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UNIQUENESS AND PARAMETER DEPENDENCE OF
SOLUTIONS OF FOURTH-ORDER FOUR-POINT
NONHOMOGENEOUS BVPS

JIAN-PING SUN, XTAO-YUN WANG

ABSTRACT. In this article, we investigate the fourth-order four-point nonho-
mogeneous Sturm-Liouville boundary-value problem
u® (@) = f(t,u(®), telo1],
au(0) — Bu'(0) = yu(l) + éu’(1) = 0,
au’ (&) —bu"'(&1) = =X, cu”(&2) +du"(&2) = —p,
where 0 < &1 < €2 < 1 and A and p are nonnegative parameters. We obtain

sufficient conditions for the existence and uniqueness of positive solutions. The
dependence of the solution on the parameters A and p is also studied.

1. INTRODUCTION

Recently, nonhomogeneous boundary-value problems (BVPs for short) have re-
ceived much attention from many authors. For example, Ma [5 6] and Kong and
Kong [2, Bl 4] studied some second-order multi-point nonhomogeneous BVPs. In
particular, Kong and Kong [4] considered the following second-order BVP with
nonhomogeneous multi-point boundary condition

W+ a®)f(u) =0, te(0,1),
u(0) = Zaiu(ti) +A u(l) = Z biu(t;) + p,

where A and p are nonnegative parameters. They derived some conditions for the
above BVP to have a unique solution and then studied the dependence of this solu-
tion on the parameters A and p. Sun [8] discussed the existence and nonexistence of
positive solutions to a class of third-order three-point nonhomogeneous BVP. How-
ever, to the best of our knowledge, fewer results on fourth-order nonhomogeneous
BVPs can be found in the literature. It is worth mentioning that the authors in [7]
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studied the multiplicity of positive solutions for some fourth-order two-point non-
homogeneous BVP by using a fixed point theorem of cone expansion/compression
type.

Being directly inspired by [], in this paper we are concerned with the nonhomo-
geneous Sturm-Liouville BVP consisting of the fourth-order differential equation

uW(t) = ft,ult), tel0,1] (1.1)

and the four-point boundary conditions
au(0) — Bu’(0) = yu(1) + éu'(1) = 0, (1.2)
au” (&) —bu" (&) = —A, e (&) +du" (&) = —p, (1.3)

where 0 < & < & < 1 and A and p are nonnegative parameters. We will use the
following assumptions:

(Al) «,8,7,6,a,b,c and d are nonnegative constants with > 0, § > 0, p, :=
ay+ad+48 >0, p, ;== ad+bc+ ac(§a — &) > 0, —a&1 +b > 0 and
c(&a—1)+d > 0;

(A2) f(t,u):[0,1] x [0,400) — [0,+00) is continuous and monotone increasing
in u;

(A3) There exists 0 < 6 < 1 such that

f(t ku) >k f(t,u) forallt €[0,1], k € (0,1), u € [0, +00).

We prove the existence and uniqueness of a positive solution for the BVP (1.1)—(1.3)
and study the dependence of this solution on the parameters A and p.

2. PRELIMINARY LEMMAS
First, we recall some fundamental definitions.

Definition 2.1. Let X be a Banach space with a norm || - ||.

(1) A nonempty closed convex set P C X is said to be a cone if AP C P for all
A>0and PN (—P)={0 }, where 0 is the zero element of X;

(2) Every cone P in X defines a partial ordering in X by u <v < v —u € P;

(3) A cone P is said to be normal if there exists M > 0 such that 0 < u < wv
implies [|ul < M|[v];

(4) A cone P is said to be solid if the interior P? of P is nonempty.

Let P be a solid cone in a real Banach space X, T : P® — P be an operator
and 0 < 0 < 1. Then T is called a #-concave operator if

T(ku) > k°Tu  for all k € (0,1), u € P.
Next, we state a fixed point theorem, which is our main tool.

Lemma 2.2 ([I]). Assume that P is a normal solid cone in a real Banach space
X,0<0<1andT:P°— P°is af-concave increasing operator. Then T has a
unique fized point in PO,

The following two lemmas are crucial for our main results.

Lemma 2.3. Let p, # 0 and p, # 0. Then for any h € C[0,1], the BVP consisting
of the equation
uM () =h(t), telo,1]
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and the boundary conditions (L.2)—(1.3)) has a unique solution

u(t) = /01 G1(t,s) /52 Ga(s, T)h(T)drds + A®(t) + u¥(t), te€]0,1],

1

where
Grltos) — 1 {(Ozs+ﬁ)(7+5’7f) 0<s<t<l,
pr (et +B)(y+d—7s), 0<t<s<
Catts) - L [lee =@ 4DeG =) +d), s<t 6 <a<h,
2T et~ &) +b)(elEa — ) +d), t<s & <s< G
1
3(t) = — [ elea—9) +a)Gi(t9)ds, 1€ (0.1)
1t
W(t) = E/o (a(s — €1) + DG (t, s)ds, ¢ € [0,1].
Proof. Let
o’ (t) =v(t), telo,1]. (2.1)
Then
v"(t) = h(t), te[0,1]. (2.2)
By and , we know that
1
_ / Gr(t, s)o(s)ds, ¢ € [0,1]. (2.3)
0
On the other hand, in view of and , we have
Cw(ﬁl) — b (&) = A, cv(&) +dv (&) = —p. (2.4)
So, it follows from (2.2)) and . that
&2
v(t) = — Gg(t,s)h(s)ds—i—pl (cA—ap)t+— ((aﬁl— bju—(c&a+d)N), te][0,1],
&1 2 2

which together with (2.3 implies

/ ats [  Gafs, () drds + XO(1) + (D), 1€ (0.1

Lemma 2.4. Assume (Al). Then
(1) Gi(t,s) >0 fort,s €0,1];
(2) Ga(t,s) >0 forte0,1] and s € [£1,&2);
(3) ®(t) >0 and ¥(t) >0 fort € [0,1].

3. MAIN RESULT

In the remainder of this article, the following notation will be used:
(1) (A, p) — oo if at least one of A and p approaches oo;
(2) (A1, 1) > (Ao, p2) if Ay > Ao and 1 > pe and at least one of them is strict;
(3) (A1, 1) < (Mg, p2) if Ap < Ao and p1 < po and at least one of them is strict;
(4) (A1) = (Ao, o) if A — Ao and p — puo.
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Our main result is the following theorem. Here, for any u € C]0,1], we write
[[ull = maxeqo,y [u(t)].
Theorem 3.1. Assume (A1)-(A3). Then the BVP (1.1)-(1.3) has a unique posi-

tive solution uy ,(t) for any (A, p) > (0,0). Furthermore, such a solution wy ,(t)
satisfies the following three properties:

(P1) lim()\m_)ooﬂu,\yuﬂ = 00;
(P2) un,u(t) is strictly increasing in A and p; i.e.,
(A1, 1) > (A2, p2) > (0,0) = un, puy () > ung pu, (t) on [0, 1];
(P3) ux u(t) is continuous in A and p; i.e., for any (Ao, o) > (0,0),
(A1) = (Xos o) == [Jua,u — Ung, o || — 0.

Proof. Let X = C]0,1]. Then (X,| -||) is a Banach space, where || - || is defined
as usual by the sup norm. Denote P = {u € X : u(¢t) > 0, t € [0,1]}. Then P
is a normal solid cone in X with P = {u € X |u(t) > 0, t € [0,1]}. For any
(A, i) > (0,0), if we define an operator T ,, : P* — X as follows

1 &2
Ty yult) = /0 Gr(1,9) [~ Galoy)frut)rds 000 + p¥@), (3)

then it is not difficult to verify that u is a positive solution of the BVP —
if and only if u is a fixed point of T} .

Now, we prove that T’ , has a unique fixed point by using Lemma

First, in view of Lemma [2.4] we know that Ty , : PY — P Next, we claim that
Ty, : P® — PV is a f-concave operator.

In fact, for any k € (0,1) and u € P, it follows from and (A3) that

1 &2
Ty, (ku)(t) = /0 G1(t, s)/ Ga(s,7)f(7, ku(r))drds + AP (t) + (1)

&1
21 [ Gt ¥ Gals, 1) ulr)drds 4 A0(0) + (1)
0 &1
1

&2
> ke(/o G4 (t, 5)/ Gao(s,7)f(7,u(r))drds + AP (t) + p¥(t))

= KTy u(t), telo,1],
which shows that T) , is #-concave.
Finally, we assert that T) , : P° — PO is an increasing operator. Suppose
u,v € PY and v < v. By (3.1) and (A2), we have

Ty ult) = /O Gits)

2
i Ga(s,7)f(T,u(T))drds + A0 (t) + p¥(t)

&2
S/o G1(t, s) /1 Ga(s,7)f(7,v(7))drds + AD(t) + pU(t)

=Ty uo(t), t€[0,1],

which indicates that T , is increasing.

Therefore, it follows from Lemma @ that T ,, has a unique fixed point uy , €
PP which is the unique positive solution of the BVP —. The first part of
the theorem is proved.
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In the rest of the proof, we prove that the solution u) , satisfies the properties
(P1), (P2) and (P3). First, for ¢t € [0,1],

ux () = T pun,pu(t)
1 &2
_ / Ga(t:5) [~ Galbsm)(ryun(r))drds + AB(1) + p0(0)
0 1

which together with ®(¢) > 0 and ¥(¢) > 0 for ¢ € [0,1] implies (P1).
Next, we show (P2). Assume (Ay, p1) > (A2, p2) > (0,0). Let
=sup {x > 0: ur, u (£) > xunr, s (t), t €1[0,1]}.

X
Then wy, i, (t) > Xux, u,(t) for t € [0,1]. We assert that ¥ > 1. Suppose on the
contrary that 0 < ¥ < 1. Since Ty , is a f-concave increasing operator, and for
given u € P, T} ,u is strictly increasing in A and p, we have

Wxy g (8) = Ty g Ungpan (8) 2 Ty (Xtrg i) ()

> T, un (Xtig iz ) (1)

> ()" Tra s Wns, o (£) = () 1rs s (1)

> XUxg s (t),  t€[0,1],
which contradicts the definition of . Thus, we get wux, ,, () > ux, 4, (t) for t €
[0,1]. And so,

Uny i (8) = Ty pa Ung s (8) 2 Ty g Ung oo ()
> T/\zyuzu/\z,uz (t) = UXy pa (t)a te [0, 1]a

which indicates that wy ,(t) is strictly increasing in A and pu.
Finally, we show (P3). For any given (Ao, o) > (0,0), we first suppose (A, u) —
(Ao, o) with (Xo/2, po/2) < (A, 1) < (Ao, o). From (P2), we have

nut) < urg o (), £ € [0,1] (3.2)

Let
G =sup{o > 0:ux,(t) > oux, 4 (t), te€0,1]}.
Then 0 < @ < 1 and uy,,(t) > Guy,,, (t) for t € [0,1]. Define

min{3, 2}, if Ao # 0 and po # 0,

W()\,,U,) = HL(J’ if Ao =0,
)%07 if uo =0,

then 0 < w(A, p) < 1 and
uxu(t) = T ptinu(t) = T (Ttng o) (F)
> WA, 1) Txg a0 (TUxG 11 ) (T)
> WA 1) (@) Trg o Uro o (1)
= w(X, 1) (@) urg e (1), t €[0,1],
which together with the definition of @ implies
w\,p)(@)f <.

1

Thus @ > (w(A, 1)) ™. And so,

Unu(8) = Tung o (8) = (WA, 1) TPt o (1), £ € [0,1]. (3.3)
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In view of (3.2 and (3.3]), we have

[xg,m0 = waull < (1= (WA 1)) =7 [txg o
which together with the fact that w(A, u) — 1 as (A, ) — (Ao, po) shows that

”u)\ovlto - UML” — 0 as (/\nu') - ()\0,;1,0)-

Similarly, we can also prove that

Hu)\o’lto - u/\,HH —0

as (A, ) — (Mo, o) with (A, ) > (Ao, po). Hence, (P3) holds. The proof is
complete. (Il
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