for all (¢, |un—1], |wm-1]) in

(e —a) oy (te —a) oy .
[aab]TX[O’ﬂ 0 ]X[Oaﬂ o oi=12
Then (1.1)-(1.2)) has at least three symmetric positive solutions.

Proof. Define a completely continuous operator T : Cy — Cy by

T(Ul,v2) = (Tl(vl,vz),Tg(’Ul,Ug)), (33)

where
b
T;(v1,v2) := / G1(t,s)fi(s, Fn_1v1, Frn—1v2)Vs, fori=1,2.

It is obvious that a fixed point of T is a solution of —. We seek three
fixed points (z1,%2), (y1,Y2), (21,22) € P of T. First, we show that T is self map
on P. Let (v1,v2) € P, then Ty (v1,v2)(t) > 0, Ta(v1,v2)(t) > 0 for t € [a, b, and
TAY (v1,v2)(t) <0, TEY (v1,v2)(t) < 0fort € [a,b]r. Further G (¢, s) is symmetric,
it follows that T1 (’Ul, ’Ug)(t) = Tl (Ul, ’L)Q)(bﬁ*d*)f), TQ(’Ul, ’Ug)(t) = T2(v17 U2)(b+a7t),
for ¢ € [a,b]p. Also, noting that T} (v1,v2)(a) = 0 = Ty (v, v2)(b), Ta(v1,v2)(a) =
0 = T(v1,v2)(b) and ||T'(v1,v2)|| = |T1(v1, v2)(tr)| + |T2(v1, v2)(tk)|, we have

)
te[a-&-%})i,rbl—ko]ﬁ-ﬂTl(Ul, v2) ()] 4 |Ta (v, v2) (t)])
)

=  min (|71 (v, v2)(t)] + [T2(v1, v2)(t)]
telatko,tr]r

t—
> T(vi,v
te[aJrko,tk]Ttk:_ ” S
ko
T (w1, v2)]l-

Thus T : P — P. Next, for all (v1,v2) € P, and using (3.1),(3.2), a(vi,v2) <
B(v1,v2) and |[(vi,v2)]| < is:Z’Y(Uhvz) To show that T': P(v,¢') — P(v,c),
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let (vi,v2) € P(v,¢) and hence ||(v1,v2)| < i(’j—:gc’. Using Lemma and for
te [a, b]jl‘,

|F1v1(t)] = |/ Gr-1(t, s)v1(s)Vs|

t_
(t a/\Gn1t5|Vs

to —a

< d(ty —a) 8_2/ (b—s)(s—a)vS
to—a a (b—a)

_ Cl(tk (l) n— 1

- to —a 0

Similarly, for ¢t € [a, b]T, we have

d(ty —a) 1
F,,_ ) < —=—— .
[Fn—1v2(t)] < P—
By condition (A3),
Y(T1(v1,v2), Ta(v1,v2)) = |Ti(vi, v2)(to)| + [T2(v1,v2)(to)]-

and

b
T4 (01, 02) (t)| = | / Gr(t0, ) f1(8, Fa101, Fro102) V|

/ /

C b
) m/ |Gi(to, 5)|Vs =

Similarly, |T(vi,v2)(to)| < ¢’/2, and hence T : P(y,¢') — P(y,c
that

m\ﬁ

It is obvious

~—

b/(fg — a)

t1—a

{(v1,v2) € P(v,0,a,V, |a(vy,v2) > b} # 0.

Next, let (v1,v2) € P(7,0,a,V, v (tz blt2=a) "1y denote the set Dy = [a+ ky,a+ ko]p U

—a

[b— ko,0(b) — ki]r. It follows that

b (ts —a
lui(s)], |va(s)] € [V, 7£12_ - )}, se Dy, (3.4)
ity —a
[or(s)], Jua(s)| € [0, %], s € [a,b)s \ Dy. (3.5)
Using (3.4), (3.5), Lemma Lemma
|Fr_1v1(s)] = |/ Gr-1(s,7)v1(17)VT —|—/ Gr-1(s,7)v1(7)VT|
T€D, T€[a,blr\D1
and
| Fr—1v2(8)] = | Gr—1(8,7)v2(T)VT —|—/ |Gr—1(s, T)v2(T)VT],
T€D, T€[a,blr\ D1

for s € Dy, we have

|Fp—1v1(s)]
b (ty — "t —
< M/ G1(s,7)| VT + M/ Gr (s, 7)|VT,
t1—a T€D, lo—a T€a,blr\ D1
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LYl 0 2 (Phy 11 — Prota) + et ~a) 0 (Pryr1 + Okat2)

t1 —a to—a
and
|Fn_1’01(5)| > / |G7L_1(8,T)U1(T)‘VT
T€D1
Z b// |Gn—1(877—)|v7
TE€Dy

>V Ly 2 o 2 (ka1 — Prar2):

Similarly,
V(ty —a m— C/tk_a m—2 /7
|Fo_102(s)| < % K 2(¢k1+1 — Opyt2) + ﬁ 0 2(¢k1+1 + Pryi2)

and

|Frn—1va(s)| > V'L 50035 (041 — Gravo), for s € D

Applying (A2) we obtain
a(T1(v1,v2),Ta(v1,v2)) = |Ti(vi, v2)(t1)| + [T2(vi, v2) (t1)| > [T (v, v2)(t1))]

b
y / Gr(tr, ) f1(5, Fo101, Fyn102)Vs|

> / |G1(t1,8) f1(s, Fn—1v1, Frn—1v2)| Vs
s€Dy
v ,
> — Gi(t1,5)|Vs =1,
ki(ka +1—ky) /Sm' 1t 9)]
Similarly, a(T1(v1,v2), T2 (v1,v2)) > |T2(v1,v2)(t1)] and from (A2) we have
Ty (v1,v2), To(v1,v2)) > 1.
Clearly,

(s

{(U17v2) € Q(Waﬂ?dja %76/70/)‘/8(/01’1}2) < a’/} # (Z)

Let (vi,v2) € Q(v, 5,7, a/fia:aa),a’,c’), and define the set By = [a + k3, b — k3T,
then

i
t _
)l e FE= 0, e, (35
d(ty, —a
o) )] € 0. D), s € fo,ble\ B 1)
Then
|Fr—1v1(s)] = Gn_1(s,7)v1(T)VT Jr/ Gp-1(s,7)v1(17)VT|,
TEE T€[a,blr\ E1
|Fr—1v2(8)| = | Gm—1(s,T)va(T)VT —|—/ Gm—1(8,7)v2(T)VT|.
TEE, T€[a,b]\ E1

Also using (3.6)),(3.7)), Lemma and Lemma we see that for s € Eq,

/ t _
Fo_0n(s)] < a'/ (G (5, 7) VT + %/ G (5, 7)Y,
TeE, 0—a T€[a,blr\ E1
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/
-2 d(tk —a) o
< a'¢g Py + Er—— 0 Pryt1

and

‘Fn_l’Ul(S)' 2 / |Gn—l(S7T)U(T)|vT
TEE;

/ —_—
s @t —a) “)/ G 1 (5,7)| V7
ty —a TEE,

/
> a (t3 — a) n—2 ;n—1
tr —a k3+17k3+1

Similarly, for s € F, we obtain

Cl(tk — CL) n—2

|Fro1v2(s)] < a'¢f > brasr + Pry i1

a(ts—a),
|Fr—qv2(s)] > ﬂ k3+1¢k3+1

Thus, by (A1) and (A2), we obtain

B((T1(v1,v2), Ta(v1, v2))
= |T1(v1,v2) (tk)| + [T2(v1, v2) (k)]

b
:/ |G1(tk7s)f1(S,Fn,1’U1,Fm,102)|vs
‘ b
+/ |G1(tk7s)f2(8aanlvlaFm71U2)vs
:/ |G1(tkaS)fl(saanlvlamelrl)Q”vs
seby
+f Gt ) f1(5, P 101, Frn102)| Vs
[a b]’ﬂ‘\El
+/ |G1(tk, 8) fa(s, Fn_1v1, Frne1v2)| Vs
seFEy

+/ |G1(tk, 8) f2(s, Frum1v1, Frnm102)|Vs
[a b]'[r\El

(k3 — k3)
(to —a)(b — to)
2c

x |G1(tk,s)|Vs—|——/ |G1(tr, 8)|Vs =d'.
/seEl (to —a)(b—t0) Jscla b\ Ex

Let (v1,v2) € P(y, o, b, ) with (11 (v1,v2), Ta(v1,v2)) > w. Using Lemma
[2:3] we obtain

<2[d" - (e —a)(b—tx) + ks — k3] ™"

(T (v1,v2), Ta(vi,v2))
= |T1(v1,v2)(t1)| + [T2(v1, v2)(t1)]
G1(t1,s)
/ |G1 t; Gi(t2,s) f1(s, Fn1v1, Fr1v2)| Vs

Gl(tl, s)

+ - 7
Gl (t2a S)

Gl(tZu 8)f2(87 anlvh Fm71v2)|vs
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tf
>h=a
Tty —a

b
/|G1(t275)f1(5aFn—1'UlaFm—1U2)‘VS

a

tl—a

b
/ (G (£, 8) fa (5, Fnr01, Frn109)| Vs

t2 —a
t1 —a
=1 9(T1(U1,’U2),T2(U1,’02)) >0,
t2 —a
Finally, we show that (B4) holds. Let (v1,v2) € Q(7, 5,4d,¢') with
a'(ts — a)
tk —a '

V(T (v1,v2), To(v1,v2)) <
In view of Lemma [2.3] we have

B(T1(v1,v2), Ta(v1,v2)) = [T1(v1,v2) (tk)| + [T2(v1, v2) (tk)|

b
G1(tk, s
:/ CYviEtzS;Gl(t?nS)fl(SaFn—lvlaFm—va)vs

G1 (tk, S)

b
+ ———=G1(t3, 8) f2(s, Fu_1v1, Fin—1v2)|Vs
|G Gt 5) ol Pocyin, Fucaoa)

t_
<Ta
T t3—a

b
/\G1(t375)f1(5aan1v1,me1vz)|VS

tr —a

b
+ / |G1(ts, s) f2(s, Fn—1v1, Frp—1v2)|Vs

t3 —a
tr —a
= (T (v1,v2), Ta(vr,v2)) < .
t3 —a
We have thus proved that all the conditions of Theorem are satisfied and so
there exist at least three symmetric positive solutions for (1.1))-(|1.2)). O
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