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INITTAL-BOUNDARY VALUE PROBLEMS IN A PLANE
CORNER FOR THE HEAT EQUATION

BORYS V. BAZALIY, NATALIYA VASYLYEVA

ABSTRACT. We study the Dirichlet initial problem for the heat equation by
the Fourier-Bessel method in a plane corner. We prove classical solvability for
the problem in weighted Holder spaces.

1. INTRODUCTION

There are various approaches in investigations of initial boundary value problems
for parabolic equations in domains with singularities. In the works of Grisvard
[9], Solonnikov [13], Amann [I], Garroni, Solonnikov and Vivaldi [7], Frolova [6],
the existence of solutions and qualitative properties of solutions are described in
the terms of Sobolev or weighted Sobolev spaces. The similar results in Holder
classes are represented in works Guidetti [I0], Colombo, Guidetti, and Lorenzi [5],
Solonnikov [I3] (see also references in these works).

Note that in the pointed out works the method of the Green function or the
theory of analytic semigroups were used to construct some explicit representation
of a solution and to obtain the optimal estimates.

In the present paper we use the classical Fourier method to get a solution in
the form of Fourier-Bessel series in an angular domain. Then we apply some re-
sults on trigonometric series theory, in particular, Bernstein theorem and Jackson’s
construction of approximating trigonometric polynomials to obtain estimates of
the higher derivatives of the solution to the Dirichlet initial problem for the heat
equation in weighted Hoélder spaces.

Sometimes a classical solution of the initial value problem for a parabolic equa-
tion is defined as a function, that has required higher derivatives in any internal
subdomain of a cylindrical domain. In the one dimensional case a similar result
was published by Chernyatin [4] where a solution was represented as the sum of the
trigonometric series. But to the best of our knowledge, we have not found similar
results concerning with two-dimensional case.

The paper is organized as follows: in Section 2, we formulate the problem, intro-
duce the appropriate functional space, and show the formal solution to the Dirichlet
initial problem for the heat equation in the form of the sum of the trigonometric
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series. Section 3 contains some auxiliary estimates. In Section 4, we recall some
results from the trigonometric series theory, and in Section 5 we show that the
trigonometric series representing the formal solution converge together with its
higher order derivatives. Section 6 consists of some final remarks to the existence
and uniqueness theorem and some results concerning the parabolic equation with
singular coefficients.

2. THE STATEMENT OF THE PROBLEM AND MAIN RESULTS
We use the polar coordinate system (r, ) on a plane R%. Let
G=A{(r,o):r>0,0< @<}, 0e(0,2m),
be an infinite angle on R?, G = G x [0,T], T € R, and its boundary be

g=90Ygr, 90 ={(r,¢) :7>0,0=0}
gl:{(r7¢):r>07@:9}agiT:gix[OuT]u 22071

I+a

Let « € (0,1), I be an integer. We use the weighted Holder space P£+Q’T(5T) of
functions u(r, ¢, t) with the finite norm

I+
S7GT

= sup 1 TAE2 DR D2 Dyl
0<B1+B2+2a<l (T¢,t) EGT

||U/||Psl+o<,(l+a)/2(aT) = |u

lta—pB1—B2—2a
81 13 ( )
+ > {<D’“1D¢2D?“>t;s—61—22a—a,GT
0<l+a—(B1+P2+2a)<2
l+a7ﬁ127ﬁ272a)

(e, (o, =i fa=2e)
+ [DEI DgzD?uL'vtﬁ_ﬁl_2@—207GT + [DEID%D?U] : }

p,tis—B1—2a—a,Gr
(@)
=+ Z {<D7§1Dz,ﬁaQD?U»r;sfﬁleafa,GT

B1+B2+2a=l
(o)
+ <DE1 Dgz Dgu>;:sfﬁ172a,GT}’
with the seminorms defined as follows, ¥ = min(p, r), a,y € (0,1):
t) — t
< >7(”(;1;2,GT — sup FH |’U(p, ¥ ) vira 2 )|7
(po:t), () ECT, |p—r|<F/2 lp—rl
t) — t
<v>fa‘3¢2b Gr — sup M |U(7‘, 2 ) U({:: ¢7 )‘ ,
T e rapeTr o =¥
t —
<U>§7,37GT = sup rH LIGL2L) U(f’ 2 T)|,
(psp:t),(r,0,7)EGT t =]
() _ 7_M|U<T',Lp,t) — U(Ta(va) - U(p,(pﬂf) +U(Py%7’)‘
[v]r,t;u,GT = sup T TP )
(pript).(rpt), lp—r|*ft — 7|
(ro,7),(pyp,T)EGT
lp—r|<7/2
[U](aﬁ) _ sup o~ |’U(’/‘,(p,t) — U(Ta (paT) — U(T7¢,t) +’U(’/‘,¢,T>|

Pl Gr (1), (r0,8), o —loft — 77
(ryp,7),(r,%,7)EGT
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The seminorms [-](*7) were introduced in [I4]. In a similar way we introduce the

space P!T(G) of the functions u(r, ¢) on G. Hereinafter we will use the subspace

N4t o te . ..
pire (Gr) of the space Pt (Gr) which is introduced as follows. Let

Ry = {(r,t): 7> 0,0 € (0,7)},

lJra,H'iD‘

and function v(r, p,t) € Ps' 2 (Gr) be such that

wk

o(r, p,t) = ka(r, t)sin A\gp, Mg = E
k=1

where .
olryt) = 2 / o(r, 1, ) sin( ) dip.
0

0
: : Slta, e — |, Io, b —
We will say the function v(r, ¢, t) € Ps (Gr) if v(r,p,t) € Ps (Gr) and
the following inequality holds:
o0
S(U)ﬁsz+a,(l+a)/2(éT) = Z ( Z Sug ’I"_S+ﬁl+2a)\f2 |l)§1 vak (’I“, t)‘
k=1 0<Bi+B2+2a<l(Tt)ERT
(l+cx—[i1—[92—2a)
+ > {<DE1D§”k>t;s—ﬁl—22a—a,RT
0<l+a—(B1+B2+2a)<2
L+afﬁ1273272a)

(o
+ [DEID?vk]r,t;s—ﬁl—Qa—Qa,RT}Afg

+Y A <D£1ngk>£(;x3)76172a7a}RT) < 0.
B1+B2+2a=1

The subspace P+(@) of the function v(r,¢) on G is introduced similarly. One
Blta, 5

can easily check that if v(r, ¢, t) € Ps (Gr) or v(r,p) € PH(G) then there
are the constants ¢; or ¢;, i = 1,2, such that

CIHUHRW’HTQ(ET)

< S(v)fji-f-a,(l-%-a)/?(éT) + Z <D§1D52D?U>E£S)75172Q,GT
B1+pP2+2a=l1
(o,
+ Z [D’fl ‘Dgz‘D?U]ga,t;s—Bl—Qa—a,GT
0<l+a—(B1+Ba+2a)<2

< callv

L+a—p)—fa=2a\
2

I+« 5
se -

||P;+(x, (GT)

&1||U||p_§+a(§) = S(U)ﬁﬁa(@ + Z <DE1D£2U>$;_517G < 52||”Hpg+a(§)~ (2.1)
B1+P2=l
e

Along with the spaces P (Gr), we will use the usual Holder classes C’_;"’f =

C’;’f(ﬁ;p) where 8 € (0,1), z € Q, ¢t € (0,T), and

lullge s @y = sup  Jule, )] + @) + (w)?,
’ (z,t)EQr

<u>(a) _ |U(I7 t) — u(y7 t)|

2 = sup
(z,t),(y,t)€Qr
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7t - )
Wy D0 e
(z,t),(x,7)EQT |t - T|

We are looking for a solution of the Dirichlet initial problem

7777777 72 = f(’l’7 903 t)? (7",%07t) € GT’

ot ror or 12 Oy (2.2)
ulgr =0, ult=o = uo(r, ), (r,¢)€q.
We suppose that
f(r,0,t) = f(r,0,t) = 0. (2.3)

As can be seen from further arguments, conditions (2.3|) are, at least formally,
necessary to get a solution to problem ([2.2)) in the form of the Fourier-Bessel series

in the space P2+a (2+2)/2(G7). Note that, due to the presence of the seminorms

[](@®/2) in the definition of the norm in the space Pf+a’(2+a)/2(G ), the series

solution is more smooth than the solution from the ordinary weighted Holder spaces.
Theorem 2.1. Let equality (2.3) and the consistency conditions of the first order
in problem ([2.2) be fulfilled. The functions f € Ps" OK/Q(éT) and ug € Pszif(G)
Then there exists a unique solution u € P2+a (2+O‘)/2(G ) with

||UHP2+0¢ (@) /2y + S(u )"\2+a (2+e)/2(G )

(2.4)
< const. (Hf”Pa a/Q(GT + HuO”P“”(G) + S(f) P/ (G + S(UO)P“"(G))

where the constant in is independent of u, —w/0+a < s+2 < 7/0, a € (0,1).

Under the proof of Theorem we will omit the subindex G in the notations
of the seminorms if it is clearly from the context. We will assume that the function
f(r,,0) = 0 and, hence, can be extended by zero onto ¢ < 0 with the same norm.

It can be easily seen that one of the factor in the eigenfunctions to problem

is sin(Ax @), Ak = %f“, k=1,2,.... So, after the standard procedure of separation
of variables (see Appendix 7.1), we get the series representation of the solution:
u(r, ¢, ) = Rl(?" ©, )+ Ry(r, ¢, 1), (2.5)

02402 or
(r, ot Zsm (ip) | dr dp e T I (g k(0. 7)

= Z Ry i (r,t) sin(Agep),
k (2.6)

pr

p iyt
2 (7, 0, 1) Zsm )\kgo/ dp% I/\k(Qt)UOk(P) (2.7)

2 9
won(r) = / walr ) O, )= 5 [ 10000 5O, (29
0

where I,(2) is a modified Bessel function. Equality (2.5)) means that the desired
solution is the sum of the volume potential Ry (r, ¢, t) and the potential of the initial
data Ra(r, ¢, t).

The general case of f(r, ¢, t); i.e., f(r,¢,0) # 0, can be reduced to mention above
with the following procedure. Let in problem , , f(r,¢,0) € ]330‘ (G), and
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the function w(r, ¢) be a solution of the problem

A’[U\ = —f(T'7 ®, 0) G7 ’[U\|g = 07

and w(r,p) € }33;"2&(67) (see [16]). Then we consider the functions w(r,¢,t) =
w(r, @) cost and v(r, p,t) = u(r, p,t) — w(r, p,t) such that
ov ou

5t —Av= Fn — Au+ wsint + Awcost

= f(r,p,t) + B(r, @) sint — f(r,,0) cost = F(r,p,t) in Gp, (29)
Vlgir = Oa U|t:0 = UO(T‘, QD) - @(r7 50)

One can see that the consistency conditions of the first order are fulfilled in problem
[2-9); the function F(r, ¢,t) € P&*/*(Gr), satisfies condition (2.3)), and F(r, ¢,0) =
0.

Thus, the investigation of problem (2.2)) can be reduced to study of problem
(2.9) with the homogeneous right part in the equation if ¢ < 0.

Note that, to prove inequality (2.4) and u € f’f:;’(%a)m (G7) in Theorem it
is sufficient to show the following estimate (due to the first of inequalities in (2.1)))

(c)
S(u)ﬁfi-;,(%a)m(aﬂ + Z <DE1 Dg2 D?u)::s+2_61_2a7GT
B1+B2+2a=2
(a72+a*51*52f2a)
+ Z [Drﬁl Dg2Dgu]¢7t;s+2—ﬂ2‘1—2a—a,GT (2'10)
0<2+a—(B1+B2+2a)<2

< const.(||fHP:,a/2(§T) + ||“0HP32++;(§))~

In the all following inequalities, the constants do not depend on k.

3. CONVERGENCE OF SERIES (2.6)) AND (2.7))

Let us denote as

t 0 1+s 2,2
As:/ dT/ dpl—e 51, (). (3.1)

Lemma 3.1. The following estimate holds
,r2+s

Ay < ———, i 2 0. 2
SN oy Ystr<m (3:2)
Proof. The successive changes of variables: = = x and 2%7/r? = 2 leads to

t
Ay =7r° | dr 0021“(&)”867%77%] (z)dx
t 0 0 2 A
2

. 00 2+ tiy L 2
=2 +3/ Fﬁ,g(m)dm/ ZTeeT = dy
0 0

o0 p2+s o0 o2
< ol —— I, (v)dz e T .
o adts 0

The internal integral in the above inequality can be calculated, [8, 3.471 (9)],

R WU Y e 14s/2
2 e F T mdr = Z(Z) Koy4(x)
0



6 B. V. BAZALIY, N. VASYLYEVA EJDE-2010/90

where K,(z) is a modified Bessel function of the second kind. Hence,

[ee] 7"2+S
ASS/ - I, (z)Koqs(x)de. (3.3)
0

The condition s+ 2 < 7/0 is sufficient to obtain the boundedness of the right part
in (3.3)) for all k. Really, we take into account the tabular integral in the right part
3.3)

of [8, 6.576(5)], so that
> 1 IT((Ae+s5+2)/2)T((M\e —s—2)/2)
I (2) Koy (z)dz = =
/0 7w (@) Kess(@)de = 5 T+ 1)
X F((Ak +542)/2, (A —s—=2)/2 M+ 1;1)  (3.4)
1 1
AN o
P -ty
here we employed the definition of the function F(a, 8;v;2) [8, 9.111]. Inequality
(3.3) together with (3.4]) complete the proof of Lemma O

Similar arguments lead to forllowing remark.

Remark 3.2. If s + 2 < 7/6, then

oo oo 1+s 2, 2 2+s
P _p24r por r
dr d e 4 I\, (=—)=const.—5——=.
/0 /0 P 2 )\k(27_) /\i_(3+2)2
Note that we take advantage of some tabular integrals in order to obtain the
sharp estimates of the weight in the statement of Lemma [3.1} It is possible to

apply simpler arguments to derive only the asymptotic Ag with respect to Ag.
Hereinafter we will use the following properties of the Bessel functions

(z/2)"

I,(z) ~ const. for small values of z,

Plu+1)’ (3.5)
I.(z) ~ e /V2mz + %ﬁ?, for large values of z
z
where C'(u) is some function,
K, (z) ~ const.z™# for |u| < const. and small values of z, (
3.6
K, (z) ~e */V2mz for |u| < const. and large values of z. )
Lemma 3.3. The following estimate holds for s < 7/0:
00 1+s 2,2
Dy := Dy(r,t) = dpp e Iy, (ﬁ) < const.r®. (3.7

Proof. Let us consider the problem

ou .
E—Au:O in Gr,
=0.

ult=o = r’sin \pp, u

giT
Denote by w(r,¢) = r®sin Ay and introduce the function v(r, ¢, t) = u(r,p,t) —
w(r, ¢). The function w(r, @) satisfies the equation

19 ow 10%w

_5-2,.2 2\
;Erngﬁa—(prr (s* — A7) sin Agp,
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and v(r, ¢, t) is a solution of the problem

%—Avfr 2(s* = A\7)sinA\gp in G,

V=0 =0, v|gr =0.
Hence, by (12.6]
1+s 2 2,2
v(r, ,t) = (s — A7) sin(Arp) / dT/ dp2 e Z(ttﬂl,\k(ﬁ),

and due to Lemma [3.1] [u(r, ¢, )| < const.r®, so that
lu(r, ¢, t)] < const.r®.
On the other hand the solution u(r, ¢,t) of the initial problem can be represented

by using (2.7)

u(r, @, 1) :Sin()\w)/ dp?
0

1+s P24 or
e A (57)-
2t 2t

If we take here ¢ = we will obtain inequality (3.7)). (I

2k’
Corollary 3.4. The inequality
e 221, (2) < const., z e (0,00)
is valid for any k with a constant is independent of k.
The proof of this Corollary is given in Appendix (see subsection 7.2).
Lemma 3.5. The following equality holds if s = 0,

th_r% Dy=1 (3.8)
for every A.

Proof. First of all we will prove the following fact. Let

t o]
1 _r24p? rp
A g = d —_— i Iy, (=—)d
> /0 T/o 2t g

where s will be chosen below. We show that lim; ,g A_s ; = 0. In fact, using the
changes of variables £~ = x and Tf—z =z,

I N ET S = B}
A_Q’S:A (%) r I)wc(lf)dl‘/(; 7—1—56 4T 2 dr

2

1 I=s o tr 1 m2
= <7) / 1+s dm/ - +Se—Z—EdZ
2 0 T 0
o0 2 00
rs €T [e% 22
< Const./ IM ( ) dx/ H—lHs—a,—2—% g
0 ’I" 0

1
Sconst.tars’m/ xl_ab\k( ) K _ois(z)dz.
0

To estimate the inner integral in the next to last inequality, we used the integral
representation of the function K, (y) [8, 8.432(6)]. The convergence of the integral
in the right part as © — 0 is ensured (see (3.5),(3.6)) if =1 + 2+ A\ — s > —1,
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ie. for s < 2a+ A\ < 2a+ /6. The convergence of the integral as x — oo follows
from the second expressions in (3.5) and (3.6). That is why

}gr(l) A_ys=0. (3.9)

The function u(r, p) = sin(A\yp) where X is some fixed number from the set {\;}
is the solution of the problem

ou_ 10 ou_10u W
o rorar mag - 2 omlwe).
uli=0 = sin(Axp), ulp=0,0 =0,

and, hence, there is in view of (2.5))-(2.7]) for the solution

sin(veg)
= sin(Arp) / dT/ dp—e o Iﬁ(ﬁ) + sin(Agp) /OO dpﬂe* e I/\f(ﬂ)
27 0 2t k2t
After that, (3.8) follows from . O
As an application of Lemma is the next result.
Lemma 3.6. The equality
tILH(l) Ro(r, ¢, t) = ug(r, ) (3.10)

is true for the function Ra(r,@,t) from (2.5)).
Proof. Let us denote

_ P~ +r pr
L St I (2.

To prove the lemma, it suffices to show that the first term in the right part of the
following equality (which follows from Lemma [3.5])

oo

lim Ly (p, 7, t)uok(p)dp = lim / Li(p, 7, t)[uok(p) — wor(r)]dp + uor(r) = 0.
- 0 - 0

Let -
| Bt luon(o) — won()ldp = .

We apply the mean value theorem, Corollary and take into account that
uo(r, ) € PZ5(G). We have

uok(p) — uok(r) = (p — 1) ip (), 7T€lrpl,

so that
oo d .
i) < constr** [ Lu(prolp — a0
0
d R
Sconst.?s+1m?xr_s_1| ok (r |/ P —"* +57 (pr)1/2|p rldp

Fotl d’u,ok
< const. Yl max |/ t1/2 —rldp.
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Denote (p —r)/2v/t = z then

=S
|di| < const.

7etl B duOk |22 4|12 s
—iyz maxr | \/ 1172 ztdz
ol dugg(r)
< $1/241/4 1/2\7 —s—1 0k )
< const.t/=(t /% +1r7/%) 173 maxr | o |

Thus, lim;_.q dx = 0 for every fixed r and all k.
Due to ug(r, ) € PZ5(G), we have 71~ 2ugy(r) ~ == and r
l&%7 and the all written above gives

;tlg%dk =0. (3.11)

—s—1duor(r)
dr

Let us represent Ry(r, p,t) as
R2 (’I", (2 t)

= 3 sin(A) / " Ll 7)ok (p) — wor(M]dp + 3 sin(xe)ior () Do r, 1
k k

where Dg(r,t) was introduced in Lemma After passing on to the limit in this
representation and taking into account (3.8 and (3-11), we obtain

lim Ry (r, @, 1) = lim > sin(Are) /O Li(p,r,t)[uok(p) — uok(r)]dp
k
+ lim g sin(Axgp) ok (r) Do (r,t) = uo(r, @)

(]

As a some preliminary result we note that Lemma [3.1] gives the order of the
decreasing to the coefficients of the trigonometric series for r=*=2 Ry (r, ¢, t). If one
takes into account that the Fourier coefficients of functions from Hélder classes C'
have the order 1/k%, Lemmawill lead the Fourier coefficients of r =572 Ry (r, ¢, t)
have the order 1/k*t%. Therefore, the function r=*~2R;(r,,t) can be differenti-
ated with respect to ¢ in the case r and ¢ are fixed. We will show that the function
will be differentiated twice with respect to ¢. If the function r =5~ 2ug(r,¢) from
Ro(r, p,t) has the second derivative with respect to ¢ for the fixed r which be-
longs to classes C*, Lemma asserts that the Fourier coefficients of the function
r=572Ry(r, p,t) have also the order 1/k?.

4. SOME FACTS FROM THE TRIGONOMETRIC SERIES THEORY

Let f(z) be a 2r-periodic function with the corresponding trigonometric series

+ Z(an cosnx + by, sinnx) = S[f].

n=1

ao
Note that the series S[f] converges to f(z) in the point z due to Dini’s test for
f € C* Let f(z) be a continuous function, and T),(z) be any trigonometric
polynomial of the order not higher then n,

A(T,) == e |f(z) = Tu(z)|,  En(f) :=inf A(T,)
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where the infimum is considered throughout the set of the polynomials T;,(z). The
value of F,,(f) is called the best approximation of the order n to the function f(z)
(see [17, Ch.3, n.13)).

Theorem 4.1 (Bernstein’s Theorem [2, Appendix to Ch.4, n.7]). )
En(f) =0(@1/n%) (4.1)
if and only if f(z) € C%, a € (0,1). Moreover, if

1
En(f) S Aniaa

then <f>§;” < const.A.

The proof can be found in [II, Ch.4, n.2]. The next theorem contains the
method of the building of the approximating trigonometric polynomial (Jackson’s
construction [I1, Ch.4, n.2]).

Theorem 4.2. Let a 2m-periodic function f(x) € C*([0,2x]) and have the module
of continuity w(d). Define

wn(@) = o) [ FOK( )L c(n):m’ K(2)2<m>4.

Then the following statements hold
(1) The function u,(x) has the form
2n—2
up(z) = A+ Z (ag cos kx + by sin kx);
k=1
i.e., up(x) is a trigonometric polynomial of the (2n — 2) order.
(2) If [T f(z)dz =0, then A= 0.
(3) The following estimates holds for all x

|un(z) — f(2)] < 6w(1/n). (4.2)

We apply these theorems in the following case. Let one have the function
f(z,q) = > .bi(q)sinkz where ¢ € @ C R, and bi(q) = %ffﬂf(a:,q) sin kxdzx,
f(z,q) is continuous with respect to z and ¢, f(x,q) € C2(]0,27]) with « € (0,1),
uniformly with respect to ¢, and w(d) be the module of continuity to the function

f(z, q) with respect to z which is uniform with respect to ¢,
Zmax|bk(q)| < 0.
~
This inequality implies
> . . .
mas | f] = const. Y [b(a) (4.3)

k

Indeed, because the series ), max, |by(g)| converges it is possible to choose N so

as
e’}

1
E max |bg(q)] < = max |f].
q 2 xzq
k=N+1
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On the other hand the suitable constant can be searched such that
N

1
— max |f| > const. Y max |b ,
5172 const. ()|

that completes the proof of (4.3)).
Let us introduce the linear operator A : C' — C' which acts by the following rule

v(z,q) = Af(w,q) = Y pk(br(q) sinke, |pk(br(9))] < M max |bp(g)],  (4.4)
k

where M is an independent constant of k and ¢q. The question arises, does v(z, q)
have the same module of continuity as f(x,q). In accordance with Bernstein’s
theorem this question can be reformulated as is it possible to construct the ap-
proximating polynomial to v(x, q) with the same approximation like . Denote
T, (z,q) = Au,(x, q) where u,(z, q) is the approximating trigonometric polynomial
to the function f(z,q), then

’U(ZL’,q) - Tn(l'v q) = Af(x,Q) - Aun(xa q)
Following the proof of Theorem we can write

w/2
Aup(.q) = Alc(n) / @+ 22.9) + f(x — 22, )| K (22)dz)

/2
= c(n)/o A{f(z+22,q) + f(z — 22,q) } K(22)d=.

After that we use the equality

2c(n)/07r/2(sm(nz))4dz = 2c(n)/0ﬂ/2K(2z)dz =1,

sin(z)

and obtain

/2
To(w,q)—v(z,q) = C(H)/O A{f(z+22,q)+ f(2—22,9)—2f (2, q) } K (22)dz. (4.5)

The definition of the operator A together with the properties of the function f(z, q)
lead to the estimates:

max |A(f(z,q))| < MZ max |bg(q)| < const. max | f(x, q)|,
,q ~ ,q
and that is why
max |A{f(z + 2z,q) + f(z — 22,q) — 2f(z,¢)}| < const.w(2z).
,q

After that the estimate of the right part can be finished like the proof of [11]
Theorem 4.2]. We have

1
|Tn (2, q) — v(x,q)| < const.w(l/n) < const.n—a.

Bernstein’s theorem leads to Af(z,q) € C%([0,27]). Moreover, the estimate
(Af (2, ) < const.(f(, )5 (4.6)

follows from the proof of Bernstein’s theorem. Thus we obtained the following fact.
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Lemma 4.3. Let f(x,q) be continuous with respect to x,q and f(x,q) € C¢ uni-
formly with respect to q and o € (0,1),

> max |bx(g)| < oo,
T a

then Af € C% and estimate (4.6]) holds.

Assume that f(z,t) is a 2w-periodical function with respect to z and f(z,t) €
oy, a,B € (0,1), and

S (max{be(t)] + (b)) < oo. (4.7)
k

Let
up(z,t) = ¢(n) 3 f(s,t)K(x — s)ds

be the trigonometric polynomial from Theorem [£.2]which approximates the function
f(z,t). We have

s

Un (X, 1) — up (2, t2) = c(n)/ [f(s,t1) — f(s,t2)] K (z — s)ds.

—T

The properties of the kernel K (x — s) ensure the inequality

e [tn (2, t1) — un (2, t2)]

(8)
< . .
z,ty,t2 ‘tl — t2|ﬁ — const <f($?t)>t )

i.e., the trigonometric polynomial approximating f(z,t) has a uniformly bounded
Hélder constant with respect to t. Let, as before, T),(z,t) = Au,(x,t). Then

(Tl t1) — Tl )] = le(n) [ A{f(s,11) — (s, t2)} K (x — s)ds]

—T

< const. max |f(z,t1) — f(x,t2)|.

T,t1,t2

It leads to

e To@t) = Tufato)] () = S t)|

4.8
z,t1,t2 |t1 7t2|ﬂ z,t1,t2 |t1 7t2|ﬁ ( )

If one passes to a limit in (4.8)) as n — oo (here we keep in mind that T),(x, tx) —
Af(z,tg), k=1,2) then

max |Af($,t1) - Af(xth)‘

(8)
< const. t .
z,t1,t2 ‘tl — t2|/3 nst.(f (z, 1)),

Lemma 4.4. Let the function f(x,t) be a 2m-periodical function with respect to x,
and f(z,t) € Cﬁ’tﬁ, a,3 € (0,1) and {.7) holds. Then Af(z,t) € C’;"tﬁ and

(AF) < const.(f(a, 1), (AN < const.{f(z, ). (4.9)

Remark 4.5. Lemmas[4.3]and [£.4] will hold if we change the functions f(z, q) € C¥
and f(x,t) € C;ﬁ’f onto f(z,q1,...¢qn) € C¥ uniformly with respect to ¢1 ... ¢, in
Lemma and f(xz,t1,...t,) € C’;;lfj_‘_'t'f” with 0 < B; < 1, i = 1,n in Lemma
correspondingly, and the inequality like holds.
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5. ESTIMATES OF THE HIGHER SEMINORMS OF THE SOLUTION

5.1. Estimate for 8;;1.

Lemma 5.1. The function ‘9;? meets the Holder condition with respect to ¢ and

8 Rl (a)
8(,0 Lp s+2,Gr

(=2 +Z)\kmaxr 2| Ry 4 (r, 1) < const.(f)\") . (5.1)

©;8,Gr

Proof. After a formal differentiation with respect to ¢ one can obtain

aZR . t oo
21 — —Z)\i sm()\kgo)/ dT/ Li(p,r,t — 7)bg(p, 7)dp (5.2)
k 0 0

where by (r,t) are the Fourier coefficients of the function f(r,¢,t). The function
f(r,o,t) is continued odd onto the interval (—6,0), and f(r,¢,t) = 0 if p = 0,6
or t < 0. In the case of a 20— periodical function, the change of variables allows
keeping the mentioned above argumentations regarding to use of the approximating
trigonometric polynomial to a 2r— periodical function. Let us denote by

t o3}
Bk, = —)\%/ dT/ Lk(p, T,t - T)bk?(pv T)dpa
0 0

in view of Lemma,

|Bi| < const.r%‘qn}%xr*ﬂbk\ (5.3)

with the constant is independent of k. After that, we put in =, f(z,q) =
o1, ) i), i) e vt B (o) "R Then
Lemma [£.3] together with the properties of the function f(r,¢,t) (namely7 fe

P a/Z(GT) ie. r=°f € CS([0, 0]) umformly with respect to t and r, inequality

hkc ) holds) lead to estimate [l

8

o7 (r,¢,1) satisfies the Holder conditions with respect
tot and r. Moreover,

2 2
SR gy < const. () (5.4)
k
SRR < const.(f)!) (5.5)
k Lk/)ris+2—a, Ry = . ris—a,Gp? .
k

82-Rl (a,/2) (e, /2)
st + A7 Rl k rt;s et
[ D2 ]%t, +2—a,Gr Z k t;s+2—2a,Rp (5.6)

< const. (] +m(a7a/z> )

o,t;s—a,Gr rt;s—2a,Gr

Proof. The proof of estimates (5.4]) and (5.5]) follows from the properties of the func-
tion f(r, p,t), Lemmal3.1land Lemma Regarding inequality , it is obtained
if one applies Lemmas andto the function [0 B (r, p,t0)— (r w,t1)]. O
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5.2. Estimates of the derivative of the function R;(r, ,t) with respect to
t. First we obtain the representation of OR;/0t. Let

t 0 0
alrt) =g [ [dotiourn) [ 2ot = s, 60

Assume from the beginning that f(r, p,t) is differentiated with respect to ¢t. Then
differentiation under the integral sign acts on f(r,¢,t), and integrating by parts
gives

oo
(r,t) / dT/ dp p7r T)bi(p, t— T)—|—11m dpLi(p,r,)bk(p,t). (5.8)
0

Note that the derivative of the function f(r, ¢, t) is not required in . Using the
relation above, we obtain the following representatlon

831 (ryp,t Zsm Akp) / dT/ dp 8 p,r T)
9
< [ 21t =) = Flp ) sin(re)
0

0o 92
in(\ dpoLy(p,r,t — , 4, t) sin(A d
# 3 sin0np) [ dobitoort) [ 51000 snw
EA1+A2.

‘9;1 (r,p,t). Let

Straight away,

t o0
orn(pit) = / dr / dpLi(p,r,t — T)bi(p.7),
—00 0

t—h 0o
Aoty = [ ar [ dpLutprt = o)

h
The derivative of vy /0t is limy, ¢ 88t

lary [.4] give
tl}gl limLg(p,r,t) =0,
and then
32} oL
L / / Ok oyt = Dok, 7) — bilp Oldp, (5.9)
aRl 7,. 90; ZSln )\k@ / dT/ dp 8t p,Tf )
(5.10)
2
< [ 215t0:0.7)  #p.4 D)Ou)
0
We will use the next representation
aLk P _pir? _77«2 pr
B D= gEe T (2t)+%§ TG (5.11)

= Zlk(pa T, t) + 'LQk(pa T t)'
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Lemma 5.3. The following estimate holds
L OR1 &
== < . - . .
gr%ixr | Y | < const ||f||P 120G (5.12)
Proof. First we justify the estimate

ORy 1 ¢ > oL o
POk =) [ ar [ 0% it = Mlowlp.7) ~ a0 < comst ({52
—0o0 0

(5.13)
where
0 1 plp® +12)  rpy e
—L t)=—-L t I, (—
ot k(p,’f‘, ) 1 k(para )+ e Ak(Qt)e
2 2, 2
rp o4 d rp
- — . —] = —.
4¢3 @) =y

From the representation of the function I, (x) (see [8, 8.431(1)])

- (x/Q)Ak ! Ty 2\ A —1/2

it follows
dly, (z) Ak (x/Q)Ak /1 2\ A, —1
AN, R TY(1 — k—1/2
e LR v sy o Sy TN A A G AL
Ak

?I)\k (ZE) =+ Q>\k (33)
On the other hand,(see [8, 8.486(4)])

dI,\k (l‘)
dx

and, hence, 2Qy, () = I, +1(z). From this equation and the definition of Qj, (),
we obtain

T = My, (2) + 21y, 41(2),

2 2

T(he+1)° fi < ]-7
zQy, () < const. § TOx+1) o=
xly, (z), forx > 1.

Returning to ‘C)C,%(p7 r,t), we have
oLy 1 1 p2 + r2 YA p _p24r?
TEk () = — =Ly + - L SALY S 4t
o0 Pt =yl sl ;e 5@ (@)e
r
= —mi(p.r.t) + malp. ) = malp, ) —malp,r,t), @=L
Let
t o]
M(r,t) = / dT/ dpp®=(t — 1)Ly (p, 7, t — 7).
—0o0 0
Since

M(r,t):/ dZ/ dpp*~*z°/*Li(p, 7, 2),
0 0

then %—]\f(r, t) = 0. Due to Lemma

(o)
}iirg)ta/Q/ dpp®~*Ly(p,r,t) =0,
0
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and therefore

a;\f(r t) = / dT/ dp (t - 7')0‘/2] STLk(pyryt —T)

/ dT/ dp(t —7)%/%p*~ ang(P,T,t—T)-

Let us consider the integral

(o) oo
M; = (1+ )\k)/ dt/ dpp* =t =12 L, (p, 1 t)
0 0

(5.14)

corresponding to (mq(p,r,t)+ms(p,r,t)) in the representation of 6L’“ (p,r,t). Then
the following estimate holds

|Mi| <r n<al/2 (5.15)

s S ——
/2—p’

e
We represent its proof in the Appendix (see Subsection 7.3). Now, using the integral

representations of I, (z) and Qx, (x), we have

mQ(pv T, t) - m4(p7 T, t)
2

P (0% 472 T, (rp)28) — 20pQ, (rp)20))

T
p ot g 2
8t36 at {(p - 27”p+’l" )I)\k(’l"p/Qt)
(7“:‘)/47f))"c /1 2\ A\ —1/2
2 1—y)e™(1— #1200 > 0.
+ T 1 1/2)T(1/2) _1( y)e™ (1 —y~) y} >
Estimate (5.15) implies

o0 o0 1
/ dT/ dpp*= 12 (my(p, 7, 7) +ms(p,r, 7)) < Const.r‘“m. (5.16)
0 0 A

Note that the estimate of the first term at the right part of ([5.14)) is contained in
- thus, by the equation 6—M(r t) = 0, we have

1
/ dT/ dpp® =72 (my(p, 7, 7) — ma(p,7, 7)) < const.rsT. (5.17)
0 0 A

At last, we are ready with (5.16)) and (5.17) to prove inequality (5.13):
ale (a/2) s >~ >~ aLk S—a
|W| < k)t s Ry / dT/ dﬂ|ﬁ(ﬂ#ﬁﬁ)|ﬂ T

B o // 07 (s (puro7) + sy, 7)

+ mQ(pv T, T) - m4(p7 T, 7—))

(a/2) r
t,s—a,Rp )\z/Z—p :

[Ns)

< const.(bg)

As the series Zk<bk>(a/ 2) converges, we arrive at (5.12)) which completes the

t,s—a,Rp

proof. O
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5.3. Holder constant for aé? (r,p,t) with respect to ¢. We apply Theorem

to estimate the Holder constant of the function aé? (r, p,t) with respect to .
Let us consider the function

P t,r) = gla,t = 7) = g(a1), gle,t) € CL7 (@)
where Qp :=[0,27] x [0,T], o € (0,1), and the function g(z,t) satisfies (4.7). The

approximating polynomial to F(z,t,7) is

w/2
(2,4, 7) = c(n) /0 [F(z + 20,8, 7) + Fz — 21, 7)] K (20)dL.

Let
To(w,t,7) = Aup (2,1, 7)

where the operator A, on the one hand, is the operator like A from (4.4)) with
f(z,q) := F(x,t,7), and, on the other hand, models the operator from the right
hand side in (5.10]). In the same way as above,

To(x,t,7) — AF(z,t,7)

/2 (5.18)
— ¢(n) /0 A(F(z+20,t,7) + Pz — 20,t,7) — 2F(x, £, )} K (20)dl.

After applying the operator A and following the proof of Lemma [5.3] we have

_ F(z,t
max |AF(x,t,7)| < const. maX{M}.
z,t, T z,t, T 7'“/2

We apply this estimate to the integrand in ([5.18]) and obtain

|T7l(xat77-) —ZF($,t,T)‘
|F(z+2l,t,7)+ F(x — 21, t,7) — 2F (z,t, T

To/2

/2
< const.c(n)/o K(20) mtax{ ) }l.

x,t,T

It is obvious that

Fla+2l,t F(x —2l,t,7) — 2F (x,t
max | (:E + Y 77-) + (x ) 77.) (:E? 7T)|

(aaa/z)la
x,t, T 7'04/2 )

< const.[g], /.,

That is why following the proof of Theorem 4.2} we obtain that the studied function
AF (z,t,7) belongs to C&[0, 27]).
Thus, similar considerations as in the case of the function 28 (r o, t) lead to

ot
_sOR o OR
r 8—;(1”,90,73 € Cy, (8—751);&3GT < const.[f]gt’;o;/_Q;GT. (5.19)

This is the place where the additional smoothness of the function f(r, ¢, t); i.e., the
boundedness of the seminorm | f];afog/_ Z(LGT, is used. That, of course, is stipulated

by the approach to the investigation of the problem.
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BRl

5.4. Holder constant for (r, o, t) with respect to t. In this section we make

use representation (5 of the function aRl (r,p,t). Let to > t1, and At =ty — 1.
We have

0R; OR;
5t ——(r, o, t2) — at( @, t1)

:Zsin(/\kga /m Ldr / ap2ke a 5 (., ts — 7)[ba(p 7) — br(ps )]

- D) [ i [T a5 et = oo ~ o)
/

2t1—t2 e}
+ Zsm(w dr /0 dplbr(p, 7) — bi(p, t1)] (5.20)
8L oL
X[ (prte = 7) = S E(p.rt = 7)]

] 2t1—to [e’e) 8L
# 3 sin0up) [ [ dplo ) =0t ) G et =)

4
ZZ sin(Axp) ZAJk’

=1

where A@C, i = 1,4, correspond to iy in representation (5.11)) for the function
0Ly /0t and Ag}c, 1= 1,4, do to ig. By the definition

to 0 242 s
e [ [ BT o))
ok 2ti—t>  JO P2ty — 1) /\k(z(tz - 7'))[ Ko = el ta)

so that the inequality

to oo s+1—a 24,2 r
AN < ‘t./ d / do—L —  cdmor, (— Py, (/2
| 1’k| = cons 2y —to ! 0 p(tQ — 7')2_6'/26 ’ )\k(Q(t2 - T))< k>t’s_a’RT
is valid. After applying Lemma we obtain

t2 dr
\A(1)| < const.r®~%(by, >(o;/2i / —_—
bk BTORT foy ity (t2 — T)170/2 (5.21)
< const.rs_a(At)o‘/2<b >§°;/2; Ry

The estimate of Agz,)c has been done the same way. To estimate

2t17t2 o0
Agsl)c = / dT/o dplbr(p, 7) — br(p, t1)]|[i1k(p, 7, te — 7) —drk(p, 7t — 7)),

— 00

we apply the mean value theorem. To this end we calculate

0 1% 7027" allk
AL A ()}_—

p 2402 pr +r pr
:_?36 -5 ])\k( )+ﬁa{e Tar (E)}

= Jir + Jop.
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Let t € (tl, tQ) and

2t1—t2 o0
to —t1) et T
A= [ [ oo - (pt) P2 =) G P
0

—0o0

We restrict ourself only by the estimate of Alskl), that is the part of Ag?’,l corre-

sponding to Jig. The rest estimates are proved with the same way.
Note that £ — 7 > t; — 7 and t — 2t; + to > At, thus, Lemma gives

2t1—to S+1 « 2.2
(3,1) (a/2) - pr
A% g(At)(bwt,s_a,RT/ dr/ dpt_ et )

< const.r* " (At)*/2(by, >(a/2

t;s—a,Rp”

The estimate of Ag.fl,z in (5.20) is obtained simultaneously for j = 1 and j = 2. We
have

2 (4) 2t1—t2 0o 8Lk
|;Aj,k| = ‘/_oo dT/O dplbr(p,t1) — bi(p, tz)]ﬁ(p, Tty —T)|

[e%S) 2t1—t2 8[/]@
=1 [ ottt ~tulpta)l [ G e = ]

— 00

p24r? pr

—| [ dolon(ortr) = bulprte)l e 1 ()

< const.r T (A)*/2(p;) /2

t;s—a,Rp?

where Lemma [3.3 has been applied.
The coefficients A;l,)g, i=1,3, j = 2, are evaluated similarly. Thus, the above
gives an estimate for all i = 1,4, and j = 1,2

A < constr = (A0)/2(bi) 22

t;s—a,Rp

This inequality together with the convergence of > k<bk>£i/—2 r)x,RT lead to

aR k\(a a
Z<T1157>£;S/_2(17RT < Const.<f>§;s/_2;,GT (5.22)
&

as it was to be proved.

5.5. Holder constant of the function (7" v, t) with respect to r. We

change the variables in the representation de (r,p,t) from (5.10): t — 7 — T,
and consider as the example, the part of one Wthh corresponds to i1x(p,r,t) in

BI1). Let
‘/l(rv @, t) = Z Sin()‘k@) / dT/ dpilk(p7 T, T)[bk?(p7t - T) - bk(pa t)]
0 0

k

= Z sin(Agp) Vi (7, t).
k
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Consider the difference as h > 0
Vl(r + ha@vt) - ‘/1(7"790715)

h? 0o
= Ssin0ne) [ ar [ dpisetor+ h oot =) = (ot

. " - )
— ; Sln(>\k90) /0 dT‘/0 dpllk(p7 Ty T)[bk(pv t— T) - bk(p’ t)] (523)

+ Y sin(g) [ dr / dpline(p,r + by 7) — ink(py7,7)]
L h2 0

x [br(p,t = 7) — bi(p, t ZZV  Sn(Ake).

i=1 k

Let r, = r + h. One can easy estimate the coefficients Vljk, 7 = 1,2 with Lemma
For instance,

s+1 « +T
/2 a — h PTh
Vi < bkis/iRT/ dT/ dp e S, (2

S5 04/2
< const.r ts aRT/ dTT1 73

< const.r®” (bk>£i/_2; e

To estimate Vﬁk in (5.23), we apply the mean value theorem. We have

dirk(p,rt) rp _p2+r2 pr P2 _o2ae? d
o —apt G e T @
p [r p d _ 242
=92 {%I/\k (z) — Q*t%—rm (x)} e &
pr—p _e22 popd _ o4
= ﬁTL\k(@e = ?E[d A () = Iy (w)]e™ a0
= Jik + Jok

(5.24)
where pr/2t = x. In compliance with (5.24]) the Fourier coefficients Vf:k can be
represented as Vf: E= Vf”k1 + V13’k2. First we estimate Vf”kl

> > T—p) _pir? T
Vi =h | dr / dp%e L () blp,t = ) = bilp, )]
h2 0 T T

where 7 € (r,r 4+ h). We have by properties of the function by (p,t)

1+s a 2 72 7
, a/2 r—p T« e por
|Vﬁk1| ( /2) / dT/ dp | ‘ /26 2= I)\k(g)a

ts a,Rp

and as it follows from Subsection 7.4 in the appendix,

e’} 1+s—a|m 2,2 Yo
p [T —p| _e2tr or -
dp—————— w I (=)< t. 7.
/0 P 4¢3/2 ¢ Ak(?t) = conskr
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Therefore,

|V13;€1| < const.(bk>(a/2) h?sfo‘/ T/273/24r < const.(bk>(a/2) hoFs ™
: 2

t;s—a,Rp t;s—a, Ry

< comst. (b {72 g B (r + )"~ < const. (b)) BT,
(5.25)
since the only h < r should be considered, to obtain the Holder constant for OR; /0t
with respect to r.

As for Vl?:}f corresponding to joi in (5.24)), it can be represented as (z = rp/2t)

2 2
=2 d _efe2 PP a2 A
Jor = F[%Ak (z) — I, (x)]e” 3t = i [Ix, (z) — glxk(ﬂf) = Qx, ()]
and
. )\ _p2+r2 2 _p2+r2
joi, < %IM (rp/2t)e™ " + Zf?e 7 (1, (rp/2t) — Iny1(rp/2t).

Note that the first term in the right part of the last inequality is estimated in
the proof of Lemma (see (5.15])), as for the second term one is evaluated like
Vl‘%’kl. If we take into account that from the equation Iy, 11(x) = Qx, (x), we have
Iy, 41(x) < const.ly, (x), and, hence, by Corollary xl/ze*ml,\kﬂ(x) < const.
uniformly in k. From here it follows that I, (x) — Iy, 11(x) ~ const.z~3/2 for large
value of x where the constant in independent of k. Using this fact, we can repeat
the arguments from Subsection 7.4. Thus, the estimate like holds for Vf:’,f.
(a/2)

t;s—a,Rp

STl g, < const. ()02
k

On account of convergence of ), (by) we have

Finally, we note that the analogous methods are applied to treat the function (which

corresponds to gy, from (5.11]))
o0 o
‘/2(7“7 @, t) = Z Sin()‘k@) / dT/ dpiZk:(p7 T, T)[bk?(p7t - T) - bk(pa t)]
= 0 0
= Z Vo i (1, ) sin(Arep),

k

and the following is true

a a,a/2
Z<‘/27k>§‘;s)—a7RT S ConSt'<f>£,t;sic3,GT'
k

The above estimates lead to

Z<8R1”“ y() < const. (f)(*/2) (5.26)
k

ot ris—a,Rp rit;s—a,Gr*
Remark 5.4. Note that the estimate of Zk[ag?k ]zﬁs/f%mT will be obtained in the

same way if we apply the arguments above to the difference [%(r, ©,ta)— %(r, ®,

t1)].
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5.6. Estimate for the seminorm [aé%tl]g)‘t’i/f ; cp+ We will use representation

(5.20) to the difference of aé? (ryp,ta) — 85? (r,p,t1) to obtain the desired esti-

mate. Let us consider the item Aglli = A;llz (r,p,t1,t2). Let A; be the operator

corresponding to A;llz; ie.,

Al(f(r7 (va) - f(’f, @atQ)) = A;};Z(ﬁ (P,t],tz) - ’U(’I"7 90)»

and

w/2
wn(F(rrp.7) — F(ry o)) = c(n) / F(rs o+ 206/m,7) — f(rp— 206)/7.7)

— flryp+200/m,t2) + f(r, o — 210/7,t2)| K (21)dl

be the approximating trigonometric polynomial of f(r, ¢, 7)— f(r, ¢, t2). After that,
we introduce the approximating trigonometric polynomial of A;(f(r, o, 7)— f(r, v,
ta)) as Tp,(r,p, T, t2) = Ajun(f(r,o,7) — f(r,o,t2)). Then, as before,

n/
v — Tn = C(’I’L)/ 2A1{f(T, 2 + 219/71-’ T) - f(rv Y = 2l9/ﬂ-77—)
0

— flr,o+210/m,t2) + f(r,o —210/7,t2)
—2[f(r,0,7) — f(r, 0, t2)] } K (20)dl.

Estimate (5.21) ensured that the value A;{...} where {...} is the expression in
the braces in the integrand can be evaluated as

A {...}| < Const.lars_o‘|At|°‘/2[f](a’a/2)

o.tis—a,Gr

After that, ending the estimate as well as the proof of Theorem and applying

AN (et it : :
Theorem [4.1, we obtain % € Cg uniformly with respect to the rest

variables. The same arguments are true in the case of other terms in (5.20)). This
implies

[8R1

ot

6. PROOF OF THEOREM [2.1] AND APPLICATIONS

](a,a/2) < const.[f](a’am) (5.27)

ptis—a,Gr pitis—a,Gr”

To complete the proof of Theorem we note the following. The exact rep-
resentation of the solution in has been got. We have shown the proof of the
estimates to the higher derivatives of the solution with respect to ¢ and t. After
that the derivatives of the solution with respect to r are evaluated with these esti-
mates and the equation. We have given the estimates of the solution corresponding
to the bulk potential, and the estimates of the potential corresponding to the initial
data are done with the same way. This proves estimate . A uniqueness of the
solution in the wider class has been proved in [I3]. Thus, Theorem has been
proved.

Remark 6.1. Problem (2.2)) with not uniform boundary conditions can be studied
with reduction one to the problem with uniformly boundary value problem if the
boundary functions are extended into the domain Gt (see [13]).

Remark 6.2. The described method makes possible to consider the homogeneous
Dirichlet initial problem in an arbitrary domain in R? with an corner point on the
boundary.
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In this section we formulate only results relating to the problem for the parabolic
equation with singular coefficients of the form

du (1 0 Ou b8u> 1 (82u b du

e ;gra Tar) 2 ('3702—’_;8(,0) = f(r,o,t), (r,9,t) € Gr, (6.1)
ou
%lg@:O =0, u|tp:9 =0, U‘t:o = ’LLO(T, 90)7 (62)

where b = const. > 0.
Equation (6.1)) is the main part of the parabolic equation with the Bessel operator

ou  O%u 9%u  bou

— -~ — (25 + =) = flx,ut), (x,y1)€Cr,
ot 0x? (8y2 + y@y) f@y.t), (z.9,7) T

which can be also rewritten in the form

%_(13 Ou b(“)u)_l(82u cos p du

r 67"7‘67"—’_;5 ) = f(’f’,gﬂ,t), (7”;80»’5) € GT' (63)

If b = 0, we get the problem for the heat equation.
We shall use the representation of a solution to problem (6.1]), (6.2) in the form
of the Fourier series by using eigenfunctions of the problem

8%v b Ov

r2 8(,02—'_ sinp dy

o7 o, N #e00), (6.4)
0
%b:o —0, w|pep=0. (6.5)

Equation (6.4) has the two linearly independent solutions:

01(0) = 72Ty (Aep),  v2(9) = 2Ty o(Mrp), g=1-0bb#1,
and if b=1
vi(p) = Jo(Akp),  v2(p) = No(Akp),
where J,(z) and N, (z) are the Bessel functions of the first and second kind. The
Bessel functions J,(x) has the power series representation

v X 2k

_T _ 1k z
To@) =55 ];)( V e v h 1)

In view of this expansion the eigenfunctions vo(¢) for b # 1 and v1(¢) for b =1 are
appropriate for our purpose. They have the bounded second derivative and satisfy
the first boundary condition in . To satisfy the second one, we define A = Ay
as the solutions of the equation J_g/2(Af) = 0, k = 1,2,.... We will say about
the case b # 1, the case b = 1 can be studied similarly.
The formal solution of problem , is represented as
u(r, p,t) = Rip(r, o, t) + Rap(r, @, t), (6.6)

where Ry, (r, @, t) is the volume potential

Rlb (7"7 @, t)

t [e'e] b/2 2,2
— q/2 P P 74/1)(t—7-)1 pr
Ek ¢ J_q/z(Aw)A dTA (r) 2(t—1)° ”’“(2(t—7))akd‘)

with

62 -1 0
= (5‘]12*‘1/2()"“9)) /0 G2 (k) £ (py 1, T)d,
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and Roy(r, @, t) is the initial data potential

o b/2 2,2
P p et pr
R2b Z(‘DQ/ q/2 )\kSD)/ (;) %e a [, (Qt)a()kdp
with
62
aoe = (572, s000)) / W2 () uo(p, ),

and v = A} + b?/4.

It turns out that the natural space for solutions of problem ([6.1]), (6.2)) is the space
Psl;a’(lJra)ﬂ (Gr) of the functions with the finite norm (I is an integer, a € (0,1))
||u||Plta’(l+Q)/2(éT) = Z sup T78+ﬂ1+2ag0b/2‘DE1 DgzDgu|

0<pB1+B2+2a<l (mé)€GT
b/2 (Ho=fizpaie)
+ Z {<@ / DflD%D?wt;sfﬁlfzafa,GT
0<l+a—(B1+F2+2a)<2
(OL l+o¢75127[3272a)
rtis—pP1—2a—2a,Gr

(a l+o<7[3175272a)
’ 2
o000 |

+ Z {<<pb/2D£1DgzD?u>£?s)—Bl—2a—a,GT
B1+B2+2a=l

b a «@
+(p /2Dﬂ1D52D u><(p; b 2aGT}

We introduce the subspace P + 5 (é ) (P;Ia(é)) of the space Ps bro 55 (Gr)

(PI*+(@)) like the definition of Pl+a’ R (Gr) (PI+*(@)). We are looking for the
solution to the problem in the form of the series and waiting that these series
converge in Gp. All their terms are equal to zero at ¢ = 0, thus, the condition

f('ra 0, t) =0 (67)
2+a (2+a)/2(GT).

+ ("2 D} D} D)

+ ("2 D} D} D)

is necessary for the solvability of the problem in P_

Theorem 6.3. Assume the conszstency conditions of the first order and condition
are fulfilled. The functions f € Pa Oé/z(GT) and ug € Pf_:zab(é) Then there
exists a unique solution u(r, p,t) € Ps’b = (Gr) and
||u||P2+a (2+a)/2(G ) + S( ) 2Ia (2+a)/2(G ) (6 8)
< const. (||f||ch /2@ + Hu0||Pz+a @t S(f) po. .0/ (Gr) + S(uO)Psz (é)% .

where the constant in is independent of u(r,gp,t), a € (0,1) and s + 2 <
(A2 +b2/4)Y/2, \10 is the smallest oot of the equation J_,/2(Ap6) = 0.

In general, the proof of Theorem repeats our arguments from the proof of
Theorem We note only that if k >> 1,

Toapp() ~ ﬁm@wﬂ(q C1)/4), Mb~ (E— (g +1)/4)m + O(L/k),

that gives the possibility to apply here the theorems from the trigonometric series
theory.
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7. APPENDIX

7.1. Formal representation of the solution to (2.2). To obtain the formal
solution of (2.2]), we applied the method of the separation of the variables. In
detail, one consists in the following. Let us consider case of ug(r, ¢) = 0 (this case
corresponds to Ra(r,¢,t) = 0 in (2.3)). We look for the solution u(r,¢,t) of the
problem
7777777 = ) ) 7t eG )
ot ror or 12 8@ =fnet), (net) T
u|91‘,T =0, u|t:0 =0, (Ta QD) € G,

(7.1)

as
u(r, p,t ZVk r, 1) P (¢ (7.2)

After the substitution of the function Vk (r,t)®k(p) into the homogenous equation
and boundary condition from (|7.1)), we obtain

Vi _ 10,0V O

2 ot ror' or 0p? 2
= = —)\ .
" Vi Py, (7.3)
D4 (0) = Di(9) = 0. (7.4)

Conditions ([7.3) and ([7.4)) lead to the function @ being the solution of the problem

DY (p) + Nidy = 0,

1 (0) = (0) = 0. (7:5)
The solution of is the function
O =sinAgp, N =7k/0, k=1,2.... (7.6)
Now we return to problem and represent f(r,p,t) as
flryp,t) = Z by (7, t) sin Mg, (7.7)
k
with
by (7, 1) / f(r,a, t) sin Agapdi). (7.8)

After that we substitute , and . to the equation and the initial con-
dition of (7.1) and have

vV 10 8Vk 2 Vi _
ot ror or R ko2 = bu(rt), (7.9)
Vk (’I“, 0) =0.

Here we use that the function ®x(p) satisfies the equation in (7.5)).
Let us denote the Hankel transformation (see, for example, [8 12, 5] for discus-

sion) with respect to r of the functions Vi (r, t) and bg(r,t) by Vi (u,t) and be (1, 1),
respectively, p is the parameter under the transformation:

?k(u,t) = /000 Vie(r, t)rJd,, (pr)dr
(7.10)

/l;k(/i,t):/ by (r, t)rJx, (pr)dr
0

where Jy, (ur) is the Bessel function [§].
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Expressions (7.9) and (7.10) lead to the following problem for the function

?k(,ua t)7
av

k 2
=b
dt +p Vk k(/J’a ) (711)
Vk (/”'7 0) =0.
It is easy to check that the function
t
Vie(u, ) = / e P =y (p, 7)dr (7.12)
0
gives the solution of problem (|7.11)).
After applying the inverse Hankel transformation in ((7.12)), we obtain
o’} t
Vitrt) = [ ) [ e 0 v (713)
0 0
Then the formal solution (|7.1)) follows from (7.2)), (7.6) and (7.13]), so,
t
u(r, @, t) Zsm)\kgo/ uJAk(,ur)/ 67”2(t77)bk(u,7)d7dp. (7.14)
0

To obtain formula (2.6)), we transform (7.14) applying formula [8] 6.633(2)]:

o, 1 rp r?+ p2
no(t—m) = -
/0 He J)\k (MT)J)\k (Mp)d,u Q(t _ 7—) IA’“ (Q(t — 7-)) exXp ( 4(t — T))

where I, (x) is the modified Bessel function. Thus,

u(r, ¢, t)
t [e%¢) o
= sinApp / dr / dpbi(p,7)p / pn (pr)e™ =TT (up)dp
P 0 0 0
t 00 2 2
ey p rp 4y
728111)\%0/0 dT/O dpbk(p’T)2(t—T)IAk(Z(t—T)>eXp( 4(75—7'))'
k=1

That gives (2.5)), (2.6) with Rs = 0 (due to up = 0). To obtain the complete formula
(2.5); i.e., with Ry # 0, it is enough to consider the problem

- r—— —=—-—=0, (ret)€Gr,

giT — 0, u|t:0 = uO(Tv 80)7 (Tv QO) € Gv

and apply all reasoning mentioned above to this problem.
After that, the solution of (2.2)) is represented as

U(T‘, 2 t) =R (’I", ®, t) + R (Tv ' t) (716)

where Ry(r, p,t) and Ra(r, ¢,t) are the solutions of (7.1)) and (|7.15)), correspond-
ingly.

(7.15)

t [} 2,2
. p _pl4r? pr
t) = d d 4(t—7‘)] PR — b
) Ek sm(/\kgo)/o 7'/0 p2(t_7_)6 )\k(2(t_7)) k(0 T),

_p2+72 T
2(r, 0, t) Zsm/\w/ dp%e 4t (gt)wm(p)

(7.17)
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[
uor (7 0/ uo(r, 1) sin(Agtp)dep, bk(M)Z%/ fry i, t) sin(Ae)di).
0

(7.18)
Equation ([2.5)) implies that the desired solution is the sum of the volume potential
Ry (7, ¢,t) and the potential of the initial data Ra(r, ¢, t).
The representation for Ry (r, p,t) can be rewritten also as

1(r, o, 1) Zsm )\kgo/ dT/ dp t— e = T)IA,C(( ))bk(p, 7),

(7.19)
if f(r,p,t) = 0 for t < 0, that was assumed. Thus representations ((7.16))-(7.19)

sive (29)-(E9).

7.2. Proof of Corollary In the integral from (3.7)), we change the variable

£ — g and then z2 = v,

2t
2 t 1402t 1 22
b / ; e F UL (2)de

r 2t
1+s 1 2 o ;
*(7) 2 y* 2T I () dy.

Using tabular integral [8, 6.643(2)], we obtain

. 2 F()\k+s+2)
D _ 21+s s t 145 -5 2
(t/r?) TOr 1)

e 2y (r2/40)

In our case (see [8, 9.221])

2 2 2
2 (r”/4t) > r
M—T,T’“( /4t) = 20 B(Aes Autsi ()"“’ gt)’
where B(z,y) = Fr(a)i%), I'(x) is the Gamma function, and

NOow = IR
— — 2 8t
( ks St) /_1( +2)77 (1-2) e 2.

By the substitution 1+ z = & we go to
2

2 22 Apts Ap—2—s .2
(/\k,r ) / eFsaTT (2—z) 7 €S da.
st) =,

In this equality, we put s = —1 and use tabular integral [8, 3.383(2)], then

V(e ) = A ()T () ()

Finally, we gather our calculations and obtain

D_; = const.rilefzzébik (z), z=r?/8t.
2
Lemma [3.3] leads to
1
e *221x, (2) < const.,
2

where the constant does not depend on k. Recall that Ay = Fk, so, if we take
k=2n,n=1,2,..., we will obtain our assertion. This ends the proof of Corollary

3.4
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7.3. Estimate for the integral M; = (1+X;) [~ dt [;° dpt'fi%;Lk(p, r,t). Using
the representation of the function I, (z) from [3, 7.7.3(25)], we obtain

1+s « [ee]
My = (14 X\g) / dt/ dp A—a/2 / Jkk(l)//b).])\k(ru)e—t,uzudu
—1+s [e% 5. o
=(1+ M) / dt/ dp a2 / I, (zr/p) I, (2)e P " 2dz

= (1+)\k)/0 dyyil*”a/o dzzJAk(zry)JAk(z)/o dtt*HO‘/ze*Z%?ﬁ,

In the first equality above we used p = z/p, and in the second p = y~!. The last
integral can be calculated (see [, 3.381(4)])

/OO dtt71+a/2efz2ty2 _ F(a/2)
0

so that after the changing of the variable y = ¢/r,
M,

= (14 M)r°T(/2) / dgq?! / dzz'~ C I, (2q) I, (2)

1l—¢ 1+e
—aeartea{ [ [ [ e [T, o)
1 1+E 0

= (1+ \)rT(a/2)(M"Y + MP + M)
(7.20)
For g € (0,1 — ¢) the integral (see [3| 7.7.4(29)])

d1=/ dzz' "Iy, (2q) Iz, (2)
0

Ak
g*T(Ag+1—a/2) 9
= FOr+1—a/2,1 —a/2; \p + 1; .
20710 (A + DT (e/2) (A /2, /2 A 107)

The function F(\p +1—«a/2,1—a/2; A + 1; ¢°) is bounded (see [8, 9.102]) so that

Ak

T(a/2)"*

q

dy < const A\ /2 < const. A, a/2, (7.21)

For g € (1 +¢,00),

d3:/ dzzlfaJAk(zq)JAk(z)
0

MDA 4+ 1 — a/2)
20=I0(A\, + DI /2)
—>\k+0¢—2)\*‘1/2
" .

FOw+1-a/2,1— /20 +1:¢7%) (722)

< const.q

Estimates ([7.21)) and (7.22)) lead to
Ml(l) < Const.)\lglfo‘/z7 Ml(?’) < const.)\lzlfa/Q. (7.23)

Now we estimate the integral

1 14¢ (%)
{/ —|—/ }qilfsdq/ zlfD‘JAk(z)JM (g2)dz = M1(2’1) + M1(2’2),
1—e 1 0
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1 00
MED = [T gty [ () (a0
1—¢ 0
g oo
_ / (1- x)*Hda:/ S0 () (1 — 2)2)dz
0 0
:/ (1 —2) " %dyy (x)dx
0
(in the second inequality above, we used ¢ =1 — z),

(1 —2)» T\ +1— a/Q)F
20717 (A + 1T («/2)

1+ 0
M = / ¢ "*dg / Z I (2) I (42)dz
1 0

= /06(1 + 2) "' S dog () dx

(in the inequality above, we used ¢ = 1 + z),
(14 2)2 27D\ + 1 — a/2)

do = ()‘k+1_a/231_0‘/25/\k+1;(1_m)2),

= Fop+1—a/2,1—a/2; 0, +1;(1+2)72),
da2 2010 (Mg + 1)T(a/2) (Ak /2, /25 Ak i ( z)77)
where
af ala+1DBBE+1) 4
o =1 E P,
F(a,,é’,fy,x)flJrl.var 2+ 1) T°+ + apx

In our case

(M F1—-0a/2)(1 - a/2) - —a .()\k+2—a/2)(2—a/2)

a; = , e
! Mk +1) ! 2- (A +2)
i.e., ap < const. with respect to p and Aj. After that,

M1(2,1) M(2,2)

M +1—a/2) R e s—9p—9ta
=g frlEAkH /a/2 Z%/ e e
T\ +1—a/2)

= 2T + D (a/2) Zap (1= 222 (= 54 2p) !

+ (L) A2 2+a(—Ak —s5=2p-2+a) |5

PO +1 - a/2) A |
:2a1P(Ak+1)r(a/2)pz_;)a”{[(l‘€)A (A = 5+ 2p)

+ (1 4e) msm2Fe (N s —2p—2+a)7!
—(a—2-28) M\ —s+2p) (=M —5—2p— 2—|—a)*1}

M +1—a/2 s _
= 5am 1(F()\k+1 /a/2 {Zap eI (N, — s+ 2p) !

+ (L4 ) rems72P= 2*”‘(—Ak—s—2p—2+a)*l]
+Zap(a—2—2s)(/\k—s—|—2p)71(/\k—|—s—|—2p—|—2—a)*1}.

p=0
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The first series converges because, for example, for every fixed € > ¢y > 0

t.
ap(l— )™ (N, —s42p) " < %{f’% q<1,

SO

1S apl(1— 42y, — s+ 2p)
p=0

t.
+ (1 +5)7/\k7572p72+a(*>\k —s— 2p —924 04)71” < CO)I\lS .
k
As for the second series,
t.
‘Zap(a—Q—Qs)(/\k —s+2p) "M ts+2p+2—a) | < C)\Ol%, > 0.
p=0 k

Taking into account that
Fwt+1-a/2) \—ay
L\ +1) k
for large A, we have
(M| = |MEY 4 MP?)| < const. A, T2, (7.24)
Finally, the following inequality follows from (7.20)), (7.23) and (7.24):

S

| M| < const. 4
[e3

Ny (7.25)
)‘k/2 1%

with 0 < p < /2.

s—a r2 p2
7.4. .Estimate for .the integral I ”TTV—;.JHM (rp/2t)e~ " dp from Sub-
section 5.5. In this subsection we show the estimate

© 1+s—a 2, 2
P _r2ep? -
I= /0 W\r — plIa, (rp/2t)e” "2 dp < const.r®~.

Denote
- P = ow="2L
A TIVE o2t

and change the integration variable p by u. We obtain

oo 2t1/2u 14+s—a 2l
1 :/0 4t%|v — eI (2uv)du

u

< const. /00 72 gl tsme e w0 I (Qup)e2Wdy,
0
where v € (0,1). Next we consider the integral
Aw) = /Oo uﬁe_7(“_”)21>\k (2uv)e " du.
0
Introduce the new integration variable z = uv so that

Av) = v_ﬁ_l/ 256_7(%_“)2I>\k(2z)6_22dz
0

1
:v_ﬁ_l/ 256_7(%_1})21—)\,‘,(QZ)E_QZdZ
0
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4 oA / zﬁe_"(%)_”)zlk,c (22)e™**dz
1
= Al(’t}) -+ AQ(U).
To estimate A, (v), we use Corollary and obtain

o0
Az(v) < Const.v‘ﬁ—l/ B=1/2,-7 (=0 g,
1

Now let £ = 2 —v. Then
As(v) < COHSt.lfﬁ*l/ VPR (E 4 0)P 2 g
—v+1/v

oo
< const.v_1/2/ max|[(§ + U)ﬁ—1/2e—"f§2/2]e—'ygz/Qdf_
—v+1/v

One can verify that
o(&v) = (E+ v)ﬁ_1/26_7§2/2 < const.v?1/2
under v > vo(8,v) > 0. It implies

As(v) < const.v? 1 for v > 1.

.2

22 — 22 z
To estimate As(v) for v < 1, notice that e 2.2 < en? ifz>1ande V22 < e 3
if v < 1. Therefore,

& 22 22 2
As(v) < const.vil*ﬁ/ P2 Ve e T 27TV d2
1

o 2
I D . _ a2
S const.v 1 ﬁe 202 / ZIB 1/26 Y5 +2zdz
1

_1_38 — 2 _
< const.v 1=Be=35,2 < const.v 1+

for v < 1.
After that we evaluate the integral A;(v) for v > 1. For z < 1, we use the
estimate

I, (22) < const.z™ < const.z™, X\, = 7/0.
Then
1
Ai(v) < const.v_ﬁ_l/ 2PHM (07 =22 427 0%)
0
< Const.v*ﬁflefw2 < const.v 1P

for v > 1. At last, for v < 1,
1
Al(/U) < Const.vfﬁfl / Zﬁ+)\167~/(u2,2z+22/v2)d’2
0
1/v ,
< const.v_ﬁ/ dy(yv)ﬁJFAle—w
0

< const.v™ = const.p~ 1 HBpPH1=8 < const.v? 1

if A +1—8>0.
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If we take 0 =1+ s — a, then the condition A\ + 1 — 8 > 0 means 1 — a < 7 /0
that is fulfilled under conditions of Theorem Thus, our calculations lead to

< const.r®"%,

ISconst.t(S’a)m( " >_1+1+s_a

2¢1/2
that was to be proved.
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