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EXISTENCE OF WEAK SOLUTIONS FOR MIXED PROBLEMS
OF PARABOLIC SYSTEMS

PHAM TRIEU DUONG, DO VAN LOI

Abstract. The purpose of this paper is to investigate the existence of gen-
eralized solutions for strongly parabolic systems in a cylindrical domain. The
decay of the solution at infinity, depending on the right-hand of the equation,
is also studied in this article.

1. Introduction

The study of boundary value problems for non-stationary systems of PDE’s in
arbitrary domains differs from the study of stationary systems. In previous works
of the first author [4, 5], the existence of solutions for parabolic system has been
obtained by a Galerkin’s approximation scheme. Following the method in [1], which
have been successfully applied for studying the Stokes equation, we prove in this
article the existence and uniqueness of solutions for general parabolic systems. This
approach allows us to study the decay of solutions for large time for bounded and
for unbounded domains. However, from these proofs it is not clear how to find the
solutions.

This paper is organized as follows. In the second section we introduce the neces-
sary notation and functional spaces for our problem. The third section is devoted
to formulate and prove the main theorem. The last section is intended to conduct
the research on the asymptotic behavior of solution at infinity.

2. Notation

Let Ω be a domain in Rn and T be arbitrary, 0 < T ≤ ∞. We denote by QT the
cylinder Ω× (0, T ). We consider the differential operator

L(x, t, D) =
m∑

|p|,|q|=0

Dp(apqD
q),

where apq are bounded functions in C∞(QT ) together with ∂apq

∂t . For |p| = |q| = m
we assume the condition apq = a?

qp, where the asterisk denotes the transposed
complex conjugate of a matrix.
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The operator L is strongly elliptic. Then there exists a constant C > 0 such that
for all real vectors ξ ∈ Rn and all complex vectors η ∈ Cs∑

|p|,|q|=m

apqξ
pξqηη ≥ C|ξ|2m|η|2 ∀(x, t) ∈ QT . (2.1)

The spaces Hm(Ω),Hm,k(QT ) are the usual Sobolev spaces, where m, k denote the
order of derivatives with respect to x and t respectively. In addition Hm,k

0 (QT ) is
the completion with respect to Hm,k(QT ) norm of functions from C∞(QT ) which
vanish near the lateral surface ST = ∂Ω× (0, T ).

In this study, we consider the initial-boundary value problem (IBVP) in the
cylinder QT for the system of PDE’s:

Pu ≡ ut + (−1)mL(t, x, Dx)u = f(x, t) in QT , (2.2)

∂ju

∂νj
= 0, 0 ≤ j ≤ m− 1 on ST , (2.3)

u(x, 0) = ϕ(x) (2.4)

where ν is the unit outer normal vector to the lateral surface ST . Here f(x, t) and
ϕ(x) are given functions.

The coercivity of the bilinear form associated with the operator L is a direct
consequence of Garding’s inequality which is formulated as follows.

Proposition 2.1. Assume that the coefficients of L satisfy the condition (2.1) on
QT . Moreover, we suppose that apq are continuous functions on the x variable,
uniformly with respect to t ∈ (0, T ). Then there exist constants µ > 0, λ ≥ 0 such
that for all u(x, t) ∈ Hm,k

0 (QT ),∫
Ω

m∑
|p|,|q|=0

(−1)|p|+mapqD
quDpudx ≥ µ‖u‖2Hm(Ω) − λ‖u‖2L2(Ω) .

We note that the constant λ can be equal 0, since by a substitution v = e−λtu
the initial problem can be transformed to a problem with constant λ = 0.

3. The existence result

We obtained previously in [4, 5] some results on the solvability of above problem.
Although, in these works we studied this problem only in non-smooth cylinders,
the assertion there is still valid for arbitrary domains; since there we considered
only the generalized solutions possessing weak derivatives of orders less or equal m.
In this section we present another proof of this result by introducing an operator
associating to the initial- boundary problem and its properties.

Theorem 3.1. The problem (2.2)–(2.4) is uniquely solvable for arbitrary functions
f(x, t) ∈ L2(QT ) and ϕ(x, t) ∈ V . The solution u(x, t) has the derivative ut and
the value Lu (in distributional sense) from the space L2(QT ) and it satisfies system
(2.2)–(2.4) in the classical sense in each subset Ω′ × (0, T ), where Ω′ is a compact
subset of Ω.

Proof. We will use the Lax-Milgram’s theorem. First, we will use the coercivity
and the self-adjoint property of −L to show the solvability of the elliptic problem.
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The Lax-Milgram procedure. Let

a(t, u, v) =
∫

Ω

m∑
|p|,|q|=0

(−1)|p|+mapqD
quDpvdx

which is a bilinear form defined on the space V = H̊m(Ω). Since a is coercive,
by virtue of Lax-Milgram’s theorem, for each function f(x) ∈ L2(Ω) there exists a
solution u ∈ V of the variational problem

a(t, u, v) = (f, v),∀v ∈ V

It is easy to show that −L is a closed, symmetric operator with the range dense in
space H = L2(Ω); therefore, −L is a self-adjoint operator.

Operator A: Let us introduce the space

Ht = {u(x, t)|f ∈ L2(Ω) for almost t ∈ (0, T );u = 0 near ∂Ω}.

We define an operator A which associates the function u(x, t) with the right-hand
f and the initial value ϕ by the formula:

Au =
(
Pu, u(x, 0)

)
.

This operator is defined in the space D(A) consisting of functions u(x, t) which are
represented by the formula

u = ϕ0(x) +
∫ T

0

ϕ1(x, t) dx dt,

where ϕ0(x) ∈ V and ϕ1(x, t) ∈ V for a.e. t ∈ (0, T ).
We can easily verify that D(A) is a dense subset in H̊m(QT ). The image of A is

considered to be the elements in a certain Hilbert space W , which consists of the
pairs (f(x, t);ϕ(x) with f(x, t) ∈ Ht and ϕ(x) ∈ V . In W the scalar product is
defined as

{(f1;ϕ1), (f2;ϕ2)} =
∫ T

0

(f1, f2) + [ϕ1, ϕ2]dt

where (, ) and [, ] are the inner products in the spaces H and V respectively.
Operator A acts from V t to W . Now we will show that A can be extended to

its closure A, with range R(A) exhausting entire the space W . It is equivalent to
conclude that the problem (2.2)–(2.4) has a solution u which belongs to D(A) for
arbitrary functions f ∈ Ht, ϕ ∈ V .

The existence of A. Let {un(x, t)} ⊂ D(A) is such sequence of functions that un

tend to 0 in Ht and A(un) tend to (f, ϕ) in W for n →∞. We have to verify that
(f, ϕ) = (0, 0).

To do that, let us multiply the equation Pun = fn by an arbitrary smooth
function Φ(x, t) from D(A) which equal 0 for t = T , and then integrate the result
over QT . After that, we will pass all the derivatives from u to Φ, by integration by
parts. In the end we arrive at∫

QT

fnΦ dx dt =
∫

QT

(unt − Lu)Φ dx dt

=
∫

QT

un(−Φt − LΦ) dx dt−
∫

Ω

ϕn(x)Φ(x, 0)dx
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Passing n →∞, by our assumption, we obtain∫
QT

fΦ dx dt = −
∫

Ω

ϕΦ(x, 0)dx.

However, noting that the smooth functions Φ(x, t) from D(A) which vanish for
t = T and t = 0 form a dense subset in Ht, we can conclude that f(x, t) ≡ 0.
Since the values Φ(x, 0) are dense in V , we have ϕ ≡ 0. From these facts we can
guarantee the existence of the closure A.

The domain of A. We consider for u ∈ D(A) the expression
∫ t

0
(Pu, Pu)dt. We

can transform this by the integration by parts∫ t

0

∫
Ω

(Pu, Pu) dx dt

=
∫

Qt

[ut.ut + Lu.Lu + 2ReutLu)] dx dt

=
∫

Qt

[u2
t + (Lu)2] dx dt− 2

∫
Qt

m∑
|p|,|q|=0

(−1)|p|+m−1apqD
quDput dx dt .

(3.1)

The second term in the right-hand side can be rewritten as

− 2 Re
∫

Qt0

m∑
|p|,|q|=0

(−1)|p|+m−1apqD
puDqut dx dt

= −
∫

Qt0

[ ∂

∂t
(

m∑
|p|,|q|=0

(−1)|p|+m−1apqD
quDpu)

−
m∑

|p|,|q|=0

(−1)|p|+m−1 ∂apq

∂t
DquDpu

]
.

(3.2)

Therefore, from Garding’s inequality and the boundedness of ∂apq

∂t we can show
that

c

∫ t0

0

(|ut|2 + |Lu|2)dt + µ‖u(., t0)‖2V ≤
∫ t0

0

|Pu|2dt + C‖(u., 0)‖2V + C

∫ t0

0

‖u‖2V dt.

(3.3)
with the constant C depends on the bound of apq and ∂apq

∂t .
From Gronwall-Bellman’s inequality, as was carried out in [4], from (3.3), it is

obvious that by assuming the convergence of un to u in Ht and Aun to w in W ,
we attain immediately:

∂un

∂t
→ ∂u

∂t
in H

Lun → Lu in H

Dpun → Dpu uniformly w.r.t to t in L2(Ω),∀p : 0 ≤ |p| ≤ m

Therefore, the function u in domain D(A) possesses derivatives ∂u
∂t , Dpu, 0 ≤ |p| ≤

2m in L2(QT ). Meanwhile, all Dpu, 0 <≤ p ≤ m depend on t continuously which
are functions in the space H for all t ∈ (0, T ). According to this fact, the image of
u under A is computed as usually

Au = (ut − Lu;u(x, 0)) (3.4)
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From (3.3) it is also valid that if Aun converges in W then the sequence un also
converges in Ht (even in some stronger sense). It says about that the closure of
the operator A implies the closure of the range R(A); i.e., R(A) = R(A).

To complete the proof of the existence result, it is sufficient to show that the
orthogonal complement to R(A) in space W consists of an element 0 solely. Let us
assume the reverse; i.e., there exists an element (f ;ϕ) 6= (0; 0) which is orthogonal
to all elements from R(A) , or equivalently, from R(A):

0 ≡ {(f ;ϕ), (Au;u(x, 0))} =
∫

QT

(f(ut − Lu)) dx dt +
∫

Ω

m∑
|p|=0

DpϕDpu(x, 0)dx .

(3.5)
From the solvability of the variational problem, we can find basing on f the function
(L)−1f . Put

u(x, t) = −
∫ t

0

(L)−1f(x, τ)dτ

in the identity (3.5) (this function obviously belongs to D(A)). Therefore

0 =
∫

QT

(f
(
(L)−1f dx dt +

∫ t

0

fdτ
)
.

Since L−1 is a negatively defined and self-adjoint operator, we can rewrite the last
equality in the form:

0 =
∫

QT

| − L 1
2 f | dx dt +

1
2

∫
Ω

( ∫ t

0

fdτ
)2

,

from which it is clear that −L
1
2 f ≡ 0 and thus f ≡ 0.

Consider again the equality (3.5) which now takes a simple form

0 ≡ [u(x, 0), ϕ]V ,∀u ∈ D(A).

From this formula we must have ϕ ≡ 0, since for above selected functions u the
values u(x, 0) form a dense subset in V .

3.1. Unbounded domains. If the domain Ω is unbounded then the operator L
may not have the bounded inverse. In this case the spectrum of L−1 may contain the
element 0, but in the whole it is non-positive. By the substitution v = ue−γ0t, γ0 > 0
we will arrive to the system:

vt + (−1)mL1v = fe−γ0t (3.6)

with the operator L1 = L − γ0I having the negative spectrum, that means the
operator L−1

1 exists. The solvability for (3.6) follows in the same manner as it was
carried out for the bounded domain. Note that by this argument we also have
proved the uniqueness of the weak solution. The proof is complete. �

4. Behavior of solutions at infinity

We begin with the inequality:

1
2

∂

∂t
‖u(x, t)‖2 + µ‖u(x, t)‖2V ≤ (f(x, t), u(x, t)) (4.1)
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which follows from (2.2) by multiplying both sides of the system by u and using
the Garding’s inequality. From the last relation it follows that

u
∂

∂t
‖u‖ ≤ ‖f‖‖u‖,

where ‖.‖ denotes the norm in H. In other words, the above statement confirms
that ‖u‖ = 0 or ∂

∂t‖u‖ ≤ ‖f‖.
However, we know beforehand that u is a continuous function with respect to t

(see the proof of Theorem 3.1), thus for all t and τ we have

‖u(x, t)‖ ≤ ‖u(x, τ)‖+
∫ t

τ

‖f(x, ξ)‖dξ . (4.2)

Differentiating both sides of inequality (4.1) with respect to t from τ to t and using
(4.2) we can conclude that

‖u(x, t)‖2 + 2µ

∫ t

τ

dt ≤ ‖u(x, t)‖2 + 2
∫ t

τ

‖f‖dt
(
‖u(x, τ)‖+

∫ t

τ

‖f‖dt
)

≤ 2‖u(x, τ)‖2 + 3
( t∫

τ

(f(., ξ)dξ
)2

.

(4.3)

We consider two cases:

Bounded Ω. If the integral
∫∞
0
‖f‖dt converges, then from (4.1) it follows that the

integral
∫∞
0
‖u‖V dt also converges according to the Gronwall-Bellman’s inequality.

The direct consequence from it is the existence of a sequence {tk} tending to ∞,
for which the norm ‖u(x, tk)‖V tends to zero.

However, for the bounded domains: ‖u(x, t)‖ ≤ C‖u(x, t)‖V , hence the norm
‖u(x, tk)‖ also tends to 0 when {tk} → ∞. Using (4.2) with t ≥ τ = tk we get that
‖u(x, t)‖ → 0 as t →∞.

Unbounded Ω. We cannot apply the Friedrichs’s inequality now, therefore we
have to use both inequalities (3.3), 4.3 simultaneously. If we assume the convergence
of ∫ ∞

0

(‖f‖+ ‖f‖2)dt,

then from (4.3) there exists a sequence {tk} → ∞, for which ‖u(x, tk)‖V → 0. By
(3.3) and the Gronwall-Bellman’s inequality,

‖u(x, t)‖2V ≤ ‖u(x, tk)‖2V +
1
µ

∫ t

τ

‖f(x, ξ)‖2dξ, for allt ≥ tk .

Consequently, the norm ‖u(x, t)‖V can be made arbitrarily small for sufficiently
large t. By this argument we have proved the following result.

Theorem 4.1. If Ω is a bounded domain and the integral
∫∞
0
‖f‖dt converges then

‖u(x, t)‖ → 0 when t →∞. If Ω is an arbitrary domain then ‖u(x, t)‖V → 0 when
t →∞ if the integral

∫∞
0

(‖f‖+ ‖f‖2)dt converges.
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