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SOLUTION TO THE TRIHARMONIC HEAT EQUATION

WANCHAK SATSANIT

ABSTRACT. In this article, we study the equation

%u(:t,t) —C@u(z,t)=0

with initial condition u(x,0) = f(z). Where z is in the Euclidean space R,

P 2 r+q 2
9% \3 92 \3
i=1 K j=p+1 J
with p + ¢ = n, u(z,t) is an unknown function, (z,t) = (x1,z2,...,Zn,t) €

R™ x (0, 00), f(x) is a generalized function, and c is a positive constant. Under
suitable conditions on f and w, we obtain a unique solution. Note that for

q = 0, we have the triharmonic heat equation

%u(m, t) — 2 A3u(z,t) =0.

1. INTRODUCTION

It is well known that the heat equation
gu(w t) = 2 Au(z, t)
at ) - 9 )

with the initial condition u(x,0) = f(x), has solution

1 2
wlnE) = (4c2rt)n/2 /Rn P ( - |x40232| )f(y)dy’

where (z,t) = (v1,%2,...,%,,t) € R" x (0,00), and A = >_" 2,

i=1 31?

(1.1)

(1.2)

is the Laplace

operator. It is also known that the solution can be written as the convolution

u(z,t) = E(xz,t) * f(x), where

Ble,) = (4c?mt)n/? exp 4ct

which is called the heat kernel [1, pp. 208-209]. Here |z|? = 2% + 23 +

t>0.
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<422 and

Key words and phrases. Fourier transform; tempered distribution; diamond operator.

(©2011 Texas State University - San Marcos.
Submitted June 14, 2010. Published January 7, 2011.

1



2 W. SATSANIT EJDE-2011/04

In 1996, Kananthai [3] introduced the Diamond operator

p p+q
0% \2 0% \2 .
i=1 —t Jj=p+1 =7
This operator can be written in the form ¢ = AO = OA, where
0? 0? 0?
A=—+—S++-— 1.5
0x? * 0x3 T 0z2 (15)
is the Laplacian, and
0? 0? 0? 0? 0? 0?
- 4+ 2 4.4 2 = _..._ - 1.6
ox? * 0x3 o dxZ  Ox2,, Orl,, ox2, (16)

is the ultra-hyperbolic operator. The Fourier transform and the elementary solution
of the Diamond operator has been studied; see for example [3]. Nonlaopon and
Kananthai [5] studied the equation

9 _ 2
au(w,t) = ¢“Ou(x, t),

and obtain the ultra-hyperbolic heat kernel

4 2 pt+q 2

19 i=1Ti ~ 2j=p+1 T
Bla,t) = (4c2mt)n/2 P ( B 4c2t )’

where p+qg=mn, and i = /—1.
The purpose of this work is to study the equation

0
g u(z,t) —  ®u(z,t) =0, (1.7)
with the initial condition u(x,0) = f(x), for x € R™. The operator is
P 2 Ptq 2
0% \3 0% \3
o= (X52) + (X 52)
i=1 7 j=p+1 J
52 p+q 52 P 2 (2 P 2 p+q 52
(X X wl(Xam) -(Ea( X 5
= = i=1 =1 j=p+1 J
pt+q
0% \2
+ ( Z (93:2) ]
j=p+1 J
3
= A(A% - Z(A +0O)(A-0)
3 1
=004 -A?
4<> + 4
where A, [0, { are defined by (1.5]), and (1.4]) respectively.
Here, p + ¢ = n, u(z,t) is an unknown function, (z,t) = (x1,xa,...,Ty,,t) is in

R™ x (0,00), f(x) is a generalized function, and c¢ is a positive constant. We obtain
a solution u(z,t) = E(x,t) * f(x), where

1 ) r 3 r+q 3 .
E(m,t)—W/Qexp[c [(25) +(j§+lgj) [t+iteo)de. (g

and Q C R™ is the spectrum of E(z,t) for any fixed ¢ > 0.
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Here E(x,t) is the elementary solution of (1.7)), whose properties will be studied
in this article. If we put ¢ = 0, then (1.7]) reduces to the equation

9 2 A3 _
Eu(m,t)—c Alu(z,t) =0

which is related to the triharmaoic heat equation.

2. PRELIMINARIES
Definition 2.1. Let f(x) € Li(R™), the space of integrable function in R™. Then
the Fourier transform of f(x) is

fi€) = Gmyere [ e @y (21)

where § = (£I7§2a"'7§n)7 T = (,Tl,l‘g,...,.rn) S Rna (57.'1,') = glxl "‘52.’132 + -+
&nxy, and dr = dxy dxs ... dx,. The inverse of Fourier transform is defined as

@) = s [ T ae (22

If f is a distribution with compact support by [6, Theorem 7.4-3], we can write
~ 1
€)= W (

Definition 2.2. The spectrum of the kernel E(x,t) in ([1.6) is the bounded support

—

of the Fourier transform E(&,t) for any fixed ¢ > 0.

f(z),e &), (2.3)

Definition 2.3. Let £ = (£1,&2,...,&,) be a point in R™ and let
F+:{£6Rn:£%+§§+'”+£§_§z+l_55-1-2_"'_ [2)+q >0 and § >0}
be the interior of the forward cone, and I';. denote the closure of '

Let Q be spectrum of E(z,t) defined by Definition for any fixed ¢t > 0, and
Q CT;. Let the Fourier transform of E(z,t) be

ﬂﬁ,\t): Wexp[—@(( f:1§i2)3+( ?Inglsz)B)t} for £ €Ty,
0 for £ ¢T,.
(2.4)

Lemma 2.4. The Fourier transform of ®¢ is
(=1)°
(27-(-)71 2

where F is defined by [2.1). Let the norm of & be ||€|| = (€2 + &3 +--- 4+ €2)1/2.
Then

F®é=

3
(F+&+-+ 5127) + (G + G+ E4g)”]

M
|F®d| < W||§||67

where M is a positive constant. That is, F® is bounded and continuous on the
space 8" of the tempered distribution. Moreover, by (2.2),

®0 = F Gl + 84+ )+ G+ Gt 6]

(2m)/?
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Proof. By (2.3),

1 —i(&,x
]:®6:W<®6’6 & )>

1 —i(&,x
=y e

3 1 3\ —i(&,x
= Gy (300 + 38°)e 7€)
1
(271-)77,/2

1

)

1 3 3 . 2)? - 2)’
:W@,Z(—l) [(;&) -( X €)]

Jj=p+1

o (6, 3006 7ED) (5, A% i)

p+q

() - (X @)

=1 Jj=p+1

3 P 2 p+q 2 14 p+q

:W{(ﬁfﬂ- §+...+§§>3+<§§+1+§;+2+..,+£§+q)3]
Then

|F ® d|

1
=g @ e ) (Gt a6

<
= (2m)n/2
M

< Gyl

G+ Q@ P (E QP (E )

where ||£]| = (E%-l—f%—&----—i—fi)lﬂ, & €R(i=1,2,...,n). Hence we obtain F ®§
is bounded and continuous on the space S’ of the tempered distribution.

Since F is a one-to-one transformation from the space S’ of the tempered dis-
tribution to the real space R, by , we have

®6 =F !

This completes the proof. O
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Lemma 2.5. Let

"
L_gtc?[(ia;)%(‘p q aa—;)g}, (2.5)
i= j=p+1 J
where
p+q
(Lam) +( 2 ga) =100+ 1
i=1 j=p+1 3
p+qg=n, (z,t) = (x1,22,...,2,,t) € R" x (0,00), and ¢ is a positive constant.
Then
Bt = o [en[-2[(X8) + (3 €)rvica)e @0
o (2m)" Ja ’ i=1 i Jj=p+1 , .

is an elementary solution of (2.5)).
Proof. Let E(z,t) be an elementary solution of operator L. Then
LE(x,t) = §(x,t),

where ¢ is the Dirac-delta distribution. Thus
9 ) P 82 3 p+q 82 3 B
B t) —c [(; 373) + (j_;l @) | B 1) = s(@)a(t).

Taking the Fourier transform on both sides of the equation, we obtain

p+q

£+ e(56)" + (5 &) 0 = gt

Jj=p+1

Thus
— H(t) P 3 r+q 3
D - o[- (($56) (5 )
where H(t) is the Heaviside function. Since H(t) =1 for ¢ > 0. Therefore,
o 1 ) p ) 3 p+q ) 3
0 - e [-((556) (£ )
which by , we obtain

Bat) = Gy [ @OVBED de = gy [ e (e D de

where ) is the spectrum of E(z,t). Thus from (2.2),

1 ) p ) pt+q )
E(a:,t)zw/ﬂexp[—c [(;fl) (jzp;_lf ) }t—i—zf, )] deg.

This completes the proof. ([
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3. MAIN RESULTS

Theorem 3.1. Consider the equation

%u(x t) = @u(z,t) =0 (3.1)
with initial condition

u(z,0) = f(z) (3.2)

and the operator

where p+q =n, k is a positive integer, u(x,t) is an unknown function for (x,t) =
(1,2, ..., &n,t) € R™ x (0,00), f(x) is a given generalized function, and c is a
positive constant. Then

u(xz,t) = E(x,t) x f(x)
as a solution of (3.1)-(3.2), where E(z,t) is given by (2.5)).

Proof. Taking the Fourier transform on both sides of (3.1)), we obtain

g0+ @(26) +( 3 ) Jaen -0
=1

(see Lemma [2.4). Thus

e = k(@ [~ e2((8) + piie) ¥ e
where K (£) is constant and (¢, 0) = K(€). By v&jfe Zave
K(©) = (6,00 = 6) = ooy [ 76 () de (3.4
and by the inversion in (2.2)), and we obtain

u(z,t)

1 ; ~
- (2#)"/2 / el(g’w)u(& t)dé
p+q

_ (271r)n/"/n (60 e =1EY) £ (4 exp {_02((253) ( Z 5;) ) }dydf.

=p+1
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Thus
p p+q
)= g [, fo o [-@((56) + (3 &) ) avae
e = b [ [ e [-(3e) (Zf ) )eite.r—)] ) de
(3.5)
Set

E(x7t):(27lr)n/RneXp{—02[(§§?) ( Z f) }t—i-zf, )} d¢.  (3.6)

We choose 2 C R™ be the spectrum of E(z,t) and by ([2.5), we have

bt = e [ o [-2[(26) + (5 @)Jretcn]
p+q

:(271)71/‘”@[ [(2’52) (3 &) Ji+iten)ae

Jj=p+1

(3.7)

Thus (3.5) can be written in the convolution form
u(z,t) = E(x,t) = f(x).
Since E(x,t) exists,
1 . 1 )
lim E(z,t) = 162 e = 7/ UE2) e = ¢ 3.8
g B@.t) = Gy /Qe e fe S0l 68

for x € R"™; see [3| Eq. (10.2.19b)]. Thus for the solution u(z,t) = E(z,t) * f(x) of

B2,

tim (e, £) = u(e,0) = 0« f(@) = f(x)
which satisfies (3.2]). |

Theorem 3.2. The kernel E(x,t) defined by (3.7) has the following properties:

(1) E(z,t) € C*® for x € R™ and t > 0, the space of function with infinitely
many continuous derivatives.

(2) Fort >0,
2 p+q 2
G-el(S 2+ (5 Zy)sen-o
(3) E(x,t) >0 fort>0.
(4) Fort >0,
Byl < 2 A0

2 T(E)(E)
where M (t) is a function of t in the spectrum ), and I denotes the Gamma

function. Thus E(z,t) is bounded for any fized t > 0.
(5) limy E(z,t) = 4.



8 W. SATSANIT EJDE-2011/04
Proof. (1) From (3.7),

n n p+q 3

s = o [ e [~ (€)' + (3 ) iten)] e

Jj=p+1

Thus E(x,t) € C* for z € R™ and ¢t > 0.
(2) By a computation,

(5~ [(Zf) ( pf &) ])e@n=o.

Jj=p+1
(3) E(z,t) > 0 for t > 0 is obvious by (3.7).
(4) We have
1 ptq
0= g oo [-e[(2) + (X @) en]ac
1 ) ptq
<
01 < e fow [= (L) + (3 6))]ae
Jj=p+1
By changing to bipolar coordinates
51 =Trwi, 52:’]"&)2, teey é-p:’rwpa
Epr1 = Swpy1, Epro = 5wWpya, ..., Epiq= SWpiq,
where >F_ w? =1 and Z?:Z_H w? = 1. Thus
1
|E(x,t)| < / exp[—c?(s® + rO)t]rP s dr ds d, dQ,
@m)™ Jo

where d¢ = rP~1s97 dr ds d§), dSY,, dS), and Q, are the elements of surface area of
the unit sphere in R? and R? respectively. Since Q0 C R™ is the spectrum of E(x,t)
and we suppose 0 < r < Rand 0 < s < T where R and T are constants. Thus we
obtain

|E(z,t)] < (2” Z/ / exp[—c(s5 +r ) trP~ st ds dr
)
T M(t)

_ 90
COR
22=m M(t)
Ay
for any fixed ¢ > 0 in the spectrum {2, where

/ / exp[—c?(s5 + r®)t)rP~ s ds dr

is a function of ¢, Q, = 27P/2/T'(2) and Q, = 27?/2/T'(4). Thus, for any fixed
t >0, E(x,t) is bounded.
(5) This statement follows from ({3.8]). O
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