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NUMERICAL COMPUTATION OF SOLITON DYNAMICS
FOR NLS EQUATIONS IN A DRIVING POTENTIAL

MARCO CALIARI, MARCO SQUASSINA

Abstract. We provide numerical computations for the soliton dynamics of
the nonlinear Schrödinger equation with an external potential. After comput-
ing the ground state solution r of a related elliptic equation we show that, in
the semi-classical regime, the center of mass of the solution with initial datum
built upon r is driven by the solution to ẍ = −∇V (x). Finally, we provide
examples and analyze the numerical errors in the two dimensional case when
V is a harmonic potential.

1. Introduction

1.1. Soliton dynamics behaviour. The main goal of the present paper is to
provide a numerical investigation of the so-called soliton dynamics for the nonlinear
Schrödinger equation with an external time independent smooth potential V . That
is, we study the qualitative behaviour of

iε∂tφε = −ε2

2
∆φε + V (x)φε − |φε|2pφε, x ∈ RN , t > 0,

φε(x, 0) = φ0(x), x ∈ RN ,

(1.1)

in the semi-classical regime. Namely, for ε (which of course plays the rôle of Planck’s
constant) going to zero, we take as initial datum a (bump like) function of the form

φ0(x) = r
(x− x0

ε

)
e

i
ε x·ξ0 , x ∈ RN . (1.2)

We shall assume that N ≥ 1, 0 < p < 2/N , i is the imaginary unit and r ∈
H1∩C2(RN ) is the unique [28] (up to translations) positive and radially symmetric
solution of the elliptic problem

− 1
2
∆r + λr = r2p+1 in RN , (1.3)

for some value λ > 0. Finally, x0 and ξ0 are given vectors in RN that should be
conveniently thought (in the transition from quantum to classical mechanics) as
corresponding to the initial position and initial velocity of a point particle.

2000 Mathematics Subject Classification. 35Q40, 58E30, 81Q05, 81Q20, 37N30.
Key words and phrases. Nonlinear Schrödinger equations; ground states;
soliton dynamics in an external potential; numerical computation of ground states;
semi-classical limit.
c©2010 Texas State University - San Marcos.
Submitted March 5, 2010. Published June 25, 2010.

1



2 M. CALIARI, M. SQUASSINA EJDE-2010/89

In this framework, since (1.1) has a conservative nature, the typical expected
behaviour is that the solution travels with the shape of r((x − x(t))/ε) (hence its
support shrinks, as ε gets small) along a suitable concentration line x(t) merely
depending on the potential V and starting at x0 with initial slope ξ0.

On the basis of the analytical results currently available in literature (see the
discussion in Section 1.2), we believe that providing some numerical study is useful
to complete the overall picture of this phenomenon and furnish some practical
machinery for the computation of the solutions of (1.3) and, in turn, of (1.1)-(1.2).
The authors are not aware of any other contribution in the literature on this issue.
For the linear Schrödinger, some results can be found in [29].

1.2. Facts from the theory. It is well-known that, given a positive real number
m, the afore mentioned (ground state) solution r of (1.3) (where the value of λ
depends on m) can be obtained through the following variational characterization
on the sphere of L2(RN )

E(r) = inf{E(u) : u ∈ H1(RN ), ‖u‖2L2 = m}, (1.4)

where E : H1(RN ) → R is the C2 energy functional

E(u) =
1
2

∫
RN

|∇u|2dx− 1
p + 1

∫
RN

|u|2p+2dx. (1.5)

Furthermore, there exists a suitable choice of m yielding λ = 1 as eigenvalue in
(1.3). The restriction to the values of p below 2/N is strictly related to the global
well-posedness of (1.1) for any choice of initial data φ0 in H1. If p is larger than or
equal to 2/N , then the solution can blow-up in finite time (see e.g. the monograph
by Cazenave [14]). In particular, in the two dimensional case, p will be picked in
(0, 1).

From the analytical side, it has been rigorously known since 2000 that the so-
lution φε(t) of (1.1) remains close to the ground state r, in the sense stated here
below, locally uniformly in time, as ε is converges to zero. As we said, this dynam-
ical behaviour is typically known as soliton dynamics (for a recent general survey
on solitons and their stability, see the work of T. Tao [37]).

For the nonlinear equation (1.1), rigorous results about the soliton dynamics were
obtained in various papers by Bronski, Jerrard [8] and Keraani [26, 27]. We also
refer to [35] for a complete study of the problem with the additional presence of an
external time independent magnetic vector potential A : RN → RN , and to [31] for
a study of a system of two coupled nonlinear Schrödinger equations, a topic which
is rapidly spreading in the last few years. The arguments are mainly based on the
following ingredients: the energy convexity estimates proved by Weinstein [39, 40]
to get the so called modulational stability, the use of conservation laws (mass and
energy) satisfied by the equation, and the associated Hamiltonian system in RN

built upon the guiding external potential V , that is the classical Newton law
ẍ(t) = −∇V (x(t)),

x(0) = x0, ẋ(0) = ξ0.
(1.6)

Under reasonable assumptions on V (e.g. uniform boundedness of the second order
partial derivatives), equation (1.6) admits a unique global solution (x(t), ξ(t)) which
satisfies the following conservation law

H(t) =
1
2
|ξ(t)|2 + V (x(t)), H(t) = H(0), t ≥ 0.
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Let us now define a suitable scaling of the standard norm of H1(RN ),

‖φ‖2Hε
= ε2−N‖∇φ‖2L2 + ε−N‖φ‖2L2 , ε > 0.

The precise statement of the soliton dynamics reads as follows.

Analytical Property 1.1 (Cf. e.g. [8, 27]). Let φε(t) be the solution to problem
(1.1) corresponding to the initial datum (1.2). Then there exists a family of shifts
θε : R+ → [0, 2π) such that, as ε tends to zero, φε(x, t) is equal to the function

φr
ε(x, t) = r

(x− x(t)
ε

)
e

i
ε [x·ẋ(t)+θε(t)], x ∈ RN , t > 0, (1.7)

up to an error function ωε(x, t) such that ‖ωε(t)‖Hε ≤ O(ε), locally uniformly in
the variable t.

It is important to stress that, in the particular case of standing wave solutions
of (1.1), namely special solutions of (1.1) of the form

φε(x, t) = uε(x)e−
i
ε θt, x ∈ RN , t ∈ R+, (θ ∈ R),

where uε is a real-valued function, there is an enormous literature regarding the
semi-classical limit for the corresponding elliptic equation

−ε2

2
∆uε + V (x)uε = |uε|2puε, x ∈ RN .

See the recent book [2] by Ambrosetti and Malchiodi and the references therein. To
this regard notice that, if ξ0 = 0 (null initial velocity) and x0 is a critical point of
the potential V , as equation (1.6) admits the trivial solution x(t) = x0 and ẋ(t) = 0
for all t ∈ R+, formula (1.7) reduces to

φr
ε(x, t) = r

(x− x0

ε

)
e

i
ε θε(t), x ∈ RN , t > 0,

so that the concentration of φε(t) is static and takes place at x0, instead occurring
along a smooth concentration curve in RN . This is consistent with the literature
for the standing wave solutions mentioned above.

For other achievements about the full dynamics of (1.1), see also [19, 20] (in the
framework of orbital stability of standing waves) as well as [24, 25] (in the framework
of non-integrable perturbation of integrable systems). Similar results were investi-
gated in geometric optics by a different technique (WKB method), namely writing
formally the solution as uε = Uε(x, t)eiθ(x,t)/ε, with Uε = U0+εU1+ε2U2 · · · , where
θ and Uj are solutions, respectively, of a Hamilton-Jacobi type equation (the eikonal
equation) and of a system of transport equations. In the presence of a constant
external potential, the orbital stability issue for problem (1.1) was investigated by
Cazenave and Lions [15], and by Weinstein in [39, 40]. Then, Soffer and Weinstein
proved in [32] the asymptotic stability of nonlinear ground states of (1.1). See
also the following important contributions: Buslaev and Perelman [9], Buslaev and
Sulem [10], Fröhlich, Gustafson, Jonsson, Sigal, Tsai and Yau [17, 18, 1], Holmer
and Zworski [22], Soffer and Weinstein [33, 34], Tsai and Yau [38].

Another interesting problem concerns the case where the initial datum is multi-
bump (for simplicity two bumps), say,

φ0(x) = r1

(x− x0

ε

)
e

i
ε x·ξ0 + r2

(x− y0

ε

)
e

i
ε x·η0 , x ∈ RN . (1.8)
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where ri are solutions to the problem

E(ri) = inf{E(u) : u ∈ H1(RN ), ‖u‖2L2 = mi},

for some fixed mi > 0, i = 1, 2 and x0, y0, ξ0, η0 are taken as initial data for{
ẍ(t) = −∇V (x(t)),
x(0) = x0, ẋ(0) = ξ0.

{
ÿ(t) = −∇V (y(t)),
y(0) = y0, ẏ(0) = η0.

(1.9)

Then we state the following result.

Analytical Property 1.2 (Cf. e.g. [1]). Let φε(t) be the solution to (1.1) cor-
responding to the initial datum (1.8). Then there exist two families of shifts θi

ε :
R+ → [0, 2π) such that, as ε goes to zero, φε(x, t) is equal to the function

φr
ε(x, t) = r1

(x− x(t)
ε

)
e

i
ε [x·ẋ(t)+θ1

ε(t)] + r2

(x− y(t)
ε

)
e

i
ε [x·ẏ(t)+θ2

ε(t)], (1.10)

up to an error function ωε(x, t) depending both on ε and on the initial relative
velocity v = |ξ0 − η0| (the larger is v the smaller is the error), locally uniformly in
time.

See figure 3 in the final section for a movie showing this behaviour.

2. Numerical computation of the soliton dynamics

In the numerical simulations included in the last section of the paper, we shall
consider the two dimensional case. On the other hand, here we consider the general
case.

2.1. Overview of the method. Our purpose is to solve the Schrödinger equation

iε∂tφε(x, t) = −ε2

2
∆φε(x, t) + V (x)φε(x, t)− |φε(x, t)|2pφε(x, t), x ∈ RN ,

φε(x, 0) = rε(x− x0), x ∈ RN ,

(2.1)

where rε(x) = u(x/ε), so that φ(x, t) = u(x)e−iλt is the solution of

i∂tφ(x, t) = −1
2
∆φ(x, t)− |φ(x, t)|2pφ(x, t) (2.2)

being u real, positive and minimizing the energy (1.5) under the constraint ‖u‖2L2 =
m. Instead of a direct minimization of the energy (see, e.g., [6, 12]), here we consider
the parabolic differential equation

∂tr(x, t) =
1
2
∆r(x, t) + r2p+1(x, t) + λ(r(x, t))r(x, t), x ∈ RN , t > 0

r(x, 0) = r0(x), ‖r0‖2L2 = m, x ∈ RN
(2.3)

with vanishing boundary conditions, where the map t 7→ λ(r(·, t)) is defined by

λ(r(x, t)) =
1
2

∫
RN |∇r(x, t)|2dx−

∫
RN |r(x, t)|2p+2dx

‖r‖2L2

.

This approach is known as continuous normalized gradient flow (see, e.g., [3]), i.e.
the continuous version of the propagation of the Schr̈odinger equation along imag-
inary time −it and projection to the L2 sphere of radius

√
m. In equation (2.3),
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projection is not necessary and the energy decreases: in fact, if we multiply equa-
tion (2.3) by r(x, t) and integrate over RN , we easily get

1
2

d
dt
‖r(·, t)‖2L2 =

∫
RN

r(x, t)∂tr(x, t)dx = 0

and if we multiply equation (2.3) by ∂tr(x, t) and integrate over RN , we get

1
2

d
dt
E(r(·, t)) = −

∫
RN

|∂tr(x, t)|2dx + λ(r(x, t))
∫

RN

r(x, t)∂tr(x, t)dx

= −
∫

RN

|∂tr(x, t)|2dx ≤ 0

Hence, the steady-state solution r∞(x) = r(x, t →∞) of (2.3) satisfies ‖r∞‖2L2 = m
and has a minimal energy. In fact, notice that by the results in [28], for any λ > 0
there exists a unique (up to translations) positive and radially symmetric solution
r = rλ of (1.3). In turn, given λ1, λ2 > 0, if r1, r2 : RN → R denote, respectively,
the positive radial solutions of the equations

−1
2
∆r1 + λ1r1 = r2p+1

1 , −1
2
∆r2 + λ2r2 = r2p+1

2 ,

then it is readily verified that

r2(x) = µr1(γx), γ =
(λ2

λ1

)1/2

, µ =
(λ2

λ1

)1/(2p)

,

which tells us that that, up to a scaling, the solution corresponding to different
values of λ is unique. Notice now that, due to the choice of the bump like initial
datum (Gaussian like, see (2.6)) in the iterations to compute r∞ (see the discussion
below), it turns out that λ∞, defined as λ(r∞), is negative and r∞ is positive,
radially symmetric (see figure 1) and solves

−1
2
∆r∞ + λ̂∞r∞ = r2p+1

∞ ,

where λ̂∞ = −λ∞ > 0. If rm denotes the ground state solution (with the corre-
sponding positive eigenvalue denoted by λm), then we have

rm(x) = µr∞(γx), γ =
(λm

λ∞

)1/2

, µ =
(λm

λ∞

)1/(2p)

. (2.4)

On the other hand, by construction, we have

m = ‖rm‖2L2 =
∫

RN

r2
m(x)dx = µ2γ−N

∫
RN

r2
∞(x)dx = mµ2γ−N ,

namely µ2γ−N = 1. Finally, by the definition of γ and µ in (2.4), we get λm = λ̂∞
and γ = µ = 1, yielding from (2.4) the desired conclusion; that is,

r∞ = rm.

Moreover, r∞(x)e−iλ(r∞(x))t is a solution of (2.2). We will take rε(x − x0) =
r∞((x− x0)/ε) as our candidate initial condition for the time-dependent nonlinear
Schrödinger equation (2.1). From a numerical point of view, it is convenient to
compute directly r∞(x/ε) instead of r∞(x) and to apply the change of variable
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Figure 1. The positive, radially symmetric and radially decreas-
ing ground state solution r∞ of (1.4) with m = 1 and p = 0.2. Of
course, in the computation of r∞, there is a spurious imaginary
part of maximum value around 10−16, since the complex FFT al-
gorithm is involved. The corresponding value of λ∞ is λ∞ =
−0.37921.

Φ(X, t) = 4
√

εNφε(x, t),
√

εX = x, to the nonlinear Schrödinger equation (2.1), and
hence to equation (2.3). Altogether, we need to solve

∂tR(X, t) =
ε

2
∆R(X, t) + ε−Np/2R(X, t)2p+1 + Λ(R(X, t))R(X, t), X ∈ RN

R(X, 0) = R0(X), ‖R0‖2L2 = mεN , X ∈ RN

(2.5)
with

Λ(R(X, t)) =
ε
2

∫
RN |∇R(X, t)|2dX − ε−Np/2

∫
RN |R(X, t)|2p+2dX

‖R‖2L2

where R(X, t) = r(x/ε, t) 4
√

εN . Since it is not possible to numerically integrate the
equation up to an infinite time, we will consider R(X, t̄) the steady-state as soon as
E(R(X, t̄)) is stabilized within a prescribed tolerance. The initial condition R0(X)
can be arbitrarily chosen (in the class of bump like functions), but an initial solution
with small energy will shorten the “steady-state” time t̄. Among the family of the
Gaussian functions parameterized by σ

Rσ(X) =
√

mσN/2e−|σX/
√

ε|2/2 4

√( ε

π

)N (2.6)

with ‖Rσ‖2L2 = mεN it is possible to choose the one with minimal energy. In fact

E(Rσ) = σ2 ε

2

∫
RN

|∇R1(X)|2dX − σNp ε−Np/2

p + 1

∫
RN

|R1(X)|2p+2dX.

If we define

A =
ε

2

∫
RN

|∇R1(X)|2dX, B =
ε−Np/2

p + 1

∫
RN

|R1(X)|2p+2dX.
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the minimum for E(Rσ) is attained for

σ =
(BNp

2A

) 1
2−Np

.

The quantities A and B can be analytically computed and give

A =


mε
4 N = 1

mε2

2 N = 2
3mε3

4 N = 3,

B =
mp+1εN

πNp/2(p + 1)1+N/2

2.2. Numerical discretization. With the normalization introduced above, the
nonlinear Schrödinger equation to solve is

i∂tΦ(X, t) = −1
2
∆Φ(X, t) +

V (
√

εX)
ε

Φ(X, t)− |Φ(X, t)|2p

√
ε2+Np

Φ(X, t), X ∈ RN

Φ(X, 0) = R(X −X0, t̄), X ∈ RN

(2.7)
A well-established numerical method for the cubic Schrödinger equation (focusing
or defocusing case) is the Strang splitting [5, 4, 11]. It is based on a split of the
full equation into two parts, in which the first is spectrally discretized in space and
then exactly solved in time and the second has an analytical solution. We used the
Strang splitting method as well. The first part is

i∂tΦ1(X, t) = −1
2
∆Φ1(X, t). (2.8a)

Thus, the Fourier coefficients of Φ1(X, t) restricted to a sufficiently large space
domain satisfy a linear and diagonal system of ODEs, which can be exactly solved.
The second part is

i∂tΦ2(X, t) =
V (
√

εX)
ε

Φ2(X, t)− |Φ2(X, t)|2p

√
ε2+Np

Φ2(X, t). (2.8b)

It is easy to show that the quantity |Φ2(X, t)|2p is constant in time for this equation.
Hence it has an analytical solution. Given the approximated solution Φn(X) ≈
Φ(X, tn) of equation (2.7), a single time step of the Strang splitting Fourier spectral
method can be summarized as:

(1) take Φn(X) as initial solution at time tn for (2.8a) and solve for a time step
k/2, obtaining Φ1(X, tn + k/2);

(2) take Φ1(X, tn + k/2) as initial solution at time tn for (2.8b) and solve for a
time step k, obtaining Φ2(X, tn + k);

(3) take Φ2(X, tn + k) as initial solution for (2.8a) and solve for a time step
k/2, obtaining Φn+1(X).

The result Φn+1(X) is an approximation of Φ(X, tn +k). Since the solutions of the
first part and the second part are trivial to compute in the spectral space and in the
real space, respectively, it is necessary to transform the solution from spectral space
to real and from real space to spectral before and after step (2) above, respectively.
All the transformations can be carried out by the FFT algorithm. The method
turns out to be spectrally accurate in space and of the second order in time.
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Therefore, we used the Fourier spectral decomposition for the solution of equa-
tion (2.5), too. Together with the Galerkin method, it yields a nonlinear system of
ODEs

R̂′(t) =
ε

2
DR̂(t) + f(R̂(t)), t > 0,

R̂(0) = R̂0,
(2.9)

where R̂ is the vector of Fourier coefficients, D the diagonal matrix of the eigen-
values of the Laplace operator and f the truncated Fourier expansion of the whole
nonlinear part of equation (2.5). For the solution of equation (2.9) we used an
exponential Runge–Kutta method of order two (see, e.g., [21]), with the embedded
exponential Euler method. Given the approximation R̂n ≈ R̂(tn), a single time
step of the method is

(1) set An+1 = kn+1
ε
2D and Rn1 = Rn;

(2) compute R̂n2 = exp(An+1)R̂n1 + kn+1ϕ1(An+1)f(R̂n1) (exponential Euler
method);

(3) compute R̂n+1 = R̂n2 + kn+1ϕ2(An+1)(−f(R̂n1) + f(R̂n2))
where ϕ1(z) and ϕ2(z) are the analytic functions

ϕ1(z) =
ez − 1

z
, z 6= 0, ϕ2(z) =

ez − 1− z

z2
, z 6= 0,

ϕ1(0) = 1, ϕ2(0) =
1
2
.

The result is an approximation of R̂(tn+kn+1). Exponential integrators are explicit
and do not suffer of time step restrictions. However, they require the computation
of matrix functions. In our case, the matrices involved An+1 are diagonal and the
computation of the matrix functions exp(An+1), ϕ1(An+1) and ϕ2(An+1) is trivial.
In order to compute the terms f(R̂n1) and f(R̂n2), it is necessary to recover the
functions in the real space corresponding to the Fourier spectral coefficients R̂n1 and
R̂n2, respectively, then to compute the nonlinear part of equation (2.5) and finally
to compute its Fourier transform. All the transformations can be carried out by
the FFT algorithm. The term R̂n+1−R̂n2 in step (3) above can be used as an error
estimate for R(tn+1) − Rn+1 and then it is possible to derive a variable time step
integrator. This is particularly useful for our aim of computing the steady-state of
the equation: in fact, we expect that the as soon as the solution approaches the
steady-state it is possible to enlarge the time step, thus reducing the computational
cost. The method turns out to be spectrally accurate in space and of the second
order in time.

3. Two dimensional examples and error analysis

In this section, in order to provide some examples, we consider the two dimen-
sional setting and focus on the physically relevant case of harmonic potential

V (x, y) = ω2
1x2 + ω2

2y2, ω1, ω2 > 0,

well-established in the theory of Bose-Einstein condensates. In the two movies start-
ing with figure 2 we show the dynamics of the solitary wave along two Lissajous
curves, periodic in the left side and ergodic for the right side. In the movie starting
from figure 3 we report the soliton dynamics in the case of an initial datum exhibit-
ing a double bump behaviour (with a sufficiently large distance between the centers)
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Figure 2. In both simulation movies we set ε = 0.01, p = 0.02,
m = 1, (x0, y0) = (−3.0,−3.0), v0 = (0, 0). In the left movie, we
chose ω1 = 1.4 and ω2 = 1 (rational ratio). In the right movie,
we chose ω1 =

√
2 and ω2 = 1 (irrational ratio). Notice that,

although the ratios ω2/ω1 are very close in the two examples, the
soliton dynamics is ergodic in the right movie. Of course the figures
refer to the (squared modulus of the) solution at the time t = 0 and
contain the concentration paths (admitting an analytic expression)
that the soliton travels.

up to the collision time. It is important to stress that in these figures the paths have
an analytic expression and are plotted before the dynamics starts. The movies will
then show that the centers of mass of the solitons follow adherently these curves up
to the final computation time. An analysis of the error (in the single bump case)
arising when the modulus of the solution |φε(x, t)| is replaced by the modulus of the
expression in the representation formula (1.7), namely r((x− x(t))/ε), is indicated
in figure 4. As predicted by the analytical property 1.1, the error in the ‖ · ‖Hε is
below the order O(ε).
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Project 2007: Metodi Variazionali e Topologici nello Studio di Fenomeni non Lin-
eari.



10 M. CALIARI, M. SQUASSINA EJDE-2010/89

y

x

� �

���

���

���

�

�

�

�

�

� � ��� ��� ��� � � � � �

Figure 3. In the simulation movie, we set ε = 0.01, p = 0.02,
m = 1, (x1

0, y
1
0) = (−3,−3), (x2

0, y
2
0) = (1, 1), v1

0 = (2, 0), v2
0 =

(0, 0), ω1 = 1.1 and ω2 = 1.
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Figure 4. For the error analysis, we set p = 0.02, (x0, y0) =
(−0.5,−0.5), m = 1, ω = (2, 1) and a final time t = π. With
the change of variable we used,

√
εX = x and U(X) =

√
εu(x),

we have ‖u‖2L2 = ‖U‖2L2 and ‖∇xu‖2L2 = 1
ε‖∇XU‖2L2 . Hence, the

numerical error is computed through formula (written for the 2D

case) ‖u‖Hε
=

√
ε−1‖∇XU‖2L2 + ε−2‖U‖2L2 . As predicted by the

Analytical Property 1.1, the error in ‖·‖Hε is below the order O(ε).



EJDE-2010/89 NUMERICAL COMPUTATION OF SOLITON DYNAMICS 11

References

[1] Abou Salem W.K., Froehlich J., Sigal I.M., Colliding solitons for the nonlinear Schrödinger
equation, Comm. Math. Phys. 291 (2009), 151–176.

[2] Ambrosetti A., Malchiodi A., Perturbation methods and semilinear elliptic problems on Rn,
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[23] Jonsson B.L.G., Fröhlich J., Gustafson S., Sigal I.M., Long time motion of NLS solitary waves
in a confining potential, Annals Henri Poincare 7 (2006), 621–660.

[24] Kaup D.J., Newell A.C., Solitons as particles and oscillators and in slowly changing media:
a singular perturbation theory, Proc. Roy. Soc. London A. 361 (1978), 413–446.

[25] Keener J.P., McLaughlin D.W., Solitons under perturbation, Phys. Rev. A 16 (1977), 777–
790.

[26] Keraani S., Semiclassical limit of a class of Schrödinger equation with potential. Comm.
Partial Differential Equations 27 (2002), 693–704.

[27] Keraani S., Semiclassical limit for nonlinear Schrödinger equation with potential. II Asymp-
totic Anal. 47 (2006), 171–186.



12 M. CALIARI, M. SQUASSINA EJDE-2010/89

[28] Kwong M.K., Uniqueness of positive solutions of ∆u − u + up = 0 in Rn, Arch. Rational
Mech. Anal. 105 (1989), 243–266.

[29] Jin S., Yang X., Computation of the semiclassical limit of the Schrödinger equation with
phase shift by a level set method, J. Sci. Comput. 35 (2008), 144–169.

[30] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally
compact case. Part II, Annales Inst. H. Poincaré Anal. Nonlin. 1 (1984), 223–283.
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