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OSCILLATION THEOREMS FOR SECOND-ORDER NEUTRAL
FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES

CUNCHEN GAO, TONGXING LI, SHUHONG TANG, ETHIRAJU THANDAPANI

ABSTRACT. In this article, we obtain several comparison theorems for the
second-order neutral dynamic equation

(r0) (1) + 2O )]*)7)” + a1 (02 (31) + (02 (n(1)) = 0,

where v, A, 3 are ratios of positive odd integers. We compare such equation
with the first-order dynamic inequalities in the sense that the absence of the
eventually positive solutions of these first-order inequalities implies the oscil-
lation of the studied equation.

1. INTRODUCTION

A time scale T is an arbitrary nonempty closed subset of the real numbers.
The theory of time scales was introduced in 1988 by Hilger [1] in order to unify
continuous and discrete analysis. Several authors have expounded on various aspect
of this new theory; see [2] [3] [].

This article concerns the oscillation of solutions to the second-order nonlinear
neutral dynamic equation

() () + p@r(-@N*)) + 002 00) + @) =0 (1)

on a time scale T.

Since we are interested in oscillatory behavior of solutions we will assume that
the time scale T is not bounded above; i.e., it is a time scale interval of the form
[to, 00)T := [tg,00) N T.

Below we assume that v, A, 8 are ratios of positive odd integers; r,p,q1, g2 are
real-valued rd-continuous functions; r(t) > 0, ¢q1(¢t) > 0, g2(t) > 0 for t € [to, c0)T,
j;zo r Y7 (t)At = 0o, T € Cpy(T,T), 7 is strictly increasing and 7([tg,00)r) =
[7(to),00)T, § € Cra(T, T), n € Crg(T,T), lims—0 §(t) = limy—, 00 n(t) = 00, T0 6 =
dor and Ton=mnor. We know from [7] that Too =0 o 7.

By a solution of (1.1)), we mean a nontrivial real-valued function z € C},[T5,, 00)r,
T, > to which has the properties z(t) + p(t)z(7(t)) and r(t) ([z(t) + p(t)z(7(£))]*)”
are defined, and is A-differentiable for T, and satisfies on t € [T,,00)r. The
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solutions vanishing in some neighbourhood of infinity will be excluded from our
consideration. A solution x of is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is nonoscillatory. Equation is
called oscillatory if all its solutions are oscillatory.

During the last few years, Ladde et al. [5] summarized some known oscillation
criteria for differential equations. Tang and Liu [6] investigated the oscillatory
behavior of the first-order nonlinear delay difference equation of the form

z(n+1) —xz(n) + pn)z”(n —1) = 0.

With the development of dynamic equations on time scales, there has been much
research activity concerning the oscillation and nonoscillation of solutions of non-
neutral dynamic equations and neutral functional dynamic equations on time scales,
we refer the reader to the articles [7-25], and the references cited therein. Agarwal
and Bohner [§], Bohner et al. [9], Sahiner and Stavroulakis [I0], Braverman and B.
Karpuz [11], and Zhang and Deng [12] studied the oscillation of first-order delay
dynamic equation on time scales

22 (t) + p(t)a(r(t) = 0.

Agarwal et al. [I3] considered the second-order delay dynamic equation on time
scales

a2 () + p(t)z(r(t)) = 0.
Braverman and Karpuz [14] investigated the non-oscillation of second-order delay
dynamic equation

(Aoz®)2 () + D A)z(cu(t) = f(D).

i€[1,n]y

We note that [7,[8, [, 10, [1T] obtained some sufficient conditions for the nonexistence
of eventually positive solutions of the first-order dynamic inequality

z2(t) + p(H)z(7(1)) <0,

where 7(t) < t. For the oscillation of neutral dynamic equations, Agarwal et al.
[16], Erbe et al. [I7], Sahiner [I8], Saker [19], Saker et al. [20], Saker and O’Regan
[21], Tripathy [22], Chen [23], Zhang and Wang [24] and Wu et al. [25] investigated
the oscillatory nature of following neutral dynamic equation

(r(1) ([2(t) + (O (r®)]2)7) " + a(t)a™ (8(1)) = 0. (1.2)

Clearly, (1.2)) is a special case of . However, there are few results to study
the oscillation of . The purpose of this paper is to obtain some comparison
theorems for the oscillation of . This paper is organized as follows: In Section
2, we present the basic definitions and the theory of calculus on time scales. In
Section 3, we shall establish some oscillation criteria for (L.1J).

In what follows, all functional inequalities considered in this paper are assumed
to hold eventually; that is, they are satisfied for all sufficiently large ¢.

2. PRELIMINARIES

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
Since we are interested in oscillatory behavior, we suppose that the time scale under
consideration is not bounded above; i.e., it is a time scale interval of the form
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[to,00)T. On any time scale we define the forward and backward jump operators
by
o(t) :==inf{s € T|s > t}, and p(t) :=sup{s € T|s < t}.

A point t € T is said to be left-dense if p(t) = t, right-dense if o(t) = ¢, left-
scattered if p(t) < t, and right-scattered if o(¢t) > ¢t. The graininess p of the time
scale is defined by pu(t) :=o(t) —t.

For a function f : T — R (the range R of f may actually be replaced by any
Banach space), the (delta) derivative is defined by

fle(®) = f(t)

if f is continuous at t and ¢ is right-scattered. If ¢ is not right-scattered then the
derivative is defined by

= 1imw

)
s—tt t—s s—tt t—s

provided this limit exists.

A function f : T — R is said to be rd-continuous if it is continuous at each
right-dense point and if there exists a finite left limit in all left-dense points. The
set of rd-continuous functions f : T — R is denoted by Cp4(T,R).

A function f is said to be differentiable if its derivative exists. The set of functions
f T — R that are differentiable and whose derivative is rd-continuous function is
denoted by C!,(T,R).

The derivative and the shift operator ¢ are related by the formula

Fo(t) = fla(t) = f(t) + u(t) f2(2).

Let f be a real-valued function defined on an interval [a,b]. We say that f is
increasing, decreasing, nondecreasing, and non-increasing on [a,b] if ¢, t2 € [a,b]
and tg > t1 imply f(t2) > f(t1), f(t2) < f(t1), f(t2) > f(t1) and f(t2) < f(t1),
respectively. Let f be a differentiable function on [a,b]. Then f is increasing,
decreasing, nondecreasing, and non-increasing on [a,b] if f2(t) > 0, f2(t) < 0,
fA2(t) >0, and f2(t) <0 for all t € [a,b), respectively.

We will make use of the following product and quotient rules for the derivative of
the product fg and the quotient f/g (where g(t)g(c(t)) # 0) of two differentiable
functions f and g

()2 () = f2(t)g(t) + f(a(t)g™(t) = F(t)g™(t) + f2(t)g(o(t)),
(i)A(t) _ [Ag(t) — (g2 ()
g g(t)g(a(t)) '

For a,b € T and a differentiable function f, the Cauchy integral of f* is defined
by

b
/ FABAL = f(b) — f(a).

The integration by parts formula reads

b b
/ fA(t)g(t)At=f(b)g(b)—f(a)g(a)—/ Fo(6)g> ()AL,
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and infinite integrals are defined as
o0 t
/ f(s)As = tlim f(s)As.

3. MAIN RESULTS

In this section, we shall establish some comparison theorems for the oscillation
of (1.1)). Firstly, we give the following chain rule on time scales which will play an
important role in the proofs of our results.

Lemma 3.1 ([3]). Assume that supT = oo, and v € C},([to,o0)r) is a strictly

increasing function and unbounded such that v([tg,o0)r) = [v(to),00)T. Then for
z € C!4([to, o0)1, R), we have
(wov)2(t) = 2 (v(t))v™ (¢) (3.1)

fort € [to,00)r.
Below, we will give our results. For the sake of convenience, we denote

2(t) = z(t) + p()z(r(1), Qi) = min{q:(t), ¢ (7(2))},

Q) = minde(®). ()}, RO = [ s
o(t) 1
H(t) = R(t) — R(t),  Qs(t) = Q1) / s
o(t) 1
Qa(t) = Qa(t) / A

for t1 > to sufficiently large.
Without loss of generality we can deal only with the eventually positive solutions

of (1.1)) in our proofs.

Theorem 3.2. Assume that 72(t) > 70 > 0, A < 1 and 3 < 1. Further, assume

that there exists a pg > 0 such that 0 < p(t) < pg//\ < 00, and 0 < p(t) < pg/ﬁ < 00.
If the first-order neutral dynamic inequality

(v + Bytr)” + QO GO 60

+ Q) HP (n(1))y* " (n(t)) < 0

has no eventually positive solution for all sufficiently large t1, then every solution

of (1.1) is oscillatory.
Proof. Assume that x is an eventually positive solution of (1.1)). Then we have
(r(t)(z2(£)))> < 0. Tt follows from (L.T) and (3.1) that

(r(O (A 1)) + a2 (6(0) + ax (D2 (1)) = 0 (3-3)

(3.2)

and

2

) (r(r () A (N + pyas (r(1)2* (3(7(2)))

+pgq2(T(t)z” (n(r(t))) = 0.

(3.4)
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In view of 72(t) > 79 > 0 and (3.4)), we see that

2 (r(r)EF0))) + Py (r(1)z* (0(r(1))) + plaa(r(#)a? (n(r(1))) < 0.

CorTr.ibining this inequality with , we have
rOEO) + 2 (O E0))
+ ()2 (6(0) + plar ()2 (G(r(1))) (35)
+a2(8)2” ((t)) + P a2 (T(1))2° (n(7 (1)) < 0.
If A <1, from [29] Lemma 2], we obtain
T (0()) + pya* (0(7(1)) = [2(8(1)) + pg 2 (S (r ()] = 22 (5(2)).
Similarly,

A

IN

2 0(0) + 52 (7 (0)) 2 [2n(t) + 57"z 0))]” = ().

Hence by , we have
(r®) (2 )) + p (r(r () (2 (1))

+Qu(t)2*(3(1) + Q2(1)2" (n(1)) < 0.

It follows from (|1.1)) and j:;o WAt = oo that y(t) = r(t)(22(t))” > 0 is decreas-
ing. Thus, there exists a t; > tg such that

(3.6)

Fre)E )

2(t) z/t ( () ) As >y () (R(t) — R(t))- (3.7)
1

Then, setting y(t) = r(t)(z(t))” in (3.6) and using (3.7)), one can see that y is

a positive solution of inequality (3.2). This is a contradiction and the proof is

complete. ([l

Theorem 3.3. Assume that 72(t) > 79 >0, 7(t) > t, A < 1 and 8 < 1. Moreover,
assume that there exists a pg > 0 such that 0 < p(t) < pg/)‘ < 00, and 0 < p(t) <

pg/ﬁ < o0o. If the first-order dynamic inequality

0 Ay .
w0+ () QW) (6(0)

(3.8)

" <To 7—Epg)BMQQ(t)H'B(77(t))uﬁ/w(17(t)) <0

has no eventually positive solution for all sufficiently large t1, then every solution

of (1.1) is oscillatory.

Proof. Assume that x is a positive solution of (L.1). By the proof of Theorem

we find y(t) = 7(t)(z*(t))” > 0 is decreasing and satisfies (3.2). Let u(t) =
y(t) + pgy(7(t))/m0. From 7(t) > t, we have

u(t) < (1+ f_g)y(t).

Hence, we get that u is a positive solution of (3.8)). This is a contradiction and the
proof is complete. O
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From Theorem [3:3] we have the following results.

Corollary 3.4. Assume that 6(t) < n(t), 72(t) > 170 > 0, 7(t) > t, A = 3 < 1.
Furthermore, assume that there exists a po > 0 such that 0 < p(t) < pgp‘ < oo. If
the first-order dynamic inequality

Wl

w _To ) v ) ¥ uM
At) + o +Opg)k/7 [Q1(t)H(5(t)) + Qa(t)H" (n(t))Ju™7(n(t)) < 0

has mo positive solution for all sufficiently large t1, then every solution of (1.1) is
oscillatory.
Proof. Proceeding as in the proof of Theorem [3.3] u is decreasing and if 6(t) < n(t),
then w(d(t)) > u(n(t)). Therefore, u is a positive solution of the dynamic inequality
Ay
-
uB (1) + = [QUOH (5(1)) + Q) H (n(1))]u 7 (n(1)) < 0.
(70 + po )M

This is a contradiction and the proof is complete. ([l

Similar to the proof of Corollary we have the another comparison result.

Corollary 3.5. Assume that 6(t) > n(t), 72(t) > 10 > 0, 7(t) > t, A = < 1.

Moreover, assume that there exists a pg > 0 such that 0 < p(t) < pg//\ < o0o. If the
first-order dynamic inequality

A/

w0 + s (QUOHT(G(0) + Qo) (n(e)* 7 (3(0)) < 0

has no positive solution for all sufficiently large t1, then every solution of (1.1]) is
oscillatory.

Theorem 3.6. Assume that 7(t) > t, 72(t) > 70 >0,y =1, A <1 and § < 1.
Further, assume that there exists a pg > 0 such that 0 < p(t) < pé/)‘ < 00, and
0<p(t) < pé/ﬁ < oco. If the first-order dynamic inequality

¢ (t) Qs(1)$*(5(t) — —2—Qu ()¢’ (n(1)) = 0 (3.9)

T+ Do To + Do
has no eventually positive solution for all sufficiently large t1, then every solution

of (1.1)) is oscillatory.

Proof. Assume that z is an eventually positive solution of (1.1)). Then we have

(r(t)zA(t))A < 0 and z2(¢t) > 0. Proceeding as in the proof of Theorem ﬁ we
have

(r(®)2()" + % (r(r(£)=2(1(£)) * +Qu()2(3(1) + Qa(1) 2" (n(1)) < 0. (3.10)

Integrating (3.10) from ¢ to oo, we obtain

r(1)22 () + Lr(r(1) 22 (1)) >/too (Qu(s)21(8(5)) + Q2(5)2" (n(s))) As. (3.11)

7o

70

Since 7(t)z2(t) is decreasing and 7(t) > t, it follows that

(1+ 220 > [ " (@i(9)200) + Quls) (n(s))) As.

70
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Integrating the last inequality from t; to ¢, from [26, Lemma 1], we obtain

A1) > / L / T (Qu(9)26(5)) + Qal()2° (n(s))) AsAu

¢ ()

70
To + Do

70

t o(s)
= / (Ql(s)z)‘(5(s)) +QQ(S)Z’H(TI(S)))/ iAuAs.

To + DPo t1 t1 T(U;)

Thus, we see that
()2 2 [ ()2 006) + Q1) o) B

Denote the right hand side of the above inequality by ¢(t). Since z(t) > ¢(t), we
find that ¢ is a positive solution of (3.9). This is a contradiction and the proof is
complete. [l

From Theorem we get the following result.

Corollary 3.7. Assume that §(t) < n(t), 7(t) >t, 72(t) > 10 >0,y=1, A =3 <
1/2
Do

1. Furthermore, assume that there exists a pg > 0 such that 0 < p(t) < < 0.

If the first-order dynamic inequality
i
¢ () — ——(Qs(t) + Qa(1)) ¢ (3(t)) > 0
7o + Po
has no eventually positive solution for all sufficiently large t1, then every solution

of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem ¢ is increasing and if §(t) < n(t),
then ¢(6(¢t)) < ¢(n(t)). Therefore, ¢ is a positive solution of the dynamic inequality

-
¢ (t) — ———(Qa(t) + Qu(1))$*(3(¢)) > 0.
To + Po
This is a contradiction and the proof is complete. O

Similar to the proof of Corollary we have another comparison result.

Corollary 3.8. Assume that 6(t) > n(t), 7(t) > t, 72(t) > 70 >0,y =1, A= <
1. Moreover, assume that there exists a pg > 0 such that 0 < p(t) < p(l)/’\ < oo. If
the first-order dynamic inequality

O 0) = I (Qu(t) + Qu(1) 8 (1)) 2 0

has no eventually positive solution for all sufficiently large t1, then every solution

of (1.1) is oscillatory.

Remark 3.9. Assume that 72(t) > 79 > 0 and 77! € C,q(T, T), where 771 is
the inverse function of 7. Similar to the methods of the above, we can derive some
comparison theorems for when 7(¢) < t, the details are left to the interested
reader.

Our results can be extended to the equation of the general form

(rO () + e ©)%))” + Y ) 5:0) = 0.

Acknowledgements. The authors thank the anonymous referees for their sugges-
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