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EXISTENCE OF SOLUTIONS FOR FRACTIONAL
DIFFERENTIAL INCLUSIONS WITH BOUNDARY CONDITIONS

DANDAN YANG

Abstract. This article concerns the existence of solutions for fractional-order

differential inclusions with boundary-value conditions. The main tools are

based on fixed point theorems due to Bohnerblust-Karlin and Leray-Schauder
together with a continuous selection theorem for upper semi-continuous multi-

valued maps.

1. Introduction

This article concerns the existence of solutions to the fractional-order differential
inclusions with boundary-value conditions

cDα
0+y(t) ∈ F (t, y(t)), t ∈ [0, 1], α ∈ (1, 2), (1.1)

y(0) = 0, y(1) =
m−2∑
i=1

kiy(ξi), (1.2)

where cDα
0+ is the Caputo fractional derivative, F : [0, 1] × R → P(R) is a multi-

valued map defined on [0, 1], P(R) is the family of all nonempty subsets of R, ki > 0,
ξi ∈ [0, 1] with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.

Fractional differential equations play a important role in understanding many
phenomena in science and engineering. Such as electrochemistry, control, viscoelas-
ticity, porousmedia, electromagnetic and so on. For details two wonderful books
[12, 14] on the subject of fractional differential equations, summarizing much of
fractional calculus and its applications. In recent years, much attention has been
paid to the existence of solutions fractional differential equations with boundary
value conditions. For instance, Bai and Lü[1], Bai [2], Stojanović[15], Yu and Gao
[16], Zhang [17]. Following this trend, fractional differential inclusion has got fo-
cus. In 2007 , Ouahab [11] investigated the existence of solutions for α-fractional
differential inclusions by means of selection theorem together with a fixed point the-
orem. Very recently, Chang and Nieto [4] established some new existence results for
fractional differential inclusions due to fixed point theorem of multi-valued maps.
About other results on fractional differential inclusions, we refer the reader to [9].
To the best of our knowledge, for fractional differential inclusions , very few results
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are obtained. In order to fill this gap, motivated by the above mentioned works, ex-
istence of solutions criterion for fractional differential inclusions are given for (1.1)
and (1.2). This paper is organized as follows. In next section, we present some
basic definitions and notations about fractional calculus and multi-valued maps.
Section 3 is devoted to the existence results for fractional differential inclusions. In
the last section, an example is given to illustrate our main result.

2. Preliminaries

In this section, we recall some notation, definitions and preliminaries about frac-
tional calculus (see [8, 12, 14]) and multi-valued maps (see[5, 6, 13]) that will be
used in the remainder.

Definition 2.1. The αth fractional order integral of the function u : (0,∞) 7→ R
is defined by

Iα
0+u(t) =

1
Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

where α > 0, Γ is the gamma function, provided the right side is pointwise defined
on (0,∞).

Definition 2.2. The αth fractional order derivative of a continuous function u :
(0,∞) 7→ R is defined by

Dα
0+u(t) =

1
Γ(n− α)

(
d

dt
)n

∫ t

0

(t− s)n−α−1u(s)ds,

where α > 0, n = [α]+1, provided that the right side is pointwise defined on (0,∞).

Definition 2.3. Caputo fractional derivative of order α > 0 for a function u defined
on [0,∞) is given by

cDα
0+u(t) =

1
Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞).

Lemma 2.4 (citedu). Let ε, η are two positive constants, then
(i) Iε

0+ : L1(J,R) → L1(J,R).
(ii) Iε

0+Iη
0+f(t) = Iε+η

0+ f(t), f(t) ∈ L1(J,R).
(iii) limε→n Iε

0+f(t) = In
0+f(t), n = 1, 2, . . . , I1

0+f(t) =
∫ t

0
f(s)ds.

Let C([0, 1], R) be the Banach space consisting of continuous functions y from
[0, 1] to R with the norm

‖y‖∞ := sup{|y| : t ∈ [0, 1]}.
and L1([0, 1], R) represent the functions y : [0, 1] → X which are Lebesgue inte-
grable and

‖y‖L1 =
∫ 1

0

|y(t)|dt.

Let (X, | · |) be a Banach space. Then a multi-valued map Θ : X → P(X) is
convex (closed) value if Θ(x) is convex (closed) for all x ∈ X. Θ is bounded on
bounded sets if Θ(B) =

⋃
x∈B Θ(x) is bounded in X for any bounded set B of X

(i.e. supx∈B{sup{|y| : y ∈ Θ(x)}} < ∞).



EJDE-2010/92 FRACTIONAL DIFFERENTIAL INCLUSIONS 3

We call Θ is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X,
the set Θ(x0) is a nonempty closed subset of X, and if for each open set B of X
containing Θ(x0), there exists an open neighborhood V of x0 such that Θ(V ) ⊆ B.
Θ is said to be completely continuous if Θ is u.s.c. if and only if Θ has a closed
graph, i.e.,

xn → x∗, yn → y∗, yn ∈ Θxn imply y∗ ∈ Θx∗.

Let CC(X) be the set of all nonempty compact-convex subsets of X. For each
y ∈ C([0, 1], R), let SF,y be the set of selections of F defined by

SF,y = {f ∈ L1([0, 1], R) : f ∈ F (t, y(t)) a.e. t ∈ [0, 1]}.

Definition 2.5. A function y ∈ C([0, 1], R) is said to be a solution of (1.1) and
(1.2) if y satisfies the fractional differential inclusion (1.1) on [0, 1] and the boundary
value condition (1.2).

To set the frame for our main results, we introduce the following lemmas.

Lemma 2.6 (Bohnerblust-Karlin, [3]). Let X be a Banach space, D a nonempty
subset of X, which is bounded, closed, and convex. Suppose G : D → P(X) \ {0}
is u.s.c. with closed, convex values, and such that G(D) ⊂ D and G(D) compact.
Then G has a fixed point.

Lemma 2.7 (Leray-Schauder Nonlinear Alternative, [7]). Let Let X be a Banach
space, with C ⊂ X convex. Assume V is a relatively open subset of C with 0 ∈ V
and G : V → P(C) is a compact multivalued map, u.s.c. with convex closed values.
Then either

(i) G has a fixed point in V ; or
(ii) there exists a point v ∈ ∂V such that v ∈ λG(v) for some λ ∈ (0, 1).

Lemma 2.8 ([10]). Let X be a Banach space. Let F : [a, b]×X → CC(X); (t, y) 7→
F (t, y) measurable with respect to t for any y ∈ X and u.s.c. with respect to y
for a.e. t ∈ [a, b] and SF,y 6= ∅ for any y ∈ C([a, b], X) and let Λ be a linear
continuous mapping from L1([a, b], X) to C([a, b], X), then the operator Λ ◦ SF :
C([a, b], X) → CC(C([a, b], X)) y 7→ (Λ ◦ SF )(y) := Λ(SF,y) is a closed graph
operator in C([a, b], X)× C([a, b], X).

Now we are in the position to state and prove our main results.

3. Main results

Let us list the following assumptions:

(A1)
∑m−2

i=1 kiξi 6= 1.
(A2) F : [0, 1] × R → CC(R), t 7→ F (t, y) is measurable for each y ∈ R, y 7→

F (t, y) is u.s.c. for a.e. t ∈ [0, 1].
(A3) For each r > 0, there exists a function ϕr ∈ L1([0, 1], R+) such that

‖F (t, y)‖ = sup{|f | : f ∈ F (t, y)} ≤ ϕr(t),

for (t, y) ∈ [0, 1]× R with |y| ≤ r, and

lim inf
r→∞

1
r

∫ 1

0

ϕr(t)dt = µ.
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(A4) There exist a continuous nondecreasing function φ : [0,∞) → [0,∞), a
function q ∈ L1([0, 1], R+) and a positive constant M such that

‖F (t, y)‖ ≤ q(t)φ(|y|)

for each (t, y) ∈ [0, 1]× R, and

M(
1 + 1

|1−
Pm−2

i=1 kiξi|
+ 1

Pm−2
i=1 kiξi

|1−
Pm−2

i=1 kiξi|

)
φ(M)

∫ 1

0
q(s)ds

> 1.

We notice that, for each y ∈ C([0, 1], R), by [13], the set SF,y is nonempty. The
following lemmas are basic results for the fractional differential equations.

Lemma 3.1 ([8]). Let α > 0. then the fractional differential equation
cDα

0+y(t) = 0

has a solution
y(t) = c0 + c1t + c2t

2 + · · ·+ cntn−1,

and ci ∈ R, i = 1, 2, . . . , n, n = [α] + 1.

Lemma 3.2 ([8]). Let α > 0. Then

Iαc
0+Dα

0+y(t) = y(t) + c0 + c1t + c2t
2 + · · ·+ cntn−1,

for some ci ∈ R, i = 1, 2, . . . , n, and n = [α] + 1.

By Lemma 3.1 and Lemma 3.2, it is easy to obtain the following lemma.

Lemma 3.3. Suppose (A1) holds, and g ∈ C([0, 1], R). Then y(t) is a solution of
the problem

cDα
0+y(t) = g(t), t ∈ [0, 1], 1 < α < 2. (3.1)

y(0) = 0, y(1) =
m−2∑
i=1

kiy(ξi), (3.2)

if and only if

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1g(s)ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1g(s)ds.

(3.3)

Proof. If y(t) is a solution of (3.1)-(3.2), then
cDα

0+y(t) = g(t), (3.4)

Lemma 3.2 implies

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds + c1 + c2t. (3.5)

By the boundary condition y(0) = 0, we have

c1 = 0. (3.6)
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Furthermore, by y(1) =
∑m−2

i=1 kiy(ξi) and (3.5), we obtain

1
Γ(α)

∫ 1

0

(1− s)α−1g(s)ds + c2 =
1

Γ(α)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1g(s)ds +
m−2∑
i=1

kiξic2.

(3.7)
After a rearrangement of (3.7), we obtain

(1−
m−2∑
i=1

kiξi)c2 =
1

Γ(α)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1g(s)ds− 1
Γ(α)

∫ 1

0

(1− s)α−1g(s)ds.

(3.8)
That is,

c2 =
1

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1g(s)ds

− 1
Γ(α)(1−

∑m−2
i=1 kiξi)

∫ 1

0

(1− s)α−1g(s)ds.

(3.9)

Substituting (3.6) and (3.9) into (3.5), we have that (3.1)-(3.2) has a unique solution

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1g(s)ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1g(s)ds.

(3.10)
If y(t) is defined as in (3.3), it is easy to check that y(t) satisfies (3.1)-(3.2), which
completes the proof. �

Next, we shall present and prove our main results on the existence of solutions
to fractional differential inclusion (1.1)-(1.2).

Theorem 3.4. Assume (A1)–(A3) hold. Furthermore, if

1
Γ(α)

(
1 +

1
|1−

∑m−2
i=1 kiξi|

+
∑m−2

i=1 kiξi

|1−
∑m−2

i=1 kiξi|

)
µ < 1, (3.11)

Then problem (1.1)-(1.2) has at least one solution on [0, 1].

Proof. Consider the operator N : C([0, 1], R) → P(C([0, 1], R)) defined by

N(y) = {h ∈ C([0, 1], R) : h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(y(s))ds

− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1f(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1f(y(s))ds, f ∈ SF,y}.

(3.12)
It is obvious that the fixed points of N are solutions to the problem (1.1)-(1.2).
Then, we shall prove N satisfies all the assumptions of Lemma 2.6, which is broken
into several steps.
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Step 1. N(y) is convex for each y ∈ C([0, 1], R). In fact, if h1, h2 ∈ N(y), then
there exist f1, f2 ∈ SF,y such that for each t ∈ [0, 1] we have

hη(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1fη(y(s))ds− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1fη(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1fη(y(s))ds, η = 1, 2.

Let 0 ≤ ε ≤ 1, for t ∈ [0, 1]. We have

(εh1 + (1− ε)h2)(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1(εf1 + (1− ε)f2)(y(s))ds

− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1(εf1 + (1− ε)f2)(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1(εf1 + (1− ε)f2)(y(s))ds,

Since SF,y is convex (F has convex values), we have

εh1 + (1− ε)h2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets. Let Br = {y ∈ C([0, 1], R) :
‖y‖ ≤ r}. Then Br is a bounded closed convex set in C([0, 1], R). We shall prove
that there exists a positive number r′ such that N(B′

r) ⊆ B′
r. If not, for each

positive number r, there exists a function yr(·) ∈ Br, however, ‖N(yr)‖ > r for
some t ∈ [0, 1], and

hr(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1fr(y(s))ds− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1fr(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1fr(y(s))ds.

for some fr ∈ SF,yr
. On the other hand, we have

r < ‖N(yr)‖

≤ 1
Γ(α)

( ∫ 1

0

ϕr(s)ds +
1

|1−
∑m−2

i=1 kiξi|

∫ 1

0

ϕr(s)ds

+
1

|1−
∑m−2

i=1 kiξi|

m−2∑
i=1

ki

∫ 1

0

ξiϕr(s)ds
)

≤ 1
Γ(α)

(
1 +

1
|1−

∑m−2
i=1 kiξi|

+
1

∑m−2
i=1 kiξi

|1−
∑m−2

i=1 kiξi|

) ∫ 1

0

ϕr(s)ds.

(3.13)
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Dividing both sides of (3.13) by r, then taking the lower limit as r →∞, we obtain

1
Γ(α)

(
1 +

1
|1−

∑m−2
i=1 kiξi|

+
∑m−2

i=1 kiξi

|1−
∑m−2

i=1 kiξi|

)
µ ≥ 1,

which contradicts (3.11). It implies for some positive number r′, we conclude that
N(Br′) ⊆ Br′ .

Step 3. The family {Ny : y ∈ Br′} is a family of equicontinuous functions. Let
t1, t2 ∈ [0, 1], t1 ≤ t2 and y ∈ Br′ for each h ∈ N(y), we have

|h(t2)− h(t1)| ≤
1

Γ(α)

∣∣∣ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1f(y(s))ds
∣∣∣

+
1

Γ(α)

∣∣∣ ∫ t2

t1

(t2 − s)α−1f(y(s))ds
∣∣∣

+
t2 − t1

Γ(α)|1−
∑m−2

i=1 kiξi|

∫ 1

0

(1− s)α−1f(y(s))ds

+
t2 − t1

Γ(α)|1−
∑m−2

i=1 kiξi|

m−2∑
i=1

ki

( ∫ ξi

0

(ξi − s)α−1f(y(s))
)
ds

≤ 1
Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ϕ(s)ds

+
1

Γ(α)

∫ t2

t1

ϕ(s)ds +
t2 − t1

Γ(α)|1−
∑m−2

i=1 kiξi|

∫ 1

0

ϕ(s)ds

+
t2 − t1

Γ(α)|1−
∑m−2

i=1 kiξi|

m−2∑
i=1

kiξi

( ∫ ξi

0

ϕ(s)
)
ds

(3.14)
The right hand of (3.14) tends to 0 as t2 → t1. Therefore, the set {Ny : y ∈ Br′}
is equicontinuous.

Combining Steps 1, 2 and 3 with Ascoli-Arzela theorem, we claim that N is a
compact valued map.

Step 4. N(y) is closed for each y ∈ C([0, 1], R). Let {hn}n≥0 ∈ N(y) be such
that hn → h∗(n → ∞) in C([0, 1], R). Then, h∗ ∈ C([0, 1], R) and there exist
fn ∈ SF,yn

, such that for each t ∈ [0, 1],

hn(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1fn(y(s))ds− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1fn(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1fn(y(s))ds.

Using the fact that N has compact values, we shall pass to a subsequence if nec-
essary to obtain that fn → f in L1([0, 1], R) and therefore f ∈ SF,y, then we have
for each t ∈ [0, 1],

hn → h∗(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f∗(y(s))ds
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− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1f∗(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1f∗(y(s))ds.

Thus, h∗ ∈ N(y).
Step 5. N has closed graph. Let yn → y∗, hn ∈ N(yn) and hn → h∗ as n →∞.

Consider the continuous linear operator Γ : L1([0, 1], R) → C([0, 1], R),

f 7→ Γ(f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(y(s))ds

− t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1f(y(s))ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1f(y(s))ds.

From Lemma 2.8, then Γ ◦ SF is a closed graph operator. Moreover, we have
hn ∈ Γ(SF,yn

). Since yn → y∗ as n → ∞. Lemma 2.8 implies there exists h∗ such
that

h∗(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1f∗(y(s))ds− t

Γ(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1f∗(y(s))ds

+
t

Γ(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1f∗(y(s))ds

for some f∗ ∈ SF,y∗ . Hence, we conclude that N is a compact multi-valued map,
u.s.c. with convex closed values. In view of Lemma 2.6, we deduce that N has a
fixed point which is a solution to problem (1.1)-(1.2). �

Theorem 3.5. Assume that (A1), (A2), (A4) hold. Then the problem (1.1) and
(1.2) has at least one solution on [0, 1].

Proof. Define the operator N : C([0, 1], R) → P(C([0, 1], R)) as (3.12). Let y ∈
λN(y) for some λ ∈ (0, 1). Then there exists a function f ∈ SF,y such that for each
t ∈ [0, 1], we obtain

y(t) =
λ

Γ(α)

∫ t

0

(t− s)α−1f(y(s))ds

− λt

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1f(y(s))ds

+
λt

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1f(y(s))ds.

(3.15)
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It from (A4), for each t ∈ [0, 1],

|y(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1|f(s)|ds +
t

Γ(α)(1−
∑m−2

i=1 kiξi)

∫ 1

0

(1− s)α−1|f(s)|ds

+
t

Γ(α)(1−
∑m−2

i=1 kiξi)

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)α−1|f(s)|ds

≤ 1
Γ(α)

(
1 +

1
|1−

∑m−2
i=1 kiξi|

+
∑m−2

i=1 kiξi

|1−
∑m−2

i=1 kiξi|

) ∫ 1

0

|f(s)|ds

≤ 1
Γ(α)

(
1 +

1
|1−

∑m−2
i=1 kiξi|

+
∑m−2

i=1 kiξi

|1−
∑m−2

i=1 kiξi|

)
φ(‖y‖)

∫ 1

0

q(s)ds.

(3.16)
Hence,

‖y‖(
1 + 1

|1−
Pm−2

i=1 kiξi|
+

Pm−2
i=1 kiξi

|1−
Pm−2

i=1 kiξi|

)
φ(‖y‖)

∫ 1

0
q(s)ds

≤ 1.

Then by (A4), there exists M such that ‖y‖ 6= M . Define

V = {y ∈ C([0, 1], R) : ‖y‖ < M}.

Proceed as the proof of Theorem 3.4, we claim that the operator N : V →
P(C([0, 1], R)) is a compact multi-valued map, u.s.c. with convex closed values.
From the choice of V , there is no y ∈ ∂V such that y ∈ λN(y) for some λ ∈ (0, 1).
As a consequence of Lemma2.7, we conclude that N has a fixed point y which is a
solution of the problem (1.1) and (1.2). �

4. Applications

In this section, we present an example to illustrate our main results. Consider
the fractional differential inclusions with boundary-value conditions

y6/5(t) ∈ F (t, y(t)), t ∈ [0, 1], (4.1)

y(0) = 0, y(1) =
1
3
y(

1
5
) +

1
9
y(

1
25

), (4.2)

where k1 = 1
3 , k2 = 1

9 , ξ1 = 1
25 , ξ2 = 1

5 , F : R → P(R) is a multi-valued map
defined by

u → F (t, u) := [
u5

u5 + 3
+ t5 + 3,

u

u + 1
+ t + 1]. (4.3)

It is clear that (A1) is satisfied, and F satisfies (A2). let f ∈ F , then

|f | ≤ max
( u5

u5 + 3
+ t5 + 3,

u

u + 1
+ t + 1

)
≤ 5, u ∈ R.

Thus,
‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ 5 := q(t)φ(|u|), u ∈ R,

where q(t) = 1, φ(|u|) = 5. We could find a positive real number M such that

M

Γ(α)
(
1 + 1

|1−(k1ξ1+k2ξ2)| + (k1ξ1+k2ξ2)
|1−(k1ξ1+k2ξ2)|

)
φ(M)

∫ 1

0
q(s)ds

> 1,
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M

Γ(6/5)5
(
1 + 1

|1− 3
25 |

+ 3
25|1− 3

25 |

) > 1;

that is, M > 10.43. Thus, all the assumptions of Theorem 3.5 are satisfied. We
conclude that fractional differential inclusion (4.1)-(4.2) has at least one solution.
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