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SOLUTIONS TO THREE-DIMENSIONAL NAVIER-STOKES
EQUATIONS FOR INCOMPRESSIBLE FLUIDS

JORMA JORMAKKA

Abstract. This article gives explicit solutions to the space-periodic Navier-

Stokes problem with non-periodic pressure. These type of solutions are not

unique and by using such solutions one can construct a periodic, smooth,
divergence-free initial vector field allowing a space-periodic and time-bounded

external force such that there exists a smooth solution to the 3-dimensional

Navier-Stokes equations for incompressible fluid with those initial conditions,
but the solution cannot be continued to the whole space.

1. Introduction

Let x = (x1, x2, x3) ∈ R3 denote the position, t ≥ 0 be the time, p(x, t) ∈ R be
the pressure and u(x, t) = (ui(x, t))1≤i≤3 ∈ R3 be the velocity vector. Let fi(x, t)
be the external force. The Navier-Stokes equations for incompressible fluids filling
all of R3 for t ≥ 0 are [1]

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
= v∆ui −

∂p

∂xi
+ fi(x, t), x ∈ R3, t ≥ 0, 1 ≤ i ≤ 3 (1.1)

div u =
3∑

i=1

∂ui

∂xi
= 0, x ∈ R3, t ≥ 0 (1.2)

with initial conditions
u(x, 0) = u0(x), x ∈ R3. (1.3)

Here ∆ =
∑3

i=1
∂2

∂x2
i

is the Laplacian in the space variables, v is a positive coefficient
and u0(x) is C∞(R3) vector field on R3 required to be divergence-free; i.e., satisfying
div u0 = 0. The time derivative ∂ui

∂t at t = 0 in (1.1) is taken to mean the limit
when t→ 0+.

This article shows that there exists C∞(R3), periodic, divergence-free initial
vector fields u0 defined at R3 such that there exists a family of smooth (here, in
the class C∞(R3 × [0,∞))) functions u(x, t) and p(x, t) satisfying (1.1), (1.2) and
(1.3). We also show that there exist a periodic and bounded external force fi(x, t)
such that the solution cannot be continued to the whole R3 × [0,∞).
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2. Theorems and Lemmas

The simple explicit case of u(x, t) in Lemma 2.1 satisfies the conditions given
in (1.3) and allows a free function g(t) that only satisfies g(0) = g′(0) = 0. The
solution is then not unique. If the time derivatives of u(x, t) are specified at t = 0
then the solution in the lemma is unique.

Lemma 2.1. Let

u0
1 = 2π sin(2πx2) + 2π cos(2πx3),

u0
2 = 2π sin(2πx3) + 2π cos(2πx1),

u0
3 = 2π sin(2πx1) + 2π cos(2πx2)

be the initial vector field, and let fi(x, t) be chosen identically zero for 1 ≤ i ≤ 3.
Let g : R → R be a smooth function with g(0) = g′(0) = 0 and β = (2π)2v. The
following family of functions u and p satisfy (1.1)-(1.3):

u1 = e−βt2π (sin(2π(x2 + g(t))) + cos(2π(x3 + g(t))))− g′(t),

u2 = e−βt2π (sin(2π(x3 + g(t))) + cos(2π(x1 + g(t))))− g′(t),

u3 = e−βt2π (sin(2π(x1 + g(t))) + cos(2π(x2 + g(t))))− g′(t),

p = −e−2βt(2π)2 sin(2π(x1 + g(t))) cos(2π(x2 + g(t)))

− e−2βt(2π)2 sin(2π(x2 + g(t))) cos(2π(x3 + g(t)))

− e−2βt(2π)2 sin(2π(x3 + g(t))) cos(2π(x1 + g(t))) + g′′(t)
3∑

j=1

xj .

(2.1)

Proof. The initial vector field is smooth, periodic, bounded and divergence-free.
Let (i, k,m) be any of the permutations (1, 2, 3), (2, 3, 1) or (3, 1, 2). We can write
all definitions in (2.1) shorter as (here g′(t) = dg/dt):

ui = e−βt2π (sin(2π(xk + g(t))) + cos(2π(xm + g(t))))− g′(t),

p = −e−2βt(2π)2 sin(2π(xi + g(t))) cos(2π(xk + g(t)))

− e−2βt(2π)2 sin(2π(xk + g(t))) cos(2π(xm + g(t)))

− e−2βt(2π)2 sin(2π(xm + g(t))) cos(2π(xi + g(t))) + g′′(t)
3∑

j=1

xj .

It is sufficient to proof the claim for these permutations. The permutations (1, 3, 2),
(2, 1, 3) and (3, 2, 1) only interchange the indices k and m. The functions (2.1) are
smooth and u(x, t) in (2.1) satisfies (1.2) and (1.3) for the initial vector field in
Lemma 2.1. We will verify (1.1) by directly computing:

∂ui

∂t
= −βe−βt2π (sin(2π(xk + g(t))) + cos(2π(xm + g(t))))− g′′(t)

+ g′(t)e−βt(2π)2 (cos(2π(xk + g(t)))− sin(2π(xm + g(t)))) ,

−v∆ui = ve−βt(2π)3 (sin(2π(xk + g(t))) + cos(2π(xm + g(t)))) ,
∂p

∂xi
= −e−2βt(2π)3 cos(2π(xi + g(t))) cos(2π(xk + g(t)))

+ e−2βt(2π)3 sin(2π(xm + g(t))) sin(2π(xi + g(t))) + g′′(t).
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The functions uk and um are

uk = e−βt2π (sin(2π(xm + g(t))) + cos(2π(xi + g(t))))− g′(t),

um = e−βt2π (sin(2π(xi + g(t))) + cos(2π(xk + g(t))))− g′(t).

The remaining term to be computed in (1.1) is∑
j∈{i,k,m}

uj
∂ui

∂xj
= ui

∂ui

∂xi
+ uk

∂ui

∂xk
+ um

∂ui

∂xm

= e−2βt(2π)3 cos(2π(xi + g(t))) cos(2π(xk + g(t)))

− e−2βt(2π)3 sin(2π(xm + g(t))) sin(2π(xi + g(t)))

− g′(t)e−βt(2π)2 (cos(2π(xk + g(t)))− sin(2π(xm + g(t)))) .

Inserting the parts to (1.1) shows that

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
− v∆ui +

∂p

∂xi
= 0.

This completes the proof . �

Theorem 2.2. There exists a periodic, C∞(R3), and divergence-free vector field
u0(x) = (u0

i (x))1≤i≤3 on R3 such that the following two claims hold:
C1: The solution to (1.1)-(1.3) is not necessarily unique. In fact, there are

infinitely many C∞
(
R3 × [0,∞)

)
functions u(x, t) = (ui(x, t))1≤i≤3 and

p(x, t) satisfying (1.1), (1.2) and (1.3).
C2: Periodic initial values do not guarantee that the solution is bounded. In-

deed, there exist unbounded u(x, t) and p(x, t) satisfying (1.1), (1.2) and the
initial values (1.3). There also exist bounded solutions that are periodic as
functions of x.

Proof. Let fi(x, t) be chosen identically zero for 1 ≤ i ≤ 3, and let us select g(t) =
1
2ct

2 in Lemma 2.1. The value c ∈ R can be freely chosen. This shows C1. If
c = 0 then the solution is bounded and it is periodic as a function of x. If c 6= 0
then ui(x, t) for every i and p(x, t) are all unbounded. In ui(x, t) the ct = g′(t)
term and in p the term c(x1 + x2 + x3) = g′′(t)

∑3
j=1 xj are not bounded. This

shows C2. The failure of uniqueness is caused by the fact that (1.1)-(1.3) do not
determine the limits of the higher time derivatives of u(x, t) when t → 0+. These
derivatives can be computed by differentiating (2.1) but the function g(t) is needed
and it determines the higher time derivatives. As g(t) can be freely chosen, the
solutions are not unique. �

Theorem 2.3. There exists a smooth, divergence-free vector field u0(x) on R3 and
a smooth f(x, t) on R3 × [0,∞) and a number Cα,m,K > 0 satisfying

u0(x+ ej) = u0(x), f(x+ ej , t) = f(x, t), 1 ≤ j ≤ 3 (2.2)

(here ej is the unit vector), and

|∂α
x ∂

m
t f(x, t)| ≤ CαmK(1 + |t|)−K (2.3)

for any α, m and K, such that there exists a > 0 and a solution (p, u) of (1.1),
(1.2), (1.3) satisfying

u(x, t) = u(x+ ej , t) (2.4)
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on R3 × [0, a) for 1 ≤ j ≤ 3, and

p, u ∈ C∞(R3 × [0, a)) (2.5)

that cannot be smoothly continued to R3 × [0,∞).

Proof. Let us make a small modification to the solution in Lemma 2.1. In Lemma
2.1, g : R → R is a smooth function with g(0) = g′(0) = 0, but we select

g(t) =
1
2
ct2

1
a− t

where c 6= 0 and a > 0.
The initial vector field u0(x) in Lemma 2.1 is smooth, periodic and divergence-

free. The period is scaled to one in (2.1). The f(x, t) is zero and therefore is periodic
in space variables with the period as one. Thus, (2.2) holds. The constant Cα,m,K

is selected after the numbers α,m,K are selected. The force f(x, t) is identically
zero, thus (2.3) holds. The solution (2.1) in Lemma 2.1 is periodic in space variables
with the period as one. Thus (2.4) holds. The solution u(x, t) in (2.1) is smooth if
t < a, thus (2.5) holds. The function g′(t) has a singularity at a finite value t = a
and g′(t) becomes infinite at t = a. From (2.1) it follows that if t approaches a
from either side, there is no limit to the the oscillating sine and cosine term in u1,
and the g′(t) additive term approaches infinity. Thus, the solution u(x, t) cannot
be continued to the whole R3 × [0,∞). This completes the proof. �

Theorem 2.4. There exists a smooth, divergence-free vector field u0(x) on R3 and
a smooth f(x, t) on R3 × [0,∞) defined as a feedback control function using the
values of u(x, t) and a number Cα,m,K > 0 satisfying

u0(x+ ej) = u0(x), f(x+ ej , t) = f(x, t), 1 ≤ j ≤ 3. (2.6)

(here ej is the unit vector), and

|∂α
x ∂

m
t f(x, t)| ≤ CαmK(1 + |t|)−K (2.7)

for any α, m and K, such that there exist no solutions (p, u) of (1.1), (1.2), (1.3)
on R3 × [0,∞) satisfying

u(x, t) = u(x+ ej , t) (2.8)
on R3 × [0,∞) for 1 ≤ j ≤ 3, and

p, u ∈ C∞(R3 × [0,∞)). (2.9)

Proof. Let the solution in Theorem 2.3 with the particular g be denoted by U and
a be larger than 1. A feedback control force f(x, t) is defined by using the values
of the function u(x, t′) for t′ ≤ t. In practise there is a control delay and t′ < t but
we allow zero control delay and select f(x, t) as

fi(x, t) =
∂

∂t
ui(x, t)−

∂

∂t
Ui(x, t).

Inserting this force to (1.1) yields a differential equation in space variables

∂Ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
= v∆ui −

∂p

∂xi
x ∈ R3, t ≥ 0, 1 ≤ i ≤ 3.

This force is defined in the open interval t ∈ [0, a) and can be smoothly continued
as zero to [a,∞). There is a solution u(x, t) = U(x, t) to this equation. We notice
that if u(x, t) = U(x, t) then the force fi(x, t) takes zero value at every point. This
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is correct: if we apply external control force without any control delay, it is possible
to keep the solution u exactly at the selected solution U . This is not the same as
to say that there is no force. If the solution u(x, t) would be different from U(x, t),
then the force would not be zero. Since u1(x, t) = U1(x, t) becomes infinite when t
approaches a, the solution cannot be continued to the whole space R3× [0,∞). As
in Theorem 2.3 the conditions (2.6)-(2.8) hold, but (2.9) does not hold.

We must still discuss if the feedback control force can control the equation (1.1)
or if there can be several solutions. When the higher order time derivatives of
u(x, t) are fixed at t = 0 the solution to (1.1) is unique because of the local-in-time
existence and uniqueness theorem. This means that if a solution u(x, t) starts as
U(x, t) in some small interval t < ε for some small ε < 1, then it will continue as
U(x, t) for all times t < a if the external force is zero. The question is whether the
feedback control force f(x, t) can steer the solution u(x, t) to a possible solution
U(x, t). The external force can freely change the higher order time derivatives of
u(x, t) in the equation (1.1). Thus, the external control force can set the higher
order time derivatives of u(x, t) to those of U(x, t), therefore the answer is that
the external control force can control the equation and the solution can be set to
U(x, t).

The difference between Theorems 2.3 and 2.4 is that if the force f(x, t) is zero
in Theorem 2.3, there is a family of solutions corresponding to different selections
of g(t), but if the force f(x, t) is zero in Theorem 2.4, then necessarily the solution
u(x, t) equals U(x, t) because otherwise the force is not zero.

Let us mention that we may select a force that does not take the value zero at
all points e.g. by adding a control delay that has a zero value at t = 0 and when
t > t1 for some fixed t1 satisfying 0 < t1 < a and smoothing the force to C∞. At
some points t < t1 the control delay is selected as nonzero and consequently the
force is not zero at all points. This completes the proof. �

Let us continue by partially solving (1.1)-(1.3). Firstly, it is good to eliminate
p by integrability conditions as in Lemma 2.5. We introduce new unknowns hi,k.
The relation of hi,k and ui is given by Lemma 2.6.

Lemma 2.5. Let u(x, t) and p(x, t) be C∞
(
R3 × [0,∞)

)
functions satisfying (1.1)

and (1.2) with fi(x, t) being identically zero for 1 ≤ i ≤ 3, and let (i, k,m) be a
permutation of (1, 2, 3). The functions

hi,k =
∂ui

∂xk
− ∂uk

∂xi
(2.10)

satisfy

∂hi,k

∂t
+

3∑
j=1

uj
∂hi,k

∂xj
− v∆hi,k =

∂um

∂xm
hi,k −

∂um

∂xk

∂ui

∂xm
+
∂um

∂xi

∂uk

∂xm
(2.11)

for all x ∈ R3 and t ≥ 0.

Proof. As p ∈ C∞
(
R3 × [0,∞)

)
,

∂

∂xi

∂p

∂xk
=

∂

∂xk

∂p

∂xi
.
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Thus, from (1.1) when fi(x, t) is identically zero for 1 ≤ i ≤ 3, we obtain

∂p

∂∂t

∂ui

∂xk
+

3∑
j=1

(
uj

∂2ui

∂xj∂xk
+
∂uj

∂xk

∂ui

∂xj

)
− v∆ ∂ui

∂xk

=
∂p

∂∂t

∂uk

∂xi
+

3∑
j=1

(
uj

∂2uk

∂xj∂xi
+
∂uj

∂xi

∂uk

∂xj

)
− v∆∂uk

∂xi
.

This yields

∂p

∂∂t
hi,k +

3∑
j=1

uj
∂hi,k

∂xj
− v∆hi,k =

3∑
j=1

∂uj

∂xi

∂uk

∂xj
−

3∑
j=1

∂uj

∂xk

∂ui

∂xj
. (2.12)

The right-hand side of (2.12) can be written in the form

∂ui

∂xi

∂uk

∂xi
+
∂uk

∂xi

∂uk

∂xk
+
∂um

∂xi

∂uk

∂xm
− ∂ui

∂xk

∂ui

∂xi
− ∂uk

∂xk

∂ui

∂xk
− ∂um

∂xk

∂ui

∂xm

=
∂ui

∂xi

(∂uk

∂xi
− ∂ui

∂xk

)
+
∂uk

∂xk

(∂uk

∂xi
− ∂ui

∂xk

)
− ∂um

∂xk

∂ui

∂xm
+
∂um

∂xi

∂uk

∂xm
.

(2.13)

In (2.13) we have replaced the sum
∑3

j=1 by
∑

j∈{i,k,m} which is possible since
(i, k,m) is a permutation of (1, 2, 3). Due to (1.2) the right-hand side of (2.13) can
be further transformed into

− ∂um

∂xm

(∂uk

∂xi
− ∂ui

∂xk

)
− ∂um

∂xk

∂ui

∂xm
+
∂um

∂xi

∂uk

∂xm

=
∂um

∂xm
hi,k −

∂um

∂xk

∂ui

∂xm
+
∂um

∂xi

∂uk

∂xm
.

The proof is complete. �

Lemma 2.6. Let u(x, t) and p(x, t) be C∞
(
R3 × [0,∞)

)
functions satisfying (1.1)

and (1.2) with fi(x, t) being identically zero for 1 ≤ i ≤ 3, and let (i, k,m) be a
permutation of (1, 2, 3). The following relations hold for all x ∈ R3 and t ≥ 0:

∂hi,k

∂xk
+
∂hi,m

∂xm
= ∆ui

where hi,k is defined by (2.10) and ∆ui is the Laplacian of ui in the space variables.

Proof. From (2.10) we have

∂hi,k

∂xk
+
∂hi,m

∂xm
=
∂2ui

∂xk
2
− ∂2uk

∂xi∂xk
+

∂2ui

∂xm
2
− ∂2um

∂xi∂xm
. (2.14)

The right-hand side of (2.14) can be rewritten, by (1.2), as

∂2ui

∂xk
2

+
∂2ui

∂xm
2
− ∂p

∂∂xi

(∂uk

∂xk
+
∂um

∂xm

)
=
∂2ui

∂xk
2

+
∂2ui

∂xm
2

+
∂p

∂∂xi

∂ui

∂xi
= ∆ui.

This completes the proof. �

As an example of (2.11) let us find another solution to (1.1)-(1.3).
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Lemma 2.7. Let bj , αj ∈ R satisfy
∑3

j=1
bj

αj
= 0. Let fi(x, t) be chosen identically

zero for 1 ≤ i ≤ 3. Then

u0
i = bi sin

( 3∑
s=1

xs

αs

)
, 1 ≤ i ≤ 3,

is a smooth, periodic, bounded and divergence-free initial vector field. Let g : R → R
be a smooth function with g(0) = g′(0) = 0. The following family of functions u
and p satisfy (1.1)-(1.3):

ui(x, t) = bie
βt sin

( 3∑
s=1

xs

αs
+ g(t)

)
− g0(t),

p(x, t) = g′0(t)
3∑

j=1

xj ,

(2.15)

where g′(t) = g0(t)
∑3

j=1
1

αj
and β = −v

∑3
j=1

1
α2

j
.

Proof. Let us write z =
∑3

s=1
xs

αs
+ g(t) for brevity. Then

∂ui

∂t
= βbie

βt sin(z)− g′0(t) + g′(t)bieβt cos(z),

−v∆ui = vbie
βt

3∑
j=1

1
α2

j

sin(z),

∂p

∂xi
= g′0(t),

3∑
j=1

uj
∂ui

∂xj
= bie

2βt sin(z) cos(z)
3∑

j=1

bj
αj
− big0(t)eβt cos(z)

3∑
j=1

1
αj

= −big0(t)eβt cos(z)
3∑

j=1

1
αj

since
∑3

j=1
bj

αj
= 0. Inserting the parts to (1.1) shows that

∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
− v∆ui +

∂p

∂xi

=
(
β + v

3∑
j=1

1
α2

j

)
bie

βt sin(z) +
(
g′(t)− g0(t)

3∑
j=1

1
αj

)
bie

βt cos(z) = 0

by the conditions on g′(t) and β in Lemma 2.7. �

The simple reasoning leading to the solutions in Lemmas 2.1 and 2.7 is as follows.
Looking at (2.11) it seems that the leading terms of

3∑
j=1

uj
∂hi,k

∂xj
− ∂um

∂xm
hi,k +

∂um

∂xk

∂ui

∂xm
− ∂um

∂xi

∂uk

∂xm
= g(x, t) (2.16)
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should cancel and leave a reminder g(x, t) that can be obtained from the time
derivative of hi,k. Then there is a first order differential equation

∂hi,k

∂t
− v∆hi,k + g(x, t) = 0

which suggests that the solution is exponential and in order to get periodic initial
values, trigonometric functions were selected.

In Lemma 2.7 we first select ui = bif
(∑3

s=1
xs

αs

)
where f is a smooth function

to be determined. This choice automatically gives
3∑

j=1

uj
∂hi,k

∂xj
= 0

because expanding it shows that it has the multiplicative term
∑3

s=1
bs

αs
which is

zero by divergence-free condition (1.2). The terms

− ∂um

∂xm
hi,k +

∂um

∂xk

∂ui

∂xm
− ∂um

∂xi

∂uk

∂xm

=
(
− ∂um

∂xm

∂ui

∂xk
+
∂um

∂xk

∂ui

∂xm

)
+

(∂um

∂xm

∂uk

∂xi
− ∂um

∂xi

∂uk

∂xm

)
also cancel automatically for the chosen function ui. Another way to cancel the
terms is used in Lemma 2.1. In Lemma 2.1 we originally set um = hi,k by which

um
∂hi,k

∂xm
− ∂um

∂xm
hi,k = 0.

The remaining terms in the left side of (2.16) are

∂um

∂xi

(
ui −

∂uk

∂xm

)
,

∂um

∂xk

(
uk +

∂ui

∂xm

)
.

The divergence-free condition (1.2) assuming um = hi,k yields

0 =
3∑

j=1

∂uj

∂xj
=

∂p

∂∂xi

(
ui −

∂uk

∂xm

)
+

∂

∂xk

(
uk +

∂ui

∂xm

)
.

The form (2.1) is constructed such that it is divergence-free and the term g(x, t) in
(2.16) can be obtained from (2.16). The way to obtain it is adding a function of t
to xi, 1 ≤ i ≤ 3. The basic solution can be further modified by a function g(t) as
in (2.1) and (2.15).

Lemmas 2.8 and 2.9, below, generalize Lemma 2.7. Lemma 2.8 shows that
any periodic smooth function u0

i = bjg(
∑

j
xj

αj
) with

∑
j

bj

αj
= 0 can be continued

to smooth u for zero external force since it can be expressed by its Fourier series.
Lemma 2.9 generalizes the solution to a case where there are two different functions.

Lemma 2.8. Let fi(x, t) = 0 and

u0
i (x) = bi

∞∑
n=1

(
cn sin

( 3∑
j=1

nxj

αj

)
+ dn cos

( 3∑
j=1

nxj

αj

))
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where
∑3

j=1
bj

αj
= 0. The following functions solve (1.1)-(1.3):

ui(x, t) = bi

∞∑
n=1

eβn2t
(
cn sin

( 3∑
j=1

nxj

αj

)
+ dn cos

( 3∑
j=1

nxj

αj

))
,

p(x, t) = 0,

where β = −v
∑3

j=1 α
−2
j .

Proof. Direct calculations show that
3∑

j=1

uj
∂ui

∂xj
= 0,

∂ui

∂t
− v∆ui = 0.

which completes the proof. �

Lemma 2.9. Let fi(x, t) = 0 and

u0
i (x) = bi,1 sin

( 3∑
s=1

xs

αs,1

)
+ bi,2 sin

( 3∑
s=1

xs

αs,2

)
where

∑
j

bj,n

αj,n
= 0 for n = 1, 2 and

bi,1

3∑
j=1

bj,2
αj,1

=
1
αi,2

, bi,2

3∑
j=1

bj,1
αj,2

=
1
αi,1

.

Let βn = −v
∑

j α
−2
j,n for n = 1, 2. The following two functions solve (1.1)-(1.3):

ui(x, t) = bi,1e
β1t sin

( 3∑
s=1

xs

αs,1

)
+ bi,2e

β1t sin
( 3∑

s=1

xs

αs,2

)
,

p(x, t) = cos
( 3∑

j=1

xj

αj,1

)
cos

( 3∑
j=1

xj

αj,2

)
e(β1+β2)t.

Proof. Computing
∑

j uj
∂ui

∂xj
shows that the term equals −∂p(x,t)

∂xi
. We mention that

the conditions in the lemma imply
∑

j
1

αj,1αj,2
= 0,

∑
j

1
α2

j,1
=

∑
j

1
α2

j,2
. �

3. Approaches to general initial values

Let us first notice that the transform by the function g(t) in Lemma 2.1 and
Lemma 2.7 is not a coordinate transform of (x, t) to (x′, t′) where x′j = xj + g(t),
j = 1, 2, 3, and t′ = t. The equation (1.1) is not invariant in this transform and if

∂ui(x, t)
∂t

+
3∑

j=1

uj(x, t)
∂ui(x, t)
∂xj

− v∆ui(x, t) +
∂p(x, t)
∂xi

− fi(x, t) = 0

then

∂ui(x′, t′)
∂t′

+
3∑

j=1

uj(x′, t′)
∂ui(x′, t′)

∂x′j
− v∆′ui(x′, t′) +

∂p(x′, t′)
∂x′i

− fi(x′, t′) + g′(t)
3∑

j=1

∂ui(x′, t′)
∂x′i

= 0.
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The transform that is used in Lemma 2.1 and Lemma 2.7,

u(x, t) → u(x′, t′)− g′(t),

p(x, t) → p(x′, t′) + g′′(t)
3∑

j=1

xj

keeps the initial values u0
i (x) and f(x, t) fixed if g(0) = g′(0) = 0. It is a transform

that can be done to any solution of (1.1)-(1.3) but it works only for equation (1.1).
It is certainly not a generally valid coordinate transform. Such should work with
any equation. It is not valid to think of the transform as

u(x, t) → u(x′, t′)− g′(t),
p(x, t) → p(x′, t′),

fi(x, t) → fi(x′, t′)− g′′(t)

because this changes the previously selected force fi(x, t). In fact, what is done
in Lemma 2.1 is not a change of the coordinate system. The force is kept at the
selected value at zero. The coordinates are kept at (x, t) as they originally are. The
pressure is eliminated from (1.1) and (1.2) as in (2.11). The equation (2.11) has
several solutions for u(x, t) and we find a family of solutions for the initial values of
Lemma 2.1 and some solutions cannot be smoothly continued to the whole space-
time. In Theorem 2.4 we notice that it is possible to select a force that picks up
any of these solutions.

The equations (1.1)-(1.3) can be solved in a Taylor series form, though summing
the Taylor series can be difficult. We write

uj =
∞∑

n=0

ψn,j(x)tn, p =
∞∑

n=0

pn(x)tn, fj =
∞∑

n=0

fn,j(x)tn.

Equation (1.1) yields

(n+ 1)ψn+1,i +
n∑

m=0

ψm,j
∂ψn−m,i

∂xj
− v∆ψn,i + pn − fn,i = 0.

These equations can be solved recursively by dividing

vn,i =
n∑

m=0

ψm,j
∂ψn−m,i

∂xj
− fn,i

into two parts
vn,i = vn,i,1 + vn,i,2,

where vn,i,1 is divergency-free and vn,i,2 has no turbulence; i.e., it can be obtained
from some function g(x, t) as

vn,i,2 =
∂g

∂xi
.

Thus, what needs to be solved is a system

(n+ 1)ψn+1,i − v∆ψn,i + vn,i,1 = 0,

vn,i,2 =
∂pn

∂xi
.
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We can see the non-uniqueness of the solution. The division of vn,i into the two
parts is not unique: if ∆g = 0, then ∂g

∂xi
can be inserted to either vn,i,1 or to vn,i,2.

We selected a linear symmetric g in Lemma 2.1 in order to have a nice periodic ui.
The following approach is another way of finding u(x, t) in (1.1) for a general

initial vector field u0(x, t). In some cases the method may yield closed form results
easier than the Taylor series method. If (1.1), (1.2) and (1.3) are satisfied, p can be
derived by integration. Let us assume u(x, t) exists. We separate a multiplicative
part Y (t) such that u(x, t) = Y (t)X(x, t) where the scaling is Y (0) = 1. If there is
no nontrivial multiplicative factor Y (t) then let us set Y (t) ≡ 1. If (u0)−1 exists
(e.g. locally for a local solution), and g(x, t) = (u0)−1(X(x, t)) is smooth then
g(x, t) can be expanded as a power series

∑∞
s=0 t

sgs(x) of t and the series converges
in some small neighborhood of the origin. Since u(x, 0) = u0(x) we have g0(x) = x.
Let us write x′(x, t) = (x′i(x, t))1≤i≤3 where

x′i(x, t) = xi +
∞∑

s=1

tsgs,i(x).

Thus ui(x, t) = Y (t)u0
i (x

′). Let

h0
i,k =

∂u0
i

∂xk
− ∂u0

k

∂xi

and

f0,i,k(x, t) =
∂h0

i,k

∂t
+ Y (t)

3∑
j=1

u0
j

∂h0
i,k

∂xj
− v∆h0

i,k

− Y (t)
(∂u0

m

∂xm
h0

i,k −
∂u0

m

∂xk

∂u0
i

∂xm
+
∂u0

m

∂xi

∂u0
k

∂xm

)
.

Clearly

∂ui(x, t)
∂xj

= Y (t)
3∑

r=1

∂x′r(x, t)
∂xj

∂u0
i (x

′)
∂x′r

= Y (t)
∂u0

i (x
′)

∂x′j
+ Y (t)

∞∑
s=1

ts
3∑

r=1

∂gs,r(x)
∂xj

∂u0
i (x

′)
∂x′r

and thus

hi,k(x) = Y (t)h0
i,k(x′) + Y (t)

∞∑
s=1

ts
3∑

r=1

(∂gs,r(x)
∂xk

∂u0
i (x

′)
∂x′r

− ∂gs,r(x)
∂xi

∂u0
k(x′)
∂x′r

)
.

The interesting term is (here Y ′ = dY/dt)

∂hi,k(x, t)
∂t

= Y (t)
∂h0

i,k(x)
∂t

+ Y ′(t)h0
i,k(x′)

+ Y ′(t)
∞∑

s=1

ts
3∑

r=1

(∂gs,r(x)
∂xk

∂u0
i (x

′)
∂x′r

− ∂gs,r(x)
∂xi

∂u0
k(x′)
∂x′r

)
+ Y (t)

∞∑
s=1

sts−1
3∑

r=1

(∂gs,r(x)
∂xk

∂u0
i (x

′)
∂x′r

− ∂gs,r(x)
∂xi

∂u0
k(x′)
∂x′r

)
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because it lowers powers of t and allows recursion. Computing the terms in (2.11)
shows that for some functions Qs,i,k(x, t), it holds

0 =
∂hi,k

∂t
+

3∑
j=1

uj
∂hi,k

∂xj
− v∆hi,k −

∂um

∂xm
hi,k +

∂um

∂xk

∂ui

∂xm
− ∂um

∂xi

∂uk

∂xm

= Y (t)
∞∑

s=1

sts−1
3∑

r=1

(∂gs,r(x)
∂xk

∂u0
i (x

′)
∂x′r

− ∂gs,r(x)
∂xi

∂u0
k(x′)
∂x′r

)
+

∞∑
s=0

tsQs,i,k(x, t)

where Q0,i,k(x, t) = Y ′(t)h0
i,k(x′)+Y (t)f0

0,i,k(x′). Comparing the coefficients of the
powers of t individually, and then inserting t = 0 to the equation of each coefficient
yields, for s ≥ 1,

3∑
r=1

(∂gs,r(x)
∂xk

∂u0
i (x)
∂xr

− ∂gs,r(x)
∂xi

∂u0
k(x)
∂xr

)
= −1

s
Qs−1,i,k(x, 0). (3.1)

From (1.2) we obtain

0 =
3∑

i=1

∂ui

∂xi

= Y (t)
3∑

i=1

3∑
r=1

∂x′r(x, t)
∂xi

∂u0
i (x

′)
∂x′r

= Y (t)
3∑

i=1

∂u0
i (x

′)
∂x′i

+ Y (t)
∞∑

s=1

ts
3∑

i=1

3∑
r=1

∂gs,r(x)
∂xi

∂u0
i (x

′)
∂x′r

The first term in the right-hand side vanishes because u0 is divergence-free. Again,
comparing the coefficients of the powers of t individually, and then inserting t = 0
to the equation of each coefficient yields, for s ≥ 1,

3∑
i=1

3∑
r=1

∂gs,r(x)
∂xi

∂u0
i (x)
∂xr

= 0. (3.2)

It seems that solving (3.1) and (3.2) for s = 1 gives g1(x), then we can derive for
s = 2 and obtain g2(x) and so on, and that function Qs,i,k contains only terms
gs′,j , s′ ≤ s. However, (3.1) and (3.2) do not necessarily determine even g1 and this
approach must be modified. This may be a direction for research how to obtain
linear systems, like (3.1) and (3.2), from which to continue, but we will not study
this method more in this short paper. Notice that this approach cannot show that
a solution u(x, t) exists.

4. Conclusions

Theorem 2.2 proves that the solutions to the 3-dimensional Navier-Stokes equa-
tions for incompressible fluid are not always unique for the initial values and for
the periodic solutions discussed in Statement D of [1]. This is not surprising, as
the proof of uniqueness requires periodicity of p(x, t). Periodicity is not required in
Theorem 2.2 or in [1]. Another (different) counterexample to uniqueness of (1.1) is
given in [3].

Some changes are needed to the official problem setting [1] of the Clay Mathe-
matics Institute’s Navier-Stokes problem.



EJDE-2010/93 SOLUTIONS TO NAVIER-STOKES EQUATION 13

In [1] it is stated that we know for a long time that the initial data u0(x) can
be continued uniquely to some finite time. This statement needs a clarification.
In [2] there is one proof of uniqueness. Temam implicitly assumes that p(x, t) is
periodic, which [1] does not do. All other easy ways to solve the problem have been
explicitly excluded. It does not seem to be intended that the pressure p(x, t) should
be implicitly assumed as periodic.

If periodicity is not demanded for pressure there are many solutions for zero
external force, and we can construct a solution that cannot be continued to the
whole space, as is done in Theorem 2.3. If feedback forces are not excluded, we
can select the solution from Theorem 2.3 by using a feedback force, as in Theorem
2.4. Unless Theorem 2.4 is accepted as a proof of Statement D in [1], the official
problem statement for the millennium problem must be corrected.

If unique solutions are required then conditions must be imposed on the pressure.
In the space-periodic case the condition is periodicity of p(x, t), while in the non-
periodic case growth conditions must be set for p(x, t). It is not enough to make
these changes only, because if feedback forces are allowed and we require the solution
to satisfy conditions on p(x, t) then a feedback force can select a solution, which
does not satisfy these conditions. Such a solution is then a counterexample since it
is a solution and violates the required conditions.

The problem statement [1] has an expression a given, externally applied force
(e.g. gravitation). This is not clear enough to rule out feedback forces since a
feedback control force is an external force to the controlled system. If the inten-
tion has been to say that the external force must be similar to gravitation then a
clarification is needed. Gravitation is time-independent while f(x, t) can be time-
dependent, thus the similarity to gravitation is not full and the extent of similarity
needs to be stated. The word given does not clarify the issue since this word has
many meanings. It could be understood as a weak indication that the external force
should be selected as a point function and any solution (u, p) is looked for. How-
ever, the most common meaning of given in this mathematical context is chosen.
We have to take this meaning to given since otherwise there is a contradiction in
[1]: the official problem setting claims that the solutions can be uniquely continued
to some finite time. The only way to understand the uniqueness claim to be correct
without a requirement of periodicity of p(x, t) is to use a feedback force in the case
of Lemma 2.1. Thus, some expressions in the official problem setting are unclear
and understanding given as chosen i.e., not excluding feedback forces, seems to be
the only one where [1] does not make incorrect statements. The easiest approach
for improving clarity is to exclude feedback forces. However, while correcting [1]
one should carefully investigate if there are other unnoticed transforms or other
problems. It is not a small straightforward correction.

Let us mention that in a weak formulation of (1.1)-(1.3) it is essential that the
test function has compact support in R3×R because the presented solutions (u, p)
with non-periodic pressure cannot be integrated over the whole R3 × [0,∞).
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