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FILIPPOV APPROACH IN STOCHASTIC MAXIMUM
PRINCIPLE WITHOUT DIFFERENTIABILITY ASSUMPTIONS

MOKHTAR HAFAYED

Abstract. In this article, we establish necessary conditions for optimality in
stochastic control of systems governed by stochastic differential equations with

nonsmooth coefficients. The approach used is based on the approximation of

the nonsmooth coefficient by smooth one which generate a sequence of smooth
control problems. Ekeland’s variational principle is then applied to obtain a

sequence of nearly optimal controls which satisfy necessary conditions for near

optimality. By using the generalized notion of Filippov’s solutions and the
stable convergence, we obtain an explicit formula for the adjoint process and

the inequality between the Hamiltonians, on a good extension of the initial

filtered probability space.

1. Introduction

We study a stochastic control problem where the system is governed by a non-
linear stochastic differential equation (SDE for short) of the form

dXt = b(t, Xt, ut)dt + σ(t, Xt)dBt,

X0 = x.
(1.1)

Where Bt is a d-dimensional Brownian motion defined on the filtered probability
space (Ω,F ,Ft, P). The finite horizon cost function to be minimized over admissible
controls is given by

J(u) = E(g(XT )) (1.2)
where u is an admissible control and XT is a diffusion process solution of (1.1)
at the terminal time T . A control û ∈ Uad is called optimal if it satisfies J(û) =
infu∈Uad{J(u)}. The corresponding state trajectory X̂ and (X̂, û) are called an
optimal state trajectory and optimal pair respectively.

The stochastic maximum principle (SMP in short) has been and remains an im-
portant tool in the many areas in which optimal control plays a role. Pontryagin et
al [17] announced the maximum principle for the first time. Kushner [14] employed
the spike variation and Neustadt’s variational principle to derive a stochastic max-
imum principle. On the other hand, Haussmann [12] extensively investigated the
necessary conditions of stochastic optimal state feed-back controls based on the
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Girsanov’s transformation.
The case of stochastic systems with nonsmooth coefficients has been treated in
[3, 4, 15, 19]. Bahlali et al [3] employed the Krylov’s inequality to derive a stochas-
tic maximum principle with nonsmooth coefficients and nondegenerate diffusion.
Necessary conditions for optimality for degenerate diffusion with nonsmooth coef-
ficient is established by Bahlali et al [4].

The necessary conditions for optimality for diffusion with nonsmooth drift, has
been solved by Mezerdi [15] by using Clarke’s generalized gradient and stable con-
vergence of probability measures. A difficulty is treating the case where the dif-
fusion coefficient σ contains the control variable u. Among those works one can
see [2, 5, 16]. Peng [16] introduced the second-order adjoint equation and obtained
the maximum principle in which the control enters both the drift and the diffusion
coefficients where the set of controls is not necessarily convex.

A good account and an extensive list of references on the maximum principle and
optimal stochastic control can be founded in Yong et al [20]. Filippov [10] has devel-
oped a solution concept for ordinary differential equations (ODEs in short) with a
discontinuous right-hand side. When a function V is locally Lipschitz continuous,
the associated Filippov differential inclusion is equal to the Clarke’s generalized
gradient of V .

The main contribution of the present paper is to extend the stochastic maximum
principle to the case where the drift and the diffusion coefficients are nonsmooth
in the sense that they are only Lipschitz continuous and satisfy a linear growth
condition. Our approach is to express a generalized derivative of b and σ using
a Filippov differential inclusion type argument in terms of well defined smooth
approximations, and stable convergence of probability measures to caracterize the
first order adjoint equation. A similar type of stochastic maximum principle has
primarily been derived in Mezerdi [15] with non-differentiable drift using Clarke’s
generalized gradient.

The novelty in our maximum principle is based on the advantage of the Filippov’s
approach which allows to express the generalized gradient in terms of the underlying
approximating sequence bn

x and σn
x constructed in Section 5, a property that is not

explicit in Clarke’s approach.
The rest of the paper is organized as follows. In the section 2, we present the

formulation of the problem. Section 3 is devoted to the classical maximum principle.
In section 4, we give some proprieties of Filippov notion. Section 5 contains our
main result where we give a generalized stochastic maximumu principle for our
stochastic control problems.

2. Problem Formulation and Preliminaries

Throughout this paper, we assume (Ω,F ,Ft, P) is a filtered probability space
and Bt an Brownian motion with values in Rd. Let A be a Borelian subset of Rn,
ut is called an admissible control if it is measurable and Ft-adapted with values
in A. We denote Uad the space of admissible controls, Bj

t the jth column of Bt

and σj the jth column of the matrix σ. Let b : [0, T ] × Rd×A → Rd and the
diffusion matrix σ : [0, T ]×Rd → Rd ⊗Rd are Borelian functions such that: for all
(t, x, y, u) ∈ [0, T ]×Rd ×Rd ×A, there exists positive constants K and c such that

|σ(t, x)− σ(t, y)|+ |b(t, x, u)− b(t, y, u)| ≤ K|x− y|, (2.1)
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|σ(t, x)|+ |b(t, x, u)| ≤ c(1 + |x|), (2.2)

b(t, x, .) : A → Rd is continuous. (2.3)

From assumptions (2.1) and (2.2) it is easy to see that equation (1.1) satisfies the
usual Itô conditions; therefore it has a unique strong solution such that for any
q ≥ 1 :

E[sup
t≤T

|Xt|q] < +∞.

The cost function to be minimized define by (1.2) satisfies the following condition

g : Rd → R is continuously differentiable, (2.4)

such that |g(X)| ≤ c[1+|X|] and |gx(X)| ≤ M ; where gx denote the gradient of g at
x. Finaly throughout this paper, we assume that an optimal control û is supposed
to exist.

3. Classical stochastic maximum principle

In the regular case, the control problem based to defined an admissible control û
which minimizes a cost J(u). The conditions must satisfied by the control û which
is supposed to exists, are called the stochastic maximum principle. In this case we
assume

b(t, ., u), σj(t, .) : Rd → Rd is continuously differentiable. (3.1)

To obtain these necessary conditions for optimality, we compare û with controls
which are strong perturbations defined by

uh(t) =

{
v if t ∈ [t0, t0 + h],
û otherwise.

We define the Hamilonian H(t, xt, ut, pt) := ptb(t, x, u) where ptb(t, xt, ut) is the
scalar product in Rd.

Lemma 3.1. (1) Let Xh the corresponding trajectory of uh then

E( sup
t≤T

|Xh
t − X̂t|)2 ≤ Kh2.

(2) Let Φ(t) be the solution of the linear stochastic differential equation

dΦ(t) = bx(t, X̂t, ût)Φ(t)dt +
∑

1≤j≤d

σj
x(t, X̂t)Φ(t)dBj

t ,

Φ0 = b(t, X̂t, v)− b(t, X̂t, û),
(3.2)

where bx and σj
x are the derivatives of b and σj (j = 1, . . . , d ) in the state variable

x. Then

lim
h→0

E(|X
h
T − X̂T

h
− Φ(T )|2) = 0.

(3) d
dh{J(uh)}

∣∣
h=0

= E[H(t, X̂t, û, pt)]− E[H(t, X̂t, v, pt)].

See Bensoussan [5] or Mezerdi [15] for the a detailed proof of the above lemma.
Under the differentiability assumptions (3.1), the regular version of the stochastic
maximum principle given by the following lemma.
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Lemma 3.2. Let (X̂, û) be an optimal pair. Then there exists an adapted process
p(t) satisfying

p(t) = −E[Φ∗(T, t)gx(X̂T )|Ft], (3.3)

H(t, X̂t, û, pt) = max
v∈A

H(t, X̂t, v, pt) dt a.e. P a.s., (3.4)

where Φ∗(T, t) is the transpose of Φ(T, t) solution to (3.2).

See Mezerdi [15] or Yong et al [20] for the detailed proof of the above lemma.
We call p(t) the adjoint process, (3.3) the adjoint equation and (3.4) the maxi-

mum condition. A control uε is called a near optimal if for all ε > 0, there exists
uε such that

J(uε) ≤ inf{J(u) : u ∈ Uad}+ ε.

In this part we establish necessary conditions of near optimality satisfied by a
sequence of nearly optimal strict controls. This result is based on Ekeland’s varia-
tional principle, which is given as follows.

Lemma 3.3 (Ekeland’s Lemma). Let (E, d) be a complete metric space and f :
E → R be lower semicontinuous and bounded from below. Given ε > 0 and uε ∈ E
satisfies f(uε) ≤ inf(f) + ε. Then for any λ > 0, there exists v ∈ E such that

(i) f(v) ≤ f(uε).
(ii) d(uε, v) ≤ λ.
(ii) f(v) < f(w) + ε

λd(v, w) for all w 6= v.

See Ekeland [9] for a proof of the above lemma. To apply Ekeland’s variational
principle to our problem we must define a distance d on the space of admissible
controls such that (Uad, d) becomes a complete metric space, we pose: for any u, v
∈ Uad

d(u, v) = P⊗ dt{(w, t) ∈ Ω× [0, T ] : u(w, t) 6= v(w, t)}.
Where P⊗ dt is the product measure of P with the Lebesgue measure dt on [0, T ].
In the next lemma we give some properties.

Lemma 3.4. (1) (Uad, d) is a complete metric space.
(2) Let u, v ∈ Uad, then the following estimate holds

E(sup
t≤T

|Xu
t −Xv

t |2) ≤ K[d(u, v)]1/2,

where Xu and Xv are the corresponding trajectories of u and v.

Proof. The proof of (1) can be found in Yong et al [20, pp. 146-147]. Item (2)
is proved using Lipschitz assumptions on the coefficients, Burkholder-Davis-Gandy
and Cronwall’s inequalities. �

Denote by Xε the unique solution of the stochastic differential equation
dXε

t = b(t,Xε
t , uε

t )dt + σ(t, Xε
t )dBt,

Xε
0 = x.

(3.5)

Let Φε(t, s) be the fundamental solution of the linear stochastic differential equation
(t ≥ s)

dΦε(t) = bx(t, Xε
t , uε

t )Φ(t)dt +
∑

1≤j≤d

σj
x(t,Xε

t )Φ(t)dBj
t ,

Φε(t, t) = Id,

(3.6)
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and the adjoint process associated to uε is given by

pε(t) = −E[Φ∗ε(T, t)gx(Xε
T )|Ft].

Lemma 3.5 (Aproximate maximum principle). For each ε > 0 there exist uε
t and

an adapted process pε(t), given by (3.6), such that for all v ∈ A,

E[〈pε(t), b(t;Xε
t , v)〉] ≤ E[〈pε(t), b(t;Xε

t , uε
t )〉] + ε dt− a.e.

Proof. Since uε is optimal for the cost Jε(u) = J(u) + εd(u, uε), then we apply
results of the last section to derive the adjoint process and the inequality between
Hamiltonians. Notice that if uε

h denotes a strong perturbation of uε then d(uε
h, uε) =

h (see Mezerdi [15], Bensoussan [5]). �

4. Filippov’s set-valued map and Generalized gradient

4.1. Filippov’s set-valued map. We give in this section some basic notions and
concepts concerning generalized Filippov’s set-valeud map which is described briefly
by the following.

Let us consider a function b : Rn → Rn to which we associate the following
set-valued map called Filippov’s regularization of b,

Fb(x) := ∩λ(N)=0 ∩δ>0 cob((x + δB)−N), (4.1)

where co(A) means the closure of the convex hull of A. The first intersection
∩λ(N)=0is taken over all sets of Rn, being negligible with respected to Lebesgue
measure λ and B is the closed unit ball.

Let us consider a function b : Rn → Rn to which we associate the following
ordinary differential equation,

x′(t) = b(x(t)), t ≥ 0, x(0) = x. (4.2)

Without regularity assumptions on f (Lipschitz continuity), it is well known that
neither existence, nor uniqueness hold true in general.

An absolutely continuous solution t ∈ [0,+∞) 7→ x(t) ∈ Rn is a Filippov’s
solution of the ODE (4.2) if and only if it is solution of the differential inclusion

x′(t) ∈ Fb(x), t ≥ 0, X(0) = x. (4.3)

The set valued map Fb is upper semi continuous with compact convex values. This
implies that the differential inclusion (4.3) has a nonempty set of (local) solution
(Aubin [1]). In the following proposition we summarized some proprieties.

Proposition 4.1. Let b : Rn → Rn be a measurable and bounded function. Then
we have:

(1) There exists a negligible-set Nb under the Lebesgue measure such that for
any x ∈ Rn :

Fb(x) = ∩δ>0cob((x + δB)−Nb), (4.4)

(2) For almost all x ∈ Rn, we have b(x) ∈ Fb(x).
(3) The set valued map Fb is the smallest upper semi continuous set- valued

map F with closed convex values such that b(x) ∈ F (x), for almost all
x ∈ Rn.

(4) The map b 7→ Fb is single-valued if and only if there exists a continuous
function g which coincides almost everywhere with b. In this case we have
Fb(x) = {g(x)}. for almost all x ∈ Rn.
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(5) If a function b̃ coincide almost everywhere with b then Fb(x) = Fb̃(x) for
all x ∈ Rn.

(6) There exists a function b̄ which is equal almost everywhere to b and such
that

Fb(x) = ∩δ>0cob̄(x + δB).
(7) We have Fb(x) = ∩b=b̄ ∩δ>0 cob̄(x + δB), where the first intersection is

taken over all functions b̄ being equal to b almost everywhere.

See Bukhdahn et al [8] for a proof of the above proposition.
As an example, in the one dimensional case (n = 1), we have b : R → R for

which one can check that: for all x ∈ Rn:

Fb(x) = [mb(x),mb(x)]

where
mb(x) := sup

δ>0
( ess inf
[x−δ,x+δ]

b), mb(x) := inf
δ>0

( ess sup
[x−δ,x+δ]

b).

In the case where b(x) = sgn(x), then we have Fb(0) = [−1, 1].

4.2. Connection between Filippov’s approach and Clarke’s generalized
gradient. We give in this subsection the connection between Filippov’s differential
inclusion and the Clarke’s generalized gradient.
The Clarke’s generalized gradient. Let V : Rn → R be locally Lipschitz
continuous. We define the generalized gradient of V as

∂cV (x) = co{ lim
xi→x

∇V (xi), xi /∈ ΩV ∪N}, (4.5)

where ΩV is the set of Lebesgue measure zero where ∇V does not exist and N is
an arbitrary set of measure zero.

Lemma 4.2. The map F : {b : Rm → Rn} → {g : Rm → 2Rn} has the following
properties:

(1) Assume that b : Rm → Rn is locally bounded. Then ∃Nb ⊂ Rm, λ(Nb) = 0
such that ∀N ⊂ Rm, λ(N) = 0.

Fb(x) = co{ lim
xi→x

b(xi), xi /∈ Nb ∪N}.

(2) Assume that b, f : Rm → Rn is locally bounded; then

F(b+f)(x) ⊂ Fb(x) + Ff (x).

(3) Assume that bj : Rm → Rnj where j ∈ {1, 2, . . . , N} are locally bounded;
then

F
(
j=N

Π
j=1

bj)
(x) ⊂

j=N

Π
j=1

Fbj
(x).

(4) Let g : Rm → Rn is C1, rank Dg(x) = n and b : Rn → Rp be locally bounded;
then

Fb◦g(x) = Fb(g(x)).
(5) Let g : Rm → Rp×n (i.e. matrix valued) be C0 and b : Rm → Rn be locally

bounded; then Fgb(x) = g(x)Fb(x), where gb(x) := g(x)b(x).
(6) Let V : Rm → R be locally Lipschitz continuous, then F∇V (x) = ∂cV (x).

The proof of the above lemma can be found in Paden et al [18].
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Remark 4.3. (i) Since V is locally Lipschitz, |nablaV is defined almost every-
where and locally bounded (Rademacher’s Theorem). By using Lemma 3.5 we
have F∇V (x) = ∂cV (x).
(ii) In particular, if V is Frêchet-differentiable at x, then

F∇V (x) = ∂cV (x) = {V ′(x)}.

5. Main results

In this section we establish generalized stochastic maximum principle for dif-
fusion without differentiability assumptions on the coefficients b, σj satisfies the
assumptions (2.1) and (2.2), so we are going to weaken the differentiability as-
sumptions on this coefficients. This method is described briefly by the following.

Let E be a Banach space, E∗ its dual and let f : V → Rd where V is a closed
subset of E, satisfiying the following conditions:

(H1) The exist λn > 0, and fn : B → Rd Gâteaux-differentiable in the ball
(y + λnB) and fn(y) = f(y).

(H2) There exists εn > 0 such that εn

λn
→ 0 as n → +∞, fn is continuous and

|fn(x)− f(x)| ≤ εn for x ∈ (y + λnB).
We shall approximate the drift b and the diffusion σj by a sequence of smooth

functions bn and σj,n by using the following regularization
Let ξn : R → R be a positive C∞ application vanishing out of the interval

[−εn, εn] such that
∫

R ξn(x)dx = 1 and limn→+∞ εn → 0. We denote ρn =∏j=d
j=1 ξn(xj) where x = (x1, . . . , xd) ∈ Rd. ρn is a C∞ function with compact

support.
We define the following smooth functions bn = b∗ρn and σj,n = σj ∗ρn obtained

by the convolution of all the components of b and σj with ρn. We give in the next
theorem the following proprieties satisfied by these functions.

Lemma 5.1. (1) bn : [0, T ]×Rd×A → Rd and σj,n : [0, T ]×Rd → Rd are Borelian.
(2) bn and σj,n are k-Lipschizian in the second variable x and has linear growth.
(3) bn and σj,n are a C∞ in x, and for all (t, x, u) ∈ [0, T ]×Rd×A: |bn(t, x, u)−

b(t, y, u)| ≤ kεn, and |σn(t, x)− σ(t, y)| ≤ kεn.

The statements in the above lemma are a classical facts; see Frankowska [11] and
Mezerdi [15].

Note that bn and σj,n satisfies conditions (H1) and (H2) with λn =
√

εn. So we
can define

∂cb(t, y, u) = ∩n≥0co ∪k≥n [bk
x(t, x, u) : x ∈ (y + λnB)].

∂cσ
j(t, y) = capn≥0co ∪k≥n [σj,k

x (t, x) : x ∈ (y + λnB)].

Let Xn be the solution of
dXn

t = bn(t, Xn
t , un

t )dt + σn(t, Xn
t )dBt,

Xn
0 = x.

(5.1)

Let Φn(s, t) denote the fundamental solution of the linear equation (s ≥ t),

dΦn(t) = bn
x(t, Xn

t , un
t )Φn(t)dt +

∑
1≤j≤d

σj,n
x (t,Xn

t )Φn(t)dBj
t ,

Φn(s, s) = Id.

(5.2)

The following lemma will play an interesting role below.
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Lemma 5.2. There exists un ∈ Uad and λn =
√

δn such that

(i) d(un, u∗) ≤ λn.
(ii) E[Hn(t;Xn

t , un
t , pn

t )] ≥ E[Hn(t;Xn
t , v, pn

t )]− λn, for all v ∈ A, dt− a.e. for
all v ∈ A. The associate adjoint process is given by

pn(t) = −E{Φ∗n(T, t)gx(Xn
T )|Ft

}.

Proof. Since un
t is optimal for the cost Jn(u) + (δn)1/2d(u, un) then, we proceed

as in Lemma 3.2 to derive a maximum principle for un
t . The rest of the proof is

similar to the approximate maximum principle, see Yong et al [20]. �

Notice that since the gradient gx is continuous, then we have gx(Xn
T ) → gx(X̂T )

P-a.s. as n → +∞.

5.1. Weak limit solution with stable convergence. The limit of Φn is proved
by using the stable convergence of probability measure introduced by Jacod et al
[13]. This convergence is contained between convergence in law and convergence
in probability. We shal make use of the notion of good extension of a filtered
probability space.

Definition 5.3. The space (Ω,F ,F t, P) is a good extension of (Ω,F ,Ft, P) if the
following conditions are satisfied

(1) Ω = Ω× Ω̂ where Ω̂ is an auxiliary space.
(2) F ∈ F̄ ; i.e., A× Ω̂ ∈ F , for A ∈ F , Ft ∈ F t.
(3) P(A× Ω̂) = P(A) for A ∈ F .
(4) Each (Ft − P) martingale is a (F ,−P) martingale.

Clearly, since bn and σj,n are k-Lipshitz in x and continuously differentiable,
then the matrix of partial derivatives bn

x and σj,n
x are bounded by the Lipschiz

constant k.
Let us define the canonical spaces associated to the processes bn

x(t,Xn
t , un

t ),
σj,n

x (t, Xn
t ), (σn

x )∗(σn
x ) and Φn(t):

(1) Let Ω1, the canonical space of bn
x(t, Xn

t , un
t ), define by the following: Let

D1 = {β1 : [0, T ] → Rd ⊗ Rd measurable such that ‖β1‖ ≤ c}.
It is clear that bn

x take values in D1 which is uniformly integrable subset of
L1([0, T ], Rd ⊗ Rd), hence it is a relatively compact subset with respect to the
weak topology σ(L1, L∞) (Dunford-Pettis Thoerem). Let Ω1 = D1 (weak or strong
closure of D1, because D1 is convex).

We define F1 the filtration of the coordinates generated by the subsets of the
form

A = {β1 ∈ Ω1 :
∫ t

0

〈β1, f(s)〉ds ≤ c, where c ∈ R, f ∈ L∞([0, T ], Rd ⊗ Rd)}.

(Ω1, F1, F1
t ) is the canonical space associated to the process bn

x(t, Xn
t , un

t ).
(2) Let D2 = {βj

2 : [0, T ] → Rd ⊗Rd measurable such that ‖βj
2‖ ≤ c}. It is clear

that σj,n
x (t, Xn

t ) take values in D2 which is uniformly integrable subset of L1([0, T ]),
hence it is a relatively compact subset with respect to the weak topology σ(L1, L∞)
(Dunford-Pettis Thoerem). Let Ω2 = D2 (weak or strong closure of D2, because
D2 is convex). Then Ω2 are compact metrisible spaces.
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We define F2 the filtration of the coordinates generated by the subsets of the
form

B = {βj
2 :

∫ t

0

〈βj
2, h(s)〉ds ≤ c, where c ∈ R, h ∈ L∞([0, T ], Rd ⊗ Rd)}.

where (Ω2, F2, F2
t ) is the canonical space associated to the process σj,n

x (t, Xn
t ).

(3) Let Ω3 = {a ∈ L2([0, T ]) such that ‖a‖ ≤ c}, (Ω3, F3, F3
t ) is the canonical

space associated to the process an = σj,n
x (t,Xt)∗.σj,n

x (t,Xt).
(4) Φn has a continuous trajectories, then Φn : (Ω,F ,Ft, P) → Ω4 where Ω4 is

the space of continuous functions from [0, T ]toRd ⊗Rd equipped with the topology
of uniform convergence and F4

t the filtration coordinates. By this definitions, we
introduce the product space

Ω = Ω× Ω1 × Ω2 × Ω3 × Ω4,

equipped with the filtration

F t = ∩s≥tFs ⊗F1
s ⊗F2

s ⊗F3
s ⊗F4

s .

We associate with (bn
x(., Xn, un), σj,n

x (., Xn), an(., Xn),Φn) the randomized vari-
able Pn which is a probability measure defined on (Ω,F) by

Pn(w,w1, w2, w3, w4) = P(w)δbn
x
(dw1)δσj,n

x
(dw2)δan(dw3)δΦn(dw4),

where δx the Dirac measure at x and Φn solution of (5.2).

Theorem 5.4. The space (Ω̄,F ,F t, Pn) is a good extension of the space (Ω,F ,Ft, P),
moreover the canonical process Φt(w,w1, w2, w3, w4) = w4(t) is a solution of the
stochastic differential equation

dΦ(t) = β1(t)Φ(t)dt +
∑

1≤j≤d

βj
2(t)Φ(t)dBj

t

Φ(0) = Id,

on the space (Ω,F ,F t, Pn), where B̂t is a Brownian motion which is independent
of Bt.

Proof. Let E, En and E the expectation with respect to the randomized probability
P, Pn and P respectively. It is sufficient to verify that all (Ft−P) martingale is(F t,
Pn) martingale. �

The sequence Pn converge with respect to stable convergence to a limit P if and
only if:

lim
n→+∞

Pn[g(w,w1, w2, w3, w4)] = P[g(w,w1, w2, w3, w4)].

For every function g : Ω → R measurable bounded such that: g(w, ., ., ., .) is con-
tinuous for all w ∈ Ω.

To prove that the sequence Pn is relatively compact with respect to stable con-
vergence, it is sufficient to prove that the projections of Pn on Ω1, Ω2, Ω3 and Ω4

are relatively compact in the topology of narrow convergence.

Lemma 5.5. (i) Let Φn be the solution of (5.2) then there exists a positive constant
M such that for all n ∈ N and s, t ∈ [0, T ],

E(‖Φn(t)− Φn(s)‖4) ≤ M |t− s|2.
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(ii) The sequence Pn is relatively compact with respect to the topology of stable
convergence

Proof. Statement (i) follows from the Schwartz and Burkholder-Davis-Gandy in-
equalities.

(ii) Since Ω1 (resp. Ω2 ) is compact, then the sequence of the projections of Pn on
Ω1 (resp. Ω2) is tight, then relatively compact (Prokhorov’s Theorem). Moreover
the projections of Φn on Ω4 coincides with the distributions of Φn which satisfy (i)
of Lemma 5.5, then Φn is relatively compact with respect to the topology of stable
convergence. �

Theorem 5.6. Let P be a limit of Pn (in the sense of stable convergence), then
(Ω,F ,F t, P) is a good extension of the space (Ω,F ,Ft, P). Moreover the canonical
process Φt(w,w1, w2, w3, w4) = w4(t) satisfies

dΦ(t) = β1(t)Φ(t)dt +
∑

1≤j≤d

βj
2(t)Φ(t)dBj

t +
∑

1≤j≤d

β̂j
2(t)Φ(t)dB̂j

t

Φ(s, s) = Id,

(5.3)

Proof. For doing this we need the techniques in Mezerdi [15] and in Jacod et al [13],
so it is sufficient to prove that all (Ft − P) martingale is (F t − P) martingale. Let
Mt be a (Ft − P) martingale, and Z a bounded random variable, Fs measurable
such that (w1, w2, w3, w4) → Z(w1, w2, w3, w4) is continuous.

According to Theorem 5.4, the space (Ω̄,F ,F t, Pn) is a good extension of (Ω,F ,Ft, P).
(s ≤ t). Then En[MtZ] = En[MsZ] for all n ∈ N. Since P is a limit of Pn we have

E[MtZ] = lim
n→+∞

En[MtZ] = lim
n→+∞

En[MsZ] = E[MsZ].

The set of random variables Z are Fs measurable bounded continuous in (w1, w2, w3, w4)
generates a σ−field contained between Fs− and Fs. Then E[(Mt −Ms)|Fs− ] = 0,
the right continuity of Mt implies that E[(Mt −Ms)|Fs] = 0.

Φt takes values in Rd ⊗ Rd then Φt is a solution of (5.3). Applying similar
techniques as those in [13] where it is sufficient to prove that for all (h1, h2) ∈ Rd×Rd

Mt(h1, h2) = h1Bt + h1(Φs − Φ0 −
∫ t

0

β1(s)Φsds).

Here Mt is a (F t − P) martingale and have a quadratic variation of the form

At(h1, h2) = h2
1t + 2h1h2

t∫
0

β1(s)Φsds + h2
2

t∫
0

a(s)Φ2
sds.

Note that Mt is an (F̄t− P̄n) martingale for all n ∈ N and (w,w1, w2) → Mt(h1, h2)
is continuous.

To pass to the limit, we must show that Mt is sufficiently integrable. Be-
cause β1(t), and βj

2(t) are bounded and E[(supt≤T |Φi
s|)p] < +∞. We deduce that

supn En[|Mt(h1, h2)|2] < +∞, ∀p ≥ 1. Then if Z is a bounded F̄t-measurable ran-
dom variable continuous in (w1, w2, w3, w4) we have En[(Mt −Ms)Z] → E[(Mt −
Ms)Z] as n → +∞. Hence Mt(h1, h2) is an (F t − P) martingale.

The extra term
∑

1≤j≤d β̂j
2(t)ΦtdB̂j

t comes from the Itô decomposition Theorem
for martingales adapted to a filtration supporting a Brownian motion. �
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The same method can be performed for M2
t (h1, h2) − At(h1, h2). Now we are

ready to state our main result.

Theorem 5.7. Let û be an optimal control and X̂ corresponding trajectory, then
there exists a probability P on the space (Ω,F ,F t) such that

(1) E[H(t, X̂t, ût, pt)] = maxv∈A E[H(t, X̂t, v, pt)], dt-a.e.
(ii) pt = −E[Φ∗(T, t)gx(X̂T )|Ft

]. where Φ∗(T, t) is the transpose of Φ(T, t)
given by (5.3).

Proof. According to Lemma 5.2 there exists a control un
t such that d(un

t , ût) ≤ λn.
So it is sufficient to prove that

lim
n→+∞

E[H(t, Xn
t , un

t , pn(t))] = E[H(t, X̂t, ût, p(t))].

�

5.2. Filippov approach and the support of a limit P. Our goal in this sub-
section is to prove a stochastic maximum principle for the optimal controls without
differentiability assumptions.

Let P be a stable limit of (Pn), now we give in this section the connection between
the support of P and the generalized Filippov’s set of b and σj at (X̂t, ût).

Let Ω̃ = Ω×Ω1×Ω2×Ω3, F̃t = ∩s≥tFs⊗F1
s ⊗F2

s ⊗F3
s and P̃ is the projection

P on Ω̃ then we have

P̃(dw, dw1, dw2, dw3) = P(dw, dw1, dw2, dw3,Ω4),

where (Ω̃, F̃ , F̃t, P̃) is a good extension of (Ω,F ,Ft, P) and P̃ is a stable limit of
P̃n, where P̃n denotes the projection de Pn on Ω̃. Moreover if we consider equation
(5.3) on the space (Ω̃, F̃ , F̃t, P̃), then it has a strong unique solution. If we denote
by Φ̃t(w,w1, w2, w3) the solution on (Ω̃, F̃ , F̃t, P̃) then Φ̃t = ΦtP-a.s., and

P(dw, dw1, dw2, dw3, dw4) = P̃(dw, dw1, dw2, dw3)δeΦt(w,w1,w2,a)(dw4).

If D denotes a support of the probability P̃(dw, dw1, dw2, dw3), according to
Jacod et al [13] there exists a subsequence such that (P− a.s).

D1
w: the set of limit points of the subsequence of bn

x(t, Xn(w), un(w)) where w
is fixed.

D2
w: the set of limit points of the subsequence of σj,n

x (t, Xn(w)) where w is fixed.
The Filippov differential inclusion allows us to expresses the generalized deriv-

ative of b and σ in terms of well defined smooth approximations. This advantage
enables to give the following theorem.

Theorem 5.8. (i) For almost all w, there exists a subsequence bn
x(t, Xn

t (w), ût(w))
and σj,n

x (t, Xn
t (w)) such that

lim
n→+∞

bn
x(t, Xn

t (w), ût(w)) = β1(t) in L1(dt).

lim
n→+∞

σj,n
x (t, Xn

t (w)) = βj
2(t) in L1(dt).

(ii) For almost every t ∈ [0, T ]. we have β1(t) ∈ F∇b(t, X̂t, ût) and βj
2(t) ∈

F∇σj (t, X̂t).
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Proof. (i) According to the definition of D1
w there exists a subsequences bn

x(t,Xn
t (w),

un
t (w)) which converges weakly in L1(dt) to β1(t). Moreover,

E[
∫ T

0

|bn
x(s,Xn

t , un
t )− bn

x(t, Xn
t , ût)|dt] ≤ Md(un, ût).

Then there exists a subsequence such that

[
∫ T

0

|bn
x(s,Xn

t , un
t )− bn

x(t, Xn
t , ût)|dt] → 0 as n → +∞, P̃-a.s.,

using a similar proof as for limn→+∞ σj,n
x (t, Xn

t (w)) = βj
2(t).

(ii) Let β1(t) ∈ D1
w, according to (i) Theorem 5.8, there exists a subsequence

bn
x(t, Xn

t , ût)) which converges to β1(t) in L1(dt). Moreover, we have

lim
n→+∞

E[sup
t≤T

|Xn
t − X̂t|2] = 0,

so we can extract a subsequences such that supt≤T |Xn
t −X̂t| ≤ λnP-a.s., then there

exists n ∈ N such that

bn
x(t,Xn

t , un
t ) ∈ ∪k≥n[bk

x(t,Xt, ût) : Xt ∈ (X̂t + λnB)].

According to Mazur’s Lemma, there exists a sequence of convex combinations which
converges strongly in L1(dt) to β1(t). Then we have

β1(t) ∈ ∩n≥0co ∪k≥n [bk
x(t, x, u) : x ∈ (y + λnB)] dt− a.e.

According to the property (6) of Lemma 4.2 we have

β1(t) ∈ F∇b(t, X̂t, ût) dt− a.e.

Applying a similar proof for βj
2(t) ∈ F∇σj (t, X̂t). This completes the proof. �

Remark 5.9. Using the same method of proof, we obtain a more general non-
smoothness result for the stochastic maximum principle without differentiability
assumptions in which the control enters both the drift and the diffusion coefficients
where the set of controls is necessarily convex.
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