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VECTOR-VALUED MORREY’S EMBEDDING THEOREM AND
HÖLDER CONTINUITY IN PARABOLIC PROBLEMS

PATRICK J. RABIER

Abstract. If I ⊂ R is an open interval and Ω ⊂ RN an open subset with ∂Ω
Lipschitz continuous, we show that the space W 1,p(I, Lq(Ω))∩Lp(I, W 1,q(Ω))

is continuously embedded in C
0, 1

p′−
N
q (Ω× I)∩L∞(Ω×I) if p, q ∈ (1,∞) and

q > Np′. When p = q, this coincides with Morrey’s embedding theorem for
W 1,p(Ω × I). While weaker results have been obtained by various methods,
including very technical ones, the proof given here follows that of Morrey’s
theorem in the scalar case and relies only on widely known properties of the
classical Sobolev spaces and of the Bochner integral.

This embedding is useful to formulate nonlinear evolution problems as func-
tional equations, but it has other applications. As an example, we derive appar-
ently new space-time Hölder continuity properties for ut = Au+f, u(·, 0) = u0

when A generates a holomorphic semigroup on Lq(Ω).

1. Introduction

Let I ⊂ R be an open interval and Ω ⊂ RN an open subset satisfying the strong
local Lipschitz condition [1, p. 83]. For p, q ∈ (1,∞), we set

Vp,q(I,Ω) := W 1,p(I, Lq(Ω)) ∩ Lp(I,W 1,q(Ω)),

a Banach space for the natural norm. Subspaces of Vp,q(I,Ω) arise naturally in
evolution problems and have become especially important due to recent progress in
the so-called “Lp maximal regularity” issue and related topics. In such problems,
the space of interest is W 1,p(I, Lq(Ω)) ∩ Lp(I,D(A)), where A is an unbounded
linear operator on Lq(Ω) with domain D(A) usually contained in W 1,q(Ω) or even
W k,q(Ω) with k ≥ 2. See for instance Denk et al. [11] and the references therein,
or Arendt and Bu [3] and Arendt and Rabier [4] for the time-periodic case.

Every u ∈ Vp,q(I,Ω) can be identified with a measurable real-valued function
u(x, t) (further details below). The primary goal of this note is to give a simple
proof of the following embedding theorem:

Theorem 1.1. If p, q ∈ (1,∞) and 1
p + N

q < 1 (i.e., q > Np′ with p′ := p
p−1), then

Vp,q(I,Ω) ↪→ C
0, 1

p′−
N
q (Ω× I) ∩ L∞(Ω× I). In particular, if I and Ω are bounded,

the embedding Vp,q(I,Ω) ↪→ C0,α(Ω× I) is compact for every 0 ≤ α < 1
p′ −

N
q .
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When p = q, then Vp,p(I,Ω) = W 1,p(Ω × I), so that Morrey’s theorem is re-
covered. The latter is of notorious importance in elliptic PDEs, especially for the
formulation of nonlinear problems as functional equations. In particular, it is often
used to prove the definiteness of Nemytskii operators. Theorem 1.1 can be used in
the same way in problems of parabolic type, now that the relevance of Vp,q(I,Ω)
and its subspaces is becoming more widely known (see Morris [17] when p = q).
In time-dependent problems, it is not uncommon to require different integrability
properties in space and time, so that the case p 6= q has concrete value. In fact, a
completely different application to a regularity question is discussed in Section 4,
in which p = q would be far too restrictive.

There are many connections between Theorem 1.1 and the existing literature,
starting with the so-called anisotropic Sobolev spaces with mixed norm. First, recall
that Lp(I, Lq(Ω)) is isometrically isomorphic to Lr(Ω×I) where r := (q, . . . , q, p) ∈
(1,∞)N+1 (see Besov et al. [6, p. 7] for the definition of Lr(G); the definition
includes measurability on G). A proof can be found in Benedek and Panzone [5,
pp. 318-319].

It follows readily from the identification of Lp(I, Lq(Ω)) and Lr(Ω× I) and from
the definitions of the derivatives of scalar and vector-valued distributions ([20]) that
if u ∈W 1,p(I, Lq(Ω)), the function corresponding to du

dt ∈ L
p(I, Lq(Ω)) in Lr(Ω×I)

is just ut (the partial derivative of u as a scalar distribution on Ω× I ). Likewise, if
u ∈ Lp(I,W 1,q(Ω)), the “spatial” partial derivative uxj of u as a scalar distribution
on Ω×I corresponds to the vector-valued derivative uxj ∈ Lp(I, Lq(Ω)), 1 ≤ j ≤ N .

Thus, u ∈ Vp,q(I,Ω) if and only if u, ut, uxj
∈ Lr(Ω × I), 1 ≤ j ≤ N , when

u is viewed as a function of (x, t). In turn, this characterizes the elements of
W 1,r(Ω × I)) where 1 := (1, . . . , 1) ∈ NN+1 ([6, p. 165]). That W 1,r(Ω × I)) ↪→
C0(Ω× I) ∩ L∞(Ω × I) then follows from [6, Theorem 10.4] for G = RN+1 and
the extension theorem [6, Theorem 9.6] (the condition κ < 1 in [6, Theorem 10.4]
is exactly q > Np′). If I and Ω are bounded, the embedding is compact by [7,
Theorem 26.3.5] (not based on Ascoli’s theorem) and the estimate in [6, Theorem
10.4]. However, the only Hölder continuity result, [7, Theorem 27.4.2, p. 248], does
not allow for p 6= q. Therefore, this quite lengthy and technical approach does
no prove Theorem 1.1 when p 6= q (and when p = q, the much simpler classical
theorem of Morrey suffices).

When I = R and Ω = RN , an embedding into C0(RN+1) was proved by Rao
[19] for a related but different space with mixed norm involving a “half-derivative”
operator instead of t -differentiation, under the stronger requirement 2

p + N
q < 1.

The proof is by convolution arguments (parabolic Riesz potentials). Still under the
same condition 2

p+N
q < 1 and yet again by other methods, Prüss [18] and Engler [15,

Lemma A3] have obtained other embeddings for the smaller space W 1,p(I, Lq(Ω))∩
Lp(I,W 2,q(Ω) ∩W 1,q

0 (Ω)).
If both I and Ω are bounded, a more recent abstract theorem of Amann [2, Theo-

rem 1.1] yields the compactness of the embedding of Vp,q(I,Ω) into C0,α(I,B
N
q ;q,1(Ω))

for every 0 ≤ α < 1
p′ −

N
q (but not for α = 1

p′ −
N
q ), where B

N
q ;q,1(Ω) :=

[Lq(Ω),W 1,q(Ω)]N
q ,1 is the usual Besov space. (Specifically, let E0 = Lq(Ω), E1 =

W 1,q(Ω), θ = N
q and p0 = p1 = p, s0 = 1 in Amann’s theorem.) Since N

q q = N ,

it is only true that B
N
q ;q,1(Ω) ↪→ C0

B(Ω) (bounded continuous functions on Ω; see
[1, p. 231]), so that this proves the compactness of the embedding of Vp,q(I,Ω)
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into C0,α(I, C0
B(Ω)), but not even its embedding into C0(Ω× I), let alone into any

Hölder space on Ω× I.
In retrospect, Theorem 1.1 is certainly not surprising. Yet, it is apparently not

so intuitive, if only to judge by the foregoing review of some of the literature that
addresses similar issues but fails to deliver the same property. In addition, the
proof given here is elementary, insofar as being based only on widely known results
about Sobolev spaces and the Bochner integral. It follows the standard proof of
Morrey’s theorem in the scalar case ([1], [9]) with of course extra technicalities.

The case when I = R and Ω = RN is discussed first, in the next section. The
general case (Section 3) follows from the existence of a linear extension operator
Vp,q(I,Ω) → Vp,q(R,RN ). This is well known when p = q since Vp,p(I,Ω) =
W 1,p(Ω× I), but must be proved in general.

As pointed out earlier, Theorem 1.1 is useful to establish the well-posedness of
nonlinear problems of parabolic type in suitable function spaces, but it also has
a direct application to the Hölder continuity, jointly in space and time, of their
solutions, even in the linear case. This short application is discussed in Section 4,
first for the autonomous equation ut = Au, u(·, 0) = u0, where A is the generator
of a C0 holomorphic semigroup on Lq(Ω) (Theorem 4.1) and next in greater gen-
erality. In spite of a multitude of related results in the literature, we have found
no evidence that the same Hölder continuity feature has previously been proved by
other arguments.

2. Proof of Theorem 1.1 for Vp,q(R,RN )

We begin with the following denseness lemma.

Lemma 2.1. If p, q ∈ [1,∞), then C∞0 (RN+1) is dense in Vp,q(R,RN ).

Proof. First, we show that u ∈ Vp,q(R,RN ) can be approximated by a sequence
(un) ⊂ Vp,q(R,RN ) such that un(x, t) = 0 for (x, t) outside a cube in RN+1.

Indeed, let ζ ∈ C∞0 (R) be such that ζ = 1 on [−1, 1] and let ζn(t) := ζ(t/n).
Then, ζnu → u in Vp,q(R,RN ), so that we may assume with no loss of generality
that u has compact support in t in the first place.

If ξn(x) := ζn(|x|), then ξn ∈ C∞0 (RN ) and ξnu(·, t) → u(·, t) in W 1,q(RN ) for
a.e. t ∈ R. It is readily checked that there is a constant C > 0 independent of
t and n such that ‖ξnu(·, t)‖W 1,q(RN ) ≤ C‖u(·, t)‖W 1,q(RN ). Thus, by dominated
convergence, ξnu → u in Lp(R,W 1,q(RN )). Similar arguments and the remark
that d

dt (ξnu) = ξn
du
dt show that ξnu → u in W 1,p(R, Lq(RN )), so that ξnu → u in

Vp,q(R,RN ). This proves the claim since ξnu has compact support in t and x.
From the above, it suffices to show that if u ∈ Vp,q(R,RN ) and u(x, t) = 0

outside a cube in RN+1, then u can be approximated in Vp,q(R,RN ) by a sequence
from C∞0 (RN+1). Let Θ ∈ C∞0 (RN ) be such that Θ ≥ 0 and

∫
RN Θ = 1 and let

Θn(x) := nNΘ(nx). Set un := Θn ∗x u, where ∗x denotes convolution with respect
to the x variable.

For a.e. t ∈ R, we have u(·, t) ∈W 1,q(RN ) and so un(·, t) → u(·, t) in W 1,q(RN ),
as is well known. In addition, by Young’s inequality, there is a constant C > 0
independent of t and n such that ‖un(·, t)‖W 1,q(RN ) ≤ C‖u(·, t)‖W 1,q(RN ). Thus,
by dominated convergence, un → u in Lp(R;W 1,q(RN )). Similar arguments and
the remark that dun

dt = Θn ∗x
du
dt show that un → u in W 1,p(R, Lq(RN )), so that

un → u in Vp,q(R,RN ).
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Now, let θ ∈ C∞0 (R) be such that θ ≥ 0 and
∫

R θ = 1 and let θm(t) := mθ(mt).
With n ∈ N being fixed, set unm(x, t) := θm∗tun(x, t), where ∗t denotes convolution
with respect to the t variable. The standard properties of convolution imply that
unm → un in W 1,p(R;Lq(RN )) and in Lp(R;W 1,q(RN )) as m→∞, so that unm →
un in Vp,q(R,RN ) as m→∞. Thus, unm is arbitrarily close to u in Vp,q(R,RN ) if n
and m are large enough. On the other hand, unm = θm ∗t (Θn ∗xu) = (θm⊗Θn)∗u,
where ∗ denotes convolution with respect to the (x, t) variable and u is identified
with a function of Lr(RN ×R) (see the Introduction). Since u has compact support
(so that u ∈ L1(RN+1)), the same thing is true of unm. Furthermore, unm is C∞

since θm ⊗Θn is C∞. �

The proof of Theorem 1.1 for Vp,q(R,RN ) follows at once from Lemma 2.1 and
the following result.

Lemma 2.2. There is a constant C > 0 such that

‖ϕ‖L∞(RN+1) ≤ C‖ϕ‖Vp,q(R,RN ) (2.1)

and that
|ϕ(x, t)− ϕ(y, s)| ≤ C|(x, t)− (y, s)|

1
p′−

N
q ‖ϕ‖Vp,q(R,RN ), (2.2)

for every ϕ ∈ C∞0 (RN+1) and every (x, t), (y, s) ∈ RN+1.

Proof. Let Jρ ⊂ R be an interval of length ρ > 0 containing 0 and Qρ ⊂ RN a cube
with side ρ containing 0 and parallel to the coordinate axes. For (x, t) ∈ Qρ × Jρ

and ϕ ∈ C∞0 (RN+1) and since |t|, |xj | ≤ ρ,

|ϕ(x, t)− ϕ(0)| ≤ ρ
( ∫ 1

0

|ϕt(τx, τt)|dτ +
N∑

j=1

∫ 1

0

|ϕxj
(τx, τt)|dτ

)
.

Upon integrating this inequality over Qρ × Jρ and with ϕ denoting the average of
ϕ on Qρ × Jρ, we obtain

|ϕ− ϕ(0)| ≤ ρ−N

∫ 1

0

τ−N−1dτ
( ∫

τQρ×τJρ

|ϕt(y, s)|dy ds

+
N∑

j=1

∫
τQρ×τJρ

|ϕxj (y, s)|dy ds
)
.

(2.3)

Let τ ∈ [0, 1] and s ∈ τJρ be fixed. By Hölder’s inequality,∫
τQρ

|ϕt(y, s)|dy ≤ |τQρ|1/q′
( ∫

τQρ

|ϕt(y, s)|qdy
)1/q

≤ |τQρ|1/q′
( ∫

Qρ

|ϕt(y, s)|qdy
)1/q

,

where |τQρ| = τN |Qρ| = τNρN is the measure of τQρ. Thus, by using once more
Hölder’s inequality and since |τJρ| = τρ,∫

τQρ×τJρ

|ϕt(y, s)|dy ds ≤ τ
N
q′ ρ

N
q′

∫
τJρ

ds
( ∫

Qρ

|ϕt(y, s)|qdy
)1/q

≤ τ
N
q′+

1
p′ ρ

N
q′+

1
p′

( ∫
Jρ

ds
( ∫

Qρ

|ϕt(y, s)|qdy
)p/q)1/p

= τ
N
q′+

1
p′ ρ

N
q′+

1
p′ ‖ϕt‖Lp(Jρ,Lq(Qρ)).
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Altogether and since the norm of Lp(Jρ, L
q(Qρ)) is majorized by the norm of

Vp,q(R,RN ), this yields
∫

τQρ×τJρ
|ϕt(y, s)|dyds ≤ τ

N
q′+

1
p′ ρ

N
q′+

1
p′ ‖ϕ‖Vp,q(R,RN ).

By the same procedure,∫
τQρ×τJρ

|ϕxj (y, s)|dyds ≤ τ
N
q′+

1
p′ ρ

N
q′+

1
p′ ‖ϕ‖Vp,q(R,RN )

for 1 ≤ j ≤ N . Thus, by substitution into (2.3) and a straightforward calculation,

|ϕ− ϕ(0)| ≤ Cρ
1
p′−

N
q ‖ϕ‖Vp,q(R,RN ), (2.4)

where C := p′q(N+1)
q−Np′ .

By translation invariance, (2.4) remains valid -with the same constant C- when
ϕ(0) is replaced by any ϕ(x, t), provided that ϕ now denotes the average of ϕ over
Qρ × Jρ and Jρ ⊂ R is any interval of length ρ containing t while Qρ ⊂ RN is
any cube with side ρ containing x. In particular, by choosing ρ = 1 and noticing
that, in this case (from Hölder’s inequality) ϕ ≤ ‖ϕ‖L1(Q1×J1) ≤ ‖ϕ‖Lp(J1,Lq(Q1)) ≤
‖ϕ‖Lp(R,Lq(RN )) ≤ ‖ϕ‖Vp,q(R,RN ), we obtain |ϕ(x, t)| ≤ C‖ϕ‖Vp,q(R,RN ) after chang-
ing C in (2.4) into C + 1. This proves (2.1).

Next, arbitrary pairs (x, t) and (y, s) in RN+1 are contained in the same cube
Qρ × Jρ with side ρ = |(x, t) − (y, s)|. Thus, (2.4) holds with ϕ(0) replaced by
ϕ(x, t) or ϕ(y, s) (with the same ϕ), which implies

|ϕ(x, t)− ϕ(y, s)| ≤ 2C|(x, t)− (y, s)|
1
p′−

N
q ‖ϕ‖Vp,q(R,RN ).

This proves (2.2) after changing C in (2.4) into 2C. �

It should be obvious that Lemmas 2.1 and 2.2 imply Theorem 1.1 for Vp,q(R,RN ).

3. Proof of Theorem 1.1

We shall rely on the following extension property:

Lemma 3.1. Let p, q ∈ [1,∞). There is a bounded linear operator E : Vp,q(I,Ω) →
Vp,q(I,RN ) such that (Eu)(x, t) = u(x, t) for a.e. (x, t) ∈ Ω× I.

Proof. From the assumptions about Ω and by the Stein extension theorem ([1],
[22]), there is an extension operator E ∈ L(Lq(Ω), Lq(RN )) mapping W 1,q(Ω) into
W 1,q(RN ) and such that E ∈ L(W 1,q(Ω),W 1,q(RN )). Given u ∈ Lp(I, Lq(Ω)), set

(Eu)(·, t) := Eu(·, t), a.e. t ∈ I,

so that Eu : I → Lq(RN ) is strongly measurable and that ‖(Eu)(·, t)‖Lq(RN ) ≤
C0‖u(·, t)‖Lq(Ω) for a.e. t ∈ I, where C0 := ‖E‖L(Lq(Ω),Lq(RN )) is independent of u
and t. Thus, Eu ∈ Lp(I, Lq(RN )) and ‖Eu‖Lp(I,Lq(RN )) ≤ C0‖u‖Lp(I,Lq(Ω)).

As noted in the Introduction, u is measurable on Ω× I and Eu is measurable on
RN ×I. As a result, v(x, t) := (Eu)(x, t)−u(x, t) is measurable on Ω×I. Since also
v(x, t) = 0 for t /∈ S and x /∈ Σt where both S ⊂ I and Σt ⊂ Ω have measure 0, it
follows from Tonelli’s theorem that v = 0 a.e. in Ω× I, so that (Eu)(x, t) = u(x, t)
for a.e. (x, t) ∈ Ω× I.

If now u ∈ Lp(I,W 1,q(Ω)), then Eu(·, t) ∈W 1,q(RN ), i.e., (Eu)(·, t) ∈W 1,q(RN )
and ‖(Eu)(·, t)‖W 1,q(RN ) ≤ C1‖u(·, t)‖W 1,q(Ω) where C1 := ‖E‖L(W 1,q(Ω),W 1,q(RN )),
so that Eu ∈ Lp(I,W 1,q(RN )) with ‖Eu‖Lp(I,W 1,q(RN )) ≤ C1‖u‖Lp(I,W 1,q(Ω)). This
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shows that E ∈ L(Lp(I, Lq(Ω)), Lp(I, Lq(RN ))) is an extension operator continu-
ously mapping Lp(I,W 1,q(Ω)) into Lp(I,W 1,q(RN )).

In particular, if u ∈ Vp,q(I,Ω), then Eu ∈ Lp(I,W 1,q(RN )) and

‖Eu‖Lp(I,W 1,q(RN )) ≤ C1‖u‖Vp,q(I,Ω). (3.1)

We now show that Eu ∈W 1,p(I, Lq(RN )). First, we claim that

d

dt
(Eu) = E du

dt
, (3.2)

where the left-hand side is the derivative of Eu in the sense of distributions on I
with values in Lq(RN ). The right-hand side is defined since du

dt ∈ L
p(I, Lq(Ω)). For

the proof of (3.2), let ψ ∈ C∞0 (I). Then,

〈 d
dt

(Eu), ψ〉 = −〈Eu, ψ′〉 = −
∫

I

ψ′(t)(Eu)(·, t)dt ∈ Lq(RN ).

Now, ψ′(t)(Eu)(·, t) = ψ′(t)Eu(·, t) = E (ψ′(t)u(·, t)) by the linearity of E. Thus,

〈 d
dt

(Eu), ψ〉 = −
∫

I

E (ψ′(t)u(·, t)dt) = −E
( ∫

I

ψ′(t)u(·, t)dt
)
,

where the second equality follows from the Bochner integral commuting with bounded
linear operators ([14, p. 153]). Next,

∫
I
ψ′(t)u(·, t)dt = −

∫
I
ψ(t)du

dt (·, t)dt since
u ∈W 1,p(I, Lq(Ω)), so that

〈 d
dt

(Eu), ψ〉 = E
( ∫

I

ψ(t)
du

dt
(·, t)dt

)
.

The same linearity and commutativity properties yield

〈 d
dt

(Eu), ψ〉 =
∫

I

ψ(t)E
(du
dt

(·, t)
)
dt =

∫
I

ψ(t)
(
E du
dt

)
(·, t)dt.

This proves (3.2).
By (3.2) and the continuity of E : Lp(I, Lq(Ω)) → Lp(I, Lq(RN )), it follows that

d
dt (Eu) ∈ Lp(I, Lq(RN )) and that ‖ d

dtEu‖Lp(I,Lq(RN )) ≤ C0‖du
dt ‖Lp(I,Lq(Ω)). Thus,

‖Eu‖W 1,p(I,Lq(RN )) ≤ C0‖u‖W 1,p(I,Lq(Ω)) ≤ C0‖u‖Vp,q(I,Ω). Together with (3.1), we
obtain that Eu ∈ Vp,q(I,RN ) with ‖Eu‖Vp,q(I,RN ) ≤ (C1 + C0)‖u‖Vp,q(I,Ω). This
completes the proof. �

End of the proof of Theorem 1.1. For u ∈ Vp,q(I,Ω), let Eu be the extension to
Vp,q(I,RN ) obtained in Lemma 3.1. If I 6= R is infinite, a reflection of Eu about
the endpoint of I yields a (bounded, linear) extension of u to Vp,q(R,RN ). If
I = (a, b) is bounded, a first reflection about a followed by a reflection about b and
multiplication by a smooth function with compact support and equal to 1 on [a, b]
produces the same result. Thus, in all cases, we obtain a bounded linear extension
Ẽ : Vp,q(I,Ω) → Vp,q(R,RN ). It is then obvious that the first part of Theorem 1.1
is implied by the same result for Vp,q(R,RN ) proved in Section 2.

If I and Ω are bounded, the compactness of the embedding Vp,q ↪→ C0,α(Ω× I)
when 0 ≤ α < 1

p′ −
N
q follows from the well-known properties of Hölder spaces on

bounded domains; see e.g. [1, p.12]. �

Various other embedding theorems can be deduced from Theorem 1.1, for ex-
ample that W 2,p(I, Lq(Ω))∩W 1,p(I,W 2,q(Ω)) ↪→ C

1, 1
p′−

N
q (Ω× I) under the same
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condition q > Np′. This follows from u, ut, uxj ∈ Vp,q(I,Ω), 1 ≤ j ≤ N and
Theorem 1.1 together with elementary properties of distributions.

For full disclosure, it should be mentioned that some embedding theorems for
anisotropic Sobolev spaces with mixed norm in [6], [7], closely related to Theorem
1.1, cannot be obtained by the same simple arguments. This happens when I × Ω
satisfies an “l -horn condition” with l = (l1, . . . , lN+1) and not all the lk are the
same, which however places quite stringent restrictions about the geometry of Ω.
For example, if Ω = J is an interval, W 1,p(I, Lq(J))∩Lp(I,W 2,q(J)) ↪→ C0(J × I)
(and the embedding is compact if I and J are bounded) if q ≥ 1 and q > p′

2 , because
rectangles satisfy a strong (2, 1)-horn condition 1 ([6, p. 155]). Theorem 1.1 cannot
take advantage of the fact that W 1,q(J) is replaced by W 2,q(J) and so yields the
same result (plus Hölder continuity) only when q > p′.

Finally, Theorem 1.1 can be generalized when I is replaced by an open subset
ω of RM satisfying a strong local Lipschitz condition, provided that M

p + N
q < 1.

The Hölder exponent becomes 1 − M
p − N

q . The only significant difference occurs
in the last step, to extend elements of Vp,q(ω,RN ) to Vp,q(RM ,RN ). This amounts
to finding an extension from Lp(ω,W 1,q(RN )) to Lp(RM ,W 1,q(RN )), which is also
an extension from W 1,p(ω,Lq(RN )) to W 1,p(RM , Lq(RN )). When ω = RM

+ , this
can be done by reflection. The general case reduces to RM

+ by localization and
bi-Lipschitz change of coordinates.

4. Hölder continuity of the solutions of parabolic equations

Let Ω ⊂ RN denote once again an open subset satisfying the strong local Lips-
chitz condition and let A be the generator of a C0 holomorphic semigroup S(t) on
Lq(Ω), q ∈ (1,∞), whose domain D(A) (equipped with the graph norm) is contin-
uously embedded in W 1,q(Ω). This class includes many of the “classical” elliptic
operators with various boundary conditions; see the comments after Theorem 4.1.
If u0 ∈ Lq(Ω), then

u(t) := S(t)u0

is the unique solution of ut = Au such that u(·, 0) = u0. Basic semigroup the-
ory yields only rather weak continuity properties of u near t = 0, that is, u ∈
C1([0, T ], Lq(Ω)) ∩ C0([0, T ], D(A)) if u0 ∈ D(A) and only u ∈ C0([0, T ], Lq(Ω)) if
u0 /∈ D(A).

On the other hand, optimal time or space regularity in Sobolev spaces was proved
by Di Blasio [13] when Lq(Ω) is replaced by a general Banach space E. In that
setting, “space” regularity is accounted for by the real interpolation spaces between
E and D(A) while time regularity is measured by the E-valued Sobolev-Slobodeckii
spaces on (0, T ).

By combining Di Blasio’s results with Theorem 1.1, we shall obtain a more refined
and stronger space-time Hölder regularity of u, provided that q is large enough. If
X and Y are Banach spaces and θ ∈ (0, 1), p ∈ [1,∞], we denote by (X,Y )θ,p and
[X,Y ]θ the real and complex interpolation spaces between X and Y , respectively.

Theorem 4.1. (i) Suppose that q > N and u0 ∈ D(A). Then, u ∈ C0,α−N
q ([0, T ]×

Ω) for every T > 0 and every 0 ≤ α < 1.

1 But most open subsets, including disks, do not.
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(ii) Suppose that p ∈ (1,∞), q ∈ (Np′,∞) and u0 ∈ (Lq(Ω), D(A))1/p′,p. Then,

u ∈ C0, 1
p′−

N
q ([0, T ]× Ω) for every T > 0.

(iii) Suppose that θ ∈ (0, 1), q ∈
(

N
θ ,∞

)
and u0 ∈ [Lq(Ω), D(A)]θ. Then, u ∈

C0,α−N
q ([0, T ]× Ω) for every T > 0 and every 0 ≤ α < θ.

Proof. (i) First, u ∈ C1([0, T ], Lq(Ω))∩C0([0, T ], D(A)) ⊂ Vp,q((0, T ),Ω) for every
p ∈ (1,∞) (because D(A) ↪→ W 1,q(Ω)). Next, since q > N and α < 1, choose p
large enough that q > Np′ and α ≤ 1

p′ and use Theorem 1.1.
(ii) From [13, Theorem 4 and Theorem 9] (see also [10, Theorem 3.4.2]) the hy-

pothesis u0 ∈ (Lq(Ω), D(A)) 1
p′ ,p

implies u ∈W 1,p((0, T ), Lq(Ω))∩Lp((0, T ), D(A)),
so that u ∈ Vp,q((0, T ),Ω) and the conclusion follows from Theorem 1.1.

(iii) It is shown in [8, Theorem 4.7.1] that [Lq(Ω), D(A)]θ ⊂ (Lq(Ω), D(A))θ,∞.
Furthermore, (Lq(Ω), D(A))θ,∞ ⊂ (Lq(Ω), D(A))θ−ε,p for every ε ∈ (0, θ) and every
p ∈ [1,∞] since D(A) ⊂ Lq(Ω). Thus, if ε ∈ (0, θ) is chosen small enough that
q > N

θ−ε and that α ≤ θ − ε, it suffices to use (ii) with p = 1
1−θ+ε . �

Evidently, (i) is not directly implied by u ∈ C1([0, T ], Lq(Ω))∩C0([0, T ], D(A)).
Under the assumptions of (ii), Di Blasio proves the “mixed” regularity [13, Theo-
rem 14] u ∈ W ε,p((0, T ), (Lq(Ω), D(A))1−ε,p) for every ε ∈ (0, 1). Since D(A) ↪→
W 1,q(Ω), it follows that u ∈W ε,p((0, T ), B1−ε;q,p(Ω)), but this does not yield (ii) or
(iii). Indeed, by the classical embedding theorems, u ∈ C0,ε− 1

p ([0, T ], C0,1−ε−N
q (Ω))

if 1
p < ε < 1− N

q (hence, q > Np′). Thus, (ii) could be recovered if min{ε− 1
p , 1−

ε − N
q } ≥

1
p′ −

N
q ; i.e., 1 − N

q ≤ ε ≤ 1
p , but this requires q ≤ Np′ and therefore

never happens.
A similar argument shows that no choice of ε ∈ (0, 1) yields u ∈ C0,α(Ω× [0, T ])

if α < 1
p′ −

N
q is close enough to 1

p′ −
N
q , whence (iii) cannot be proved that way

either. Actually, even if D(A) ↪→W k,q(Ω) with k > 1, (ii) and (iii) can be deduced
from Di Blasio’s mixed regularity result only when q < kNp′ (but then q > Np′

k
suffices, instead of q > Np′).

In connection with the above discussion, it is instructive to notice that if α ∈
(0, 1), then C0,α([0, T ], C0,α(Ω))  C0,α(Ω× [0, T ]) (example: (0, T ) = Ω, u(x, t) :=
(x+ t)α), so that membership to the latter space does not require membership to
the former.

In the proof of (ii), we saw that the assumption u0 ∈ (Lq(Ω), D(A)) 1
p′ ,p

implies

u ∈W 1,p((0, T ), Lq(Ω))∩Lp((0, T ), D(A)). The converse is true, from the very def-
inition of real interpolation spaces by the trace method. Thus, the assumption u0 ∈
(Lq(Ω), D(A)) 1

p′ ,p
is also necessary for u ∈ W 1,p((0, T ), Lq(Ω)) ∩ Lp((0, T ), D(A))

to solve the nonautonomous problem{
ut = Au+ f,

u(·, 0) = u0,

when f ∈ Lp((0, T ), Lq(Ω)). In turn, the existence and uniqueness of such a solution
u is known under additional assumptions about A. See [11, Theorem 4.4] when
u0 = 0 (of course, the general case reduces to this case after adding S(t)u0). It
may be worth pointing out that the “Lp maximal regularity” in that theorem
refers to the aforementioned existence and uniqueness (see Remark 4.2 below) and
that, when q ∈ (1,∞), the space Lq(Ω) is a Banach space of class HT according
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to the terminology of [11] (more commonly called a UMD Banach space). If so,
Theorem 4.1 remains true since the Hölder regularity is solely based on the fact
that u ∈ Vp,q((0, T ),Ω).

Remark 4.2. In [11], Lp maximal regularity is defined (when u0 = 0) by the
condition that ut ∈ Lp((0, T ), Lq(Ω)), which may seem weaker than stated above.
However, since T < ∞, this implies at once that both u(t) =

∫ t

0
ut(s)ds and

Au = ut − f are in Lp((0, T ), Lq(Ω)), so that u ∈ Lp((0, T ), D(A)) when D(A)
is equipped with the graph norm and that u ∈ W 1,p((0, T ), Lq(Ω)). If (0, T ) is
replaced by (0,∞), this remains true only if the invertibility of A is added to the
assumptions of [11, Theorem 4.4].

If −A is sectorial with bounded imaginary powers, part (iii) of Theorem 4.1 holds
with u0 ∈ D((−A)θ) since it is known that [Lq(Ω), D(A)]θ = D((−A)θ) in this case
[23, p. 103].

Everything can be extended to systems, that is, when Lq(Ω) is replaced by
(Lq(Ω))r, r ∈ N, provided that D(A) ↪→ (W 1,q(Ω))r. Indeed, it suffices to use
Theorem 1.1 componentwise.

Of course, the case when A is the realization of a linear elliptic differential
operator with homogeneous boundary conditions is of special importance. If so,
D(A) = W 2m,q

B (Ω) := {v ∈ W 2m,q : Bv = 0} where m ∈ N and B is a system of
boundary operators of order less than 2m. The condition D(A) ⊂W 1,q(Ω) always
holds, but some regularity assumptions are needed for A to have some or all of the
properties listed above. Recall also that (Lq(Ω), D(A))θ,p is often explicitly known
in this case (Grisvard2 [16, p. 63]), as is [Lq(Ω), D(A)]θ (Seeley [21]).

Hypotheses about Ω and about the coefficients that ensure Lp maximal regularity
are spelled out in [11, Theorem 8.2]. A little more must be assumed for −A to have
bounded imaginary powers and even a bounded H∞ calculus, which is stronger.
Until fairly recently, this was mostly known for operators with constant coefficients,
but it has now been proved for a broader class by Denk et al. [12].
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[9] Brézis, H.; Analyse fonctionnelle, Masson, Paris 1983.
[10] Butzer, P. L. and Berens, H.; Semi-groups of operators and approximation, Grund. math.

Wiss. 145, Springer-Verlag, New York 1967.
[11] Denk, R., Hieber, M. and Prüss, J.; R-boundedness, Fourier multipliers and problems of

elliptic and parabolic type, Mem. Amer. Math. Soc. no. 788, Providence, 2003.
[12] Denk, R.; Dore, G.; Hieber, M.; J Prüss, J. and Venni, A.; New thoughts on old results of R

T Seeley, Math. Annalen 328 (2004) 545-583.
[13] Di Blasio, G.; Linear parabolic evolution equations in Lp-spaces, Ann. Mat. Pura Appl. 138

(1984) 55-104.
[14] Dunford, N. and Schwartz, J. T.; Linear operators, part I, Wiley, New York 1988.
[15] Engler, H.; Global smooth solutions for a class of parabolic integrodifferential equations,

Trans. Amer. Math. Soc. 348 (1996) 267-290.
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