Electronic Journal of Differential Equations, Vol. 2010(2010), No. 99, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

STABILITY OF DELAY DIFFERENTIAL EQUATIONS WITH OSCILLATING COEFFICIENTS

MICHAEL I. GIL'

ABSTRACT. We study the solutions to the delay differential equation $\dot{r}(t) = -a(t)r(t-h)$

$$(t) = -a(t)x(t-h),$$

where the coefficient a(t) is not necessarily positive. It is proved that this equation is exponentially stable provided that a(t) = b + c(t) for some positive constant b less than $\pi/(2h)$, and the integral $\int_0^t c(s) ds$ is sufficiently small for all t > 0. In this case the 3/2-stability theorem is improved.

1. INTRODUCTION AND PRELIMINARIES

This article concerns the equation

$$\dot{x}(t) = -a(t)x(t-h),$$
(1.1)

where $\dot{x} = dx/dt$, the delay h is a positive constant, and a(t) a piece-wise continuous function bounded on $[0, \infty)$. We do not require that a(t) be positive, and therefore, the "characteristic function" $z + a(t)e^{-zh}$ can be unstable for some $t \ge 0$.

The sharp stability condition (the so called 3/2-stability theorem) for first-order functional-differential equations with one variable delay was established by Myshkis [5] (see also [4]). A similar result was established by Lillo [3]. The 3/2-stability theorem asserts that (1.1) is uniformly stable, provided that $0 < ha(t) \le 3/2$ for all $t \ge 0$. The upper bound 3/2 is the best possible. In fact, if $h \sup_t a(t) > 3/2$, then there are equations having unbounded solutions. The 3/2-theorem was generalized to nonlinear equations and equations with unbounded delays in the very interesting papers [6, 7, 8]. In this article, under some additional conditions we improve the 3/2-theorem.

We consider (1.1) as a perturbation of the equation

$$\dot{y}(t) = -by(t-h) \tag{1.2}$$

with a positive constant $b < \pi/(2h)$ satisfying a condition stated below. The fundamental solution to (1.2) is

$$F_b(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{e^{zt} dz}{z + be^{-zh}} \,.$$

Key words and phrases. Linear delay differential equation; exponential stability.

²⁰⁰⁰ Mathematics Subject Classification. 34K20.

^{©2010} Texas State University - San Marcos.

Submitted April 13, 2010. Published July 22, 2010.

For a function f defined and bounded on $[0,\infty)$ (not necessarily continuous), we introduce the norm $||f||_{\infty} = \sup_{t\geq 0} |f(t)|$. So $||a||_{\infty} = \sup_{t\geq 0} |a(t)|$. In addition, put

$$\|f\|_{L^1} = \int_0^\infty |f(t)| dt,$$

if the integral exists. Now we are in a position to formulate our main result.

Theorem 1.1. Let there be a constant $b \in (0, \pi/(2h))$, such that

$$w_b := \sup_{t \ge 0} \left| \int_0^t (a(t) - b) dt \right|$$

is finite and satisfies the inequality

$$w_b < \frac{1}{1 + (b + ||a||_{\infty}) ||F_b||_{L^1}}.$$
(1.3)

Then (1.1) is exponentially stable.

This theorem is proved in the next section. Its assumptions are sharp: if $a(t) \equiv b$, then $w_b = 0$ and condition (1.3) is automatically fulfilled.

Furthermore, let

$$ehb < 1. \tag{1.4}$$

Then $F_b(t) \ge 0$ and (1.2) is exponentially stable, cf. [2] and references therein. Now, integrating (1.2), we have

$$1 = F_b(0) = b \int_0^\infty F_b(t-h)dt = b \int_h^\infty F_b(t-h)dt = b ||F_b||_{L^1}.$$

Thus, Theorem 1.1 implies the following result.

Corollary 1.2. Let (1.4) and

$$w_b < \frac{b}{2b + \|a\|_{\infty}} \tag{1.5}$$

hold. Then (1.1) is exponentially stable.

Now for a positive constant ω , let

$$a(t) = b + u(\omega t), \tag{1.6}$$

where u(t) is a piece-wise continuous function such that

$$\nu_u := \sup_t \left| \int_0^t u(s) ds \right| < \infty.$$

Then

$$w_b = \sup_t |\int_0^t u(\omega s) ds| = \nu_u / \omega.$$

For example, when $u(t) = \sin(t)$, then $\nu_u = 2$. Now Theorem 1.1 and (1.5) imply our next result.

Corollary 1.3. Let (1.4), (1.6) and

$$\omega > \frac{\nu_u(3b + \|u\|_\infty)}{b} \tag{1.7}$$

hold. Then (1.1) is exponentially stable.

EJDE-2010/99

$$\dot{x} = -bx(t-1) + c_2 \sin(\omega t)x(t-1), \tag{1.8}$$

where b, c_2 are positive constant with $b < e^{-1}$. Then $\nu_u = 2c_2$ and (1.7) has the form

$$\omega > \frac{2c_2(3b+c_2)}{b}.\tag{1.9}$$

In summary, for each c_2 there exists an ω , such that (1.8) is exponentially stable. Meanwhile, the 3/2-stability theorem requires the additional condition $c_2 + b < 3/2$. Therefore, Theorem 1.1 supplements the interesting results obtained in [1].

2. Proof of Theorem 1.1

For simplicity, we put $F_b(t) = F(t)$. Due to the Variation of Constants Formula the equation

$$\dot{x}(t) = -bx(t-h) + f(t) \quad (t \ge 0),$$

with a given function f and the zero initial condition x(t) = 0 $(t \le 0)$ is equivalent to the equation

$$x(t) = \int_0^t F(t-s)f(s)ds.$$
 (2.1)

Recall that a function G(t, s), $(t \ge s \ge 0)$ differentiable in t, is the fundamental solution to (1.1) if it satisfies that equation in t and the initial conditions

 $G(s,s) = 1, \quad G(t,s) = 0 \quad (t < s, \ s \ge 0).$

Put G(t, 0) = G(t). Subtracting (1.2) from (1.1) we have

$$\frac{d}{dt}(G(t) - F(t)) = -b(G(t-h) - F(t-h)) + c(t)G(t-h)$$

where c(t) = -(a(t) - b). Now (2.1) implies

$$G(t) = F(t) + \int_0^t F(t-s)c(s)G(s-h)ds.$$
 (2.2)

We need the following simple lemma.

Lemma 2.1. Assume that on each finite segment of the real axis, functions f(t) and v(t) are boundedly differentiable and w(t) is integrable. Then with the notation

$$j_w(t,\tau) = \int_{\tau}^{t} w(s) ds \quad (t > \tau > -\infty),$$

the equality

$$\int_{\tau}^{t} f(s)w(s)v(s)ds = f(t)j_{w}(t,\tau)v(t) - \int_{\tau}^{t} [f'(s)j_{w}(s,\tau)v(s) + f(s)j_{w}(s)v'(s)]ds$$

is valid.

Proof. Clearly,

$$\frac{d}{dt}f(t)j_w(t,\tau)v(t) = f'(t)j_w(t,\tau)v(t) + f(t)w(t)v(t) + f(t)j_w(t,\tau)v'(t).$$

Integrating, this equality and taking into account that $j_w(\tau, \tau) = 0$, we arrive at the required result.

Put $J(t) := \int_0^t c(s) ds$. By the previous lemma,

$$\int_0^t F(t-\tau)c(\tau)G(\tau-h)d\tau$$

= $F(0)J(t)G(t-h) - \int_0^t \left[\frac{dF(t-\tau)}{d\tau}J(\tau)G(\tau-h) + F(t-\tau)J(\tau)\frac{dG(\tau-h)}{d\tau}\right]d\tau.$

However,

$$\frac{dG(\tau-h)}{d\tau} = -a(\tau-h)G(\tau-2h) \quad \text{and} \quad \frac{dF(t-\tau)}{d\tau} = -\frac{dF(t-\tau)}{dt} = bF(t-\tau-h).$$

Thus,

$$\int_0^t F(t-\tau)c(\tau)G(\tau-h)d\tau$$

= $J(t)G(t-h) + \int_0^t J(\tau) \Big[-bF(t-\tau-h)G(\tau-h) + F(t-\tau)a(\tau-h)G(\tau-2h) \Big] d\tau.$

Now (2.2) implies the following result.

Lemma 2.2. It holds that

$$G(t) = F(t) + J(t)G(t-h) + \int_0^t J(\tau) \Big[-bF(t-\tau-h)G(\tau-h) + F(t-\tau)a(\tau-h)G(\tau-2h) \Big] d\tau \,.$$

From the previous lemma,

$$||G||_{\infty} \le ||F||_{\infty} + ||G||_{\infty} w_b [1 + (b + ||a||_{\infty}) ||F||_{L^1}].$$

If condition (1.3) holds, then

$$\theta := w_b [1 + (b + ||a||_{\infty}) ||F||_{L^1}] < 1$$

and therefore,

$$\|G\|_{\infty} \le \frac{\|F\|_{\infty}}{1-\theta}.$$
(2.3)

So the stability of (1.1) is proved. Substituting

$$x_{\epsilon}(t) = e^{\epsilon t} x(t) \tag{2.4}$$

with $\epsilon > 0$ into (1.1), we have the equation

$$\dot{x}_{\epsilon}(t) = \epsilon x_{\epsilon}(t) - a(t)e^{\epsilon h}x_{\epsilon}(t-h).$$
(2.5)

If $\epsilon > 0$ is sufficiently small, then considering (2.5) as a perturbation of the equation $\dot{y}(t) = \epsilon y(t) - b e^{\epsilon h} y(t-h)$, and applying our above arguments, according to (2.3) we obtain $||x_{\epsilon}||_{\infty} < \infty$ for any solution x_{ϵ} of (2.5). Hence (2.4) implies $|x(t)| \leq e^{-\epsilon t} ||x_{\epsilon}||_{\infty}$ for any solution x of (1.1).

4

References

- Berezansky, L. and Braverman, E.; On stability of some linear and nonlinear delay differential equations, J. Math. Anal. Appl., 314, No. 2, 391-411 (2006).
- [2] Gil, M. I.; On Aizerman-Myshkis problem for systems with delay. Automatica, 36, 1669-1673 (2000).
- [3] Lillo, J. C.; Oscillatory solutions of the equation y'(x) = m(x)y(x-n(x)). J. Differ. Equations 6, 1-35 (1969).
- Kolmanovskii, V. and Myshkis, A.; Introduction to the theory and applications of functional differential equations. Mathematics and its Applications. Kluwer, Dordrecht, 1999.
- [5] Myshkis, A. D.; On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument. Mat. Sb., N. Ser. 28(70), 15-54 (1951).
- [6] Yoneyama, Toshiaki; On the stability for the delay-differential equation $\dot{x}(t) = -a(t)f(x(t r(t)))$. J. Math. Anal. Appl., 120, 271-275 (1986).
- [7] Yoneyama, Toshiaki; On the 3/2 stability theorem for one-dimensional delay-differential equations. J. Math. Anal. Appl. 125, 161-173 (1987).
- [8] Yoneyama, Toshiaki; The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay. J. Math. Anal. Appl. 165, No.1, 133-143 (1992).

MICHAEL I. GIL'

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, P.O. BOX 653, BEER-SHEVA 84105, ISRAEL

E-mail address: gilmi@cs.bgu.ac.il