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EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTIONS
TO SECOND-ORDER QUASILINEAR ELLIPTIC EQUATIONS

DIANE L. DENNY

ABSTRACT. This article studies the existence of solutions to the second-order
quasilinear elliptic equation
-V (a(u)Vu)+v-Vu=f

with the condition u(xg) = uo at a certain point in the domain, which is the 2
or the 3 dimensional torus. We prove that if the functions a, f, v satisfy certain
conditions, then there exists a unique classical solution. Applications of our
results include stationary heat/diffusion problems with convection and with a
source/sink, when the value of the solution is known at a certain location.

1. INTRODUCTION

In this article, we consider the following quasilinear elliptic equation for wu(x)
under periodic boundary conditions:

-V (a(u)Vu) +v-Vu = f, (1.1)
u(Xo) = uo, (1.2)

where ug is a given constant and xg a given point in the domain Q. Here, f(x)
and v(x) are given smooth functions for x € €2, where the domain Q = TV, the
N-dimensional torus, with N = 2,3. We assume that a(u) is a smooth, positive
function of u for u € G, where G C R is a bounded interval.

The purpose of this article is to prove the existence of a unique classical so-
lution u(x to . What is new in this paper is the requirement that
condltlon hOldb for a quasilinear elliptic equation of the form which
includes a convection term v - Vu. The proof of the existence theorem uses the
method of successive approximations in which an iteration scheme, based on solv-
ing a linearized version of the equation, will be defined and then convergence of
the sequence of approximating solutions to a unique solution satisfying the quasi-
linear equation will be proven. It will be shown that there exist positive con-
stants dg, 01, and ds such that if ’du SG1||f|| < ¢p, and |V Vg < 4y,

and max{1, |v|2.}|f]>~; < 2, and ||Dv||s < 2, Where s > 4o + 1, and where
G1 C G, then there exists a classical solution u(x) to ‘ Here we define

92| &, = max{|duj+1 (us)] tuw € G1,0 < j < s}. And u( ) € Gy for all x € Q.
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The solution u(x) € G will be unique if a”(u,) < ﬁ(a’(u*))2 for all u, € G;.
The key to the proof lies in obtaining a priori estimates for u.

Applications of the existence of a unique solution to - include stationary
heat/diffusion problems with convection and with a source/sink. Solutions could be
obtained for problems in which, for example, the temperature or the concentration
of a substance in a fluid is monitored at a given spatial location xg € 2 .

This article is organized as follows. First, the main result is presented and
proved as Theorem [2.1] in the next section. Then lemmas supporting the proof of
the theorem are proven in Appendix A (which proves the existence of a solution
to the linearized equation used in the iteration scheme) and in Appendix B (which
presents proofs of the a priori estimates used in the proof of the theorem).

2. EXISTENCE THEOREM

We use the Sobolev space H®(€2) (where s is a non-negative integer) of real-
valued functions in L?(£2) whose distribution derivatives up to order s are in L?(12),
with norm given by ||g||? = 2 o0<al<s Jo ID?g|?dx and inner product (g,h)s =
> 0<lal<s Jo(D%g) - (D*h)dx. We use the notation [|g||? = > o<r<s Jo | D" g|?dx,
where D"g is the set of all space derivatives D%g with |a| = r, and |D"g|? =
Z\a|:r |Dg|?, where r > 0 is an integer. Also, C(f2) is the space of real-valued,
continuous functions with domain 2. Here, we are using the standard multi-index
notation. Also, we let both Vg and Dg denote the gradient of g.

Theorem 2.1. Let f(x) € C(Q) N H*~1(Q), v(x) € C?(Q) N HTL(Q), and let
a(u) be a smooth, positive function of u for u € G, where G C R is a bounded
interval. We require that the given data u(xg) satisfy u(xo) € G, where xog € €
and where Q = TV, the N-dimensional torus, with N = 2,3. There exist positive

constants dg, 01, and oz, and an interval G, C G, such that if|g—z zél IFII2- < do,

and |V - v|p= < 61, and max{1, |v|2.}H|fII?_; < 2, and |Dv||s < 1/2, then there

exists a classical solution u(x) to (L1)-(L.2). And u(x) € Gy for allx € Q. Here,

we define |g—Z|S’Gl = max{|fl:;%(u*)| tuy € G1,0 < j < s}, where s > & 4+ 1. The

solution u(x) € G will be unique if a” (u.) < —+—(a'(us))? for all u, € G1. The

a(us)

reqularity of the solution is u € C%(Q2) N H*1(Q).

Proof. We will construct the solution of the problem for (L.1))-(1.2) through an
iteration scheme. To define the iteration scheme, we will let the sequence of ap-

proximate solutions be {ux}72 . Set ug = u(x¢). For k = 0,1,2,..., construct
ug41 from the previous iterate uy by solving

—V - (a(up)Vugr) + v - Vub Tl = f) (2.1)

uk+1(X0) = u(xo), (22)

Existence of a sufficiently smooth solution to 7 for fixed k is proven in
Appendix A. The a priori estimates used in the proof are proven in Appendix B.
We proceed now to prove convergence of the iterates as k — oo to a unique classical
solution of —.

We fix an interval G; C G by defining Gy = {u. € G : |u. — ugl~ < R},
where R = dist(ug,0G). We fix a positive constant ¢; such that a(u.) > ¢; for
all u, € G1. Using a proof by induction on k, we assume that ux(x) € G for all
x € Q, and then later we will show that u11(x) € G, for all x € Q. O
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Proposition 2.2. Assume that the hypotheses of Theorem [2.1] hold. Assume that
IV - v|pe < G-, where Cy is the constant from Poincaré’s inequality ||u|? <

C.||Vul|2, and where t(x) = u(x \QI Jou(x)dx. There exist constants C4, Cs,
Cy, L such that if |du sclens 1 < 0—4 and if max{1, |v|2. }H|fII?_, < Cg, and if
IDv|s < , where s > + + 1, then the following hold for k =1,2,3..

IVug|? < 2G| £[3_4, (2.3)
|ur, — ug|r~ < R,
Jurl|2, < L,
S s — el < o0 (2.0
k=0

Here, R = dist(ug,0G) and Cy is the constant in from Lemma in Ap-
pendix B .

Proof. The proof is done by induction on k. We show only the inductive step.
We will derive estimates for wg11, and then use these estimates to show that if uy,
satisfies the estimates (2.3), (2.4), then w1 also satisfies the same estimates.
We will prescribe L a priori, independent of &k so that holds for all £ > 1. We
assume by the induction hypothesis that uz(x) € G1, and then we will show that
upt1(X) € G1, for all x € TV. In the estimates below, we use C to denote a generic
constant whose value may change from one relation to the next. Recall that we let
both Vg and Dg denote the gradient of g.

Estimate for |[Vugi1/?: We begin by applying estimate from Lemma
in Appendix B to equation (2.1)), which yields

S

Va2 < O Somax{| Dea(u) 2, DI |12, 27)

Jj=0

where s; = max{s — 1,0}, and so = [%] +1=2,and s > % +1, for N =2,3, so
s>3and s; =s— 1.

We consider two cases: when max{||D(a(ux))|%, ||Dv|s,} = [[D(a(ur))|2,, and
when max{|| D(a(ur)) |2, |Dvlls, } = DV

Case 1: Suppose that max{||D(a(ux))|?,.[|Dv|s, } = [|D(a(ug))|2, in

To estimate the term || D(a(ux))||?,, we apply the Sobolev space 1nequa11ty
from Lemma in Appendix B, which yields the following:

ID(@(u))l2, = > ID (D)= D 11D (alu))ls

0<r<s; 0<r<s;
< 3 [C15h  0F furdim) I Tl
0<r<s;
da 2 28, 2
= C|@ oy (LA Juk] o) [ V|5,
da 2 .
S C|@ s1, Gl(l + \uk — UO|L°C + |U0|Loo)2 1||Vuk||§1
da 2 2s 2
<Ol q, (1 + R+ [u(x0) ) [Vurl, (2.8)
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d

< O L2 6, (L Bt (11012 fux0) ) Ve,
da 2

—02| | ||VUkH
da

< Cs| 2= 6, IV,

where |3—Z|S’@l = max{|%(u*)’ Uy € G1,0 < j < s}, from (B.1) in Lemma
Here Cy = C(1 + R + (1 + |2]?)]u(x0)])?*, and we define C3 = MCs, where M
is a constant to be defined later and M > 1. We can assume that Cy > 1, so that
C3 > 1. And we used the fact that |dU|rG1 < du|§1 a < |du e for r < 51 and

51 < 5. We also used the fact that |uy —uo|r~ < R holds by (2.4)), since uz(x) € G}
for all x € TN by the induction hypothesis.
We now define the constant Cy to be Cy = 4C’§C%7 where C1 is the constant in

and in estimate from Lemma in Appendix B, and where we may
assume that C; > 1. We assume that |42 R G1 Hf|| < &. Substituting ([2.8]) into

(2.7), and using estimate (2.3), namely |[Vu||? < 201||f||s 1, which holds by the
induction hypothesis for ug, and using the fact that s; < s, yields

IVuell? < €y [Zcﬂ\—!s o IVl Z 1112
=

d .
<cl[zm @O0 | T 2 IR 112

7=0

<cl[zm 20 () 1712

<G [Z (5)1} 1£13 -1

=0
<204|fl12_,

(2.9)

where we used the fact that |92 iél||f||§71 < C% And we used the fact that

% < % and ﬁ <1, since Cy = 4C§012 and C3C7 > 1. Therefore holds
for [V 2 when max{| D(a(ue) |2, DV]ls,} = [ Dla(ui))II,

Case 2: Suppose that max{||D(a(ux))||2, | Dv|s} = |Dv|s, in [2.7). From
, we obtain

S

s ] 1 p
IVueall? < G D IDVIE [IFI2 < & Y0 (G) IRy < 2€u01£12, (2:10)

J=0 J=0

where we used the fact that ||Dv|s, < ||Dv||s < 1/2. This is the same result as
inequality (2.9), and therefore (2.3)) holds for ||Vugi1]?.

Estimate for |ug1 — ug|r~: To obtain an estimate for |ug11 — ug|L, we will use
Sobolev’s inequality |h|?. < C|[h||2, (see, e.g., [Il, [3]), where so = [§]+1 = 2.

We will also apply inequality (B.4)) from Lemma in Appendix B, which yields
the estimate |Jury1 —uol|3 < C||V (uks1—uo)||3. And we will use the estimate (2.9)),
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(2.10) just proven for |[Vuyy1]/? . We then obtain the following inequality:
k1 — uoltee < Cllunsr — uoll, < Cllunsr —uoll34s

= Cllugy1 — uoll§ +C Z 1D (urt1 — uo)l5
1<]a|<s+1

< Cllugs1 — uolla + C||V (urs1 — uo)|)?

< OV (uhg1 = wo) |5 + CIIV (upg1 — uo)|2

< C||V(ugs1 —uo) |2

= C||Vupy1 2

<2CCH||f2_y

(2.11)

Therefore, from (2.11]) we have |ug41 — uo|re < Csl| f|ls—1, where we define C5 =
(2CC1)/? from ([2.11)). We will assume that max{1, |v|2. }||f|I?_; < g—z. It follows
5
that || f]|s—1 < c%’ and therefore |ugi1 — ug|p~ < R. And so (2.4) holds for ugy1,
and uy4+1(x) € Gy for all x € TV,
Estimate for |ux;1||3 and [Jugt1]/2,;: To obtain an L? estimate for w1 we
apply inequality (B.5) from Lemma in Appendix B, which yields
lur41llg < Clluollg + ClIVuoll3 + Cll Vurs1l3
< Clluollf + CllVur+ 12 (2.12)

< Cl9Ju(xo)* +2CC1 | fIZ -4

Here we used the estimate for ||Vug1]|? from the result just proven in (2.9), (2.10).
And we used the fact that ug is a constant. From the estimates (2.9), (2.10), (2.12)

and using the fact that || f|?_; < g—z where C2 = 2CC4, yields
5

ks l3er = w5+ D 1D uksa |3
1<]o|<s+1
< lugsally + ClI Vg ll2 (2.13)
< Ol9f[u(xo)|* +2CC1 | flI2-y
< O|9fu(xo)|* + CR?

We now define the constant L to be L = C|Q||u(x¢)|* + CR? from (2.13)). Then we

have [Jug41%4; < L, and so (2.5)) holds for |lu41]/2, ;. Therefore (2.3), (2.4), (2.5)
hold for all k > 1, and ux(x) € Gy for all x € TV and for all k > 1.

Estimate for |lugy1 — uil|2,;: Subtracting the equation (2.1) for uy from the
equation ([2.1)) for ug,1 yields the following equation

—V - (a(up)V(upg1 —ug)) +v- V(T —ub) = V- ((a(ug) — alup_1))Vug) (2.14)

We consider two cases: when max{||D(a(ux))||?,,[|Dv|s,} = [[D(a(ux))|?,, and
when max{|| D(a(u))|2,, [I1Dvlls, } = [ Dv]s,-
Case 1: Suppose that max{||D(a(ux))|?, [ Dvlls,} = [|D(a(ux))||?. Apply-

ing estimate from Lemma in Appendix B to equation (2.14)), and using
estimate (2.8) for |D(a(ux))||?,, and using estimate (2.3)) for ||[Vuy|?, yields the

517
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following:
IV (e — ) 12

< O[3 ID(alur) 2] 19 - (afun) — alus-)) V)2,
§=0
< 00 [ S0 G415 2 192 (o) — (1)) Vo
j=0

<co _ZOJHS e Vel [la(un) = a2
- 2.15)
da 2] (

scca_Zc” 201V | 2 1712 latur) - atun— )OI,

< o[y cteoy (&) Jlatws) — atwnIECCDIAE,
j=0

S

< 001 [ Y (5)7]llatur) - atw 02O

-0

C(2C1)* a(ur) — a(ur—1) 11134

where we used the Sobolev calculus inequality [|gh||? < C||g|/?||h||? for r > &

2
where C is a constant which depends on r (see, e.g., [3], [9}), and we let r = s
where s > & 4+ 1. We also used the fact that |42 e lfI-y < &;- And we used
the fact that 203'01 <4 5 and 5= <1, since Cy = 4C30C% and C304 > 1.

To estimate the term ||a(uk) — a(ug—1)||?, we will apply the Sobolev space in-
quality (B.2)) from Lemma in Appendix B, which yields

lla(ux) — aur—1)lI3

da 2
< C\% o6y (U ke 4 Jur— |22 ) (s + llur—1 1) |k — w1 12
da 2
< C‘%L,(;l(l + Jug — uo|p= + [ug—1 — uo|L= + 2|uo|L=)?
X (lJurll? + lur—1 1) lux — ur—1||?
da 2 2.16
< C‘*{ o (24 2R + 2fug| ) (JJukl 341 + lun—1 ]340 lue — w3 (2.16)
<CL da 2 Q1/2 28|, _ 2
’ a, L+ R+ (14 Q%) |ulxo) )™ [ue — up—1l3

< CLCQ| |sG1||uk uk,1H§

< CLC13| |SG1||uk uk,1H§

where C' depends on s, and we used (2.5)) to estimate [|uy |2, ; < L and [lup_1 %1 <
L. We also used Cauchy’s inequality gh < 192 + 1h2 Here, Cy, C5 are the same
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constants as in (2.8]). Then from (2.15)) and (2.16]) we obtain

da
IV (w1 — up)l|? < CLO3(2C1)2 5|2 & I 12 llue — wi—a?
S G1

1
< CLC3(201)? (a)\\uk — w12 (2.17)
CL

= OngUk - Uk71||§+1

Here we used the fact that Cy = 4C3C%, and that |42 ’g G IfII2, < 04

Case 2: Suppose that max{||D(a(uy))||2,||Dv||s,} = [|Dv|s,. Applying esti-
mate from Lemma in Appendix B to equation (2.14), and using (2.3)),
(2.16]), and using the proof of (2.17), yields the inequality

IV (k1 — )12

< C1 [ S IDVIE IV - ((alur) = alue—) Va2
=0

S

< 001 [ Y (5)7]llatue) - a2 T

=0

< 020 [la(ux) — alus—1)[I22C) | £I2-, (2.18)

< CLC3(2Ch)° |*|S e IR llun — w3
1
< CLC3(2C — Ml — up_1|)?
< CLCy (200 () e — i
L
< a”“k —up—1l241

which is the same result as (2.17). Here, we used the facts that
where Cy = 4C3C%, and that ||Dv|,, <||Dv] < 3

To obtain an L? estimate for ug,1 — ux, we apply inequality (B.4) from Lemma
in Appendix B, which yields

da? A2 < &

w1 — ukll§ < CIV (w1 — )13 < ClIV (upsr —ug)|12 (2.19)
From (2.17)—(2.19)), we obtain

luksr = uelZpr = lunpr —wellg+ D 1D (wkgr — ) 13
1<]al<s+1

< Nuggr — w2 + C|V (up g1 — up)l?

(2.20)
< C|IV (upgr — i) |l

CL ,
< CT,“W — -1l
where L = C|Q|\u(xo)|2+CR2 from (2.13)) , and Cy = C(1+R+(1—|—|Q|1/2)|u(x0)|)25

and C3 = MC5 from It follows that CL < £ 17> Where C' depends on s and
s > 3. We now define the constant M to be large enough so that % < 1. Then
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from ([2.20), we have

oo
D llukgr = uplly, < oo (2.21)
k=0
which is the inequality (2.6)) to be proven. This completes the proof of Proposition
2.2 [l

We now complete the proof of Theorem From Lemma in Appendix A,
we know that uj, € C2(Q) N H*+1(Q) for each k > 1, where s > & + 1. From
in Proposition [2.2{and from Sobolev’s inequality |h|7.. < C||h[|Z, (see, e.g., [1], [3]),
where so = [§] + 1 = 2, we know that {uy}?2, is bounded in C?(2) N H*T1(Q).
And from in Proposition 2.2} it follows that ||ugt1 — uklls+1 — 0 as k — oo.
We conclude that there exists u € C?(Q) N H*T1(Q) such that ||uy — ul[s11 — 0 as
k — oo. From Lemma in Appendix A, we know that u,; is a solution of the
linear equation for each k > 0, and ug41(x0) = u(x0) for each k& > 0, and so
it follows that w is a solution of the quasilinear equation , and u satisfies .

To prove uniqueness of the solution7 let us assume that u(x), uz(x) are two
solutions of (L.I)-(L.2), and ui(x) € G and us(x) € Gy for all x € TV, We

will show that there exists a constant C7, such that if |9% sG1||f||S 1 < c%w
and if |Dv|,, < 3, and if a”(u.) < ﬁ(a’(u*)) for all u., € Gi, and if
max{1, |v|Z. HIfIIZ; < g27 and if |V - v[pe < &, where C5, ¢1, C. are the

constants from the proof of Proposition 22 then uy = us.

Note that since u1(x) € G1 and ua(x) € Gy, it follows that |u; — uglp~ < R
and |ug — uglp~ < R, and a(uy) > ¢1 and a(ug) > c1, and a”(uq) < ﬁ(a’(ul))2
and a”(uz) < —+—(a’(uz))?. By Lemma from Appendix B applied to equation

= a(u2)

. for u; and usg, there exist constants C7, Cg, such that if

then uq, uy satisfy

da)? ARy < &,

IVurll2 < 2Cs|I£I2-4,
IVualls < 2G| f11Z -4

From Lemma B.3|in Appendix B, the constant C; = 4C3C3C7K?, and the constant
Cs = CyC1 K7 so that we have C7 = 4C’§Cg2, and Cj is a constant which depends
on s, ¢1, and the constant K; = max{1,|v|2..}. We may assume that Cy > 1, so
that Cl S Cg.

And we have ur]3 < [Qusfie < 2001 — uof3e + fuofin) < 210U +
u(x0)2). So url2ey < [[uslld + C[Vus 2 < 2QU(R2 + [uxo) 2) + 20Cs | fI2_,
It follows that uy € C?(Q) N H*T1(Q). Similarly, ug € C?(Q) N H*T1(Q). Here, we
used Sobolev’s 1nequa11ty |h|? o < C||h||80, where so = [§] +1=2.

Subtracting (1.1)) for u; from ([1.1)) for us yields the equation

=V (a(u1)V(ug —u1)) + v-V(ug —u1) = V- ((a(uz) — a(u1))Vuz)  (2.23)

(2.22)

To obtain an estimate for ||uz —uy||%,, we repeat the proof of the estimate for
||u;c+1 u |2, from (2.15] , and apply this proof to (2.23)). We use inequality
) from Lemma in Appendlx B, which yields Hug — i < C||V(ug —
u1)||§, and we use inequality from Lemma in Appendix B to estimate
[V(u2 — u1)[|2, and we use inequality (2.8) to estimate || D(a(u1))||2, and we use



EJDE-2010/82 EXISTENCE AND UNIQUENESS 9

inequality (2.22)) to estimate ||[Vui||? and |[Vuz||?2. We also use the inequality
2 . .
da s,@l||f||§*1 < C% and the inequality ||Dv|,, < 3.

We consider two cases: when max{||D(a(u1))[3,[[Dv|ls,} = [[D(a(u1))|2,, and
when max{[|D(a(u1))|3,, [DVlls, } = [ DV]|s,

Case 1: Suppose that max{||D(a(u1))||?,,[|Dv||s,} = [[D(a(u1))||?,. We obtain

817

lug — w244

= uz —will§+ Y 1D (w2 —w)lf§
1<]a|<s+1

< Jluz — w2 + C||V (uz — wy) |2

< OV (ug — w)lf3 + OV (uz —ur)|I2

< OV (uz —ur)|I2

S

< 0C | S (max{||D(a(u)|%,, IIDVIISJ)]} IV - ((a(u2) = a(u1) Vua)lI3-,

-0

< OCs| Y I1D(a(u)|% | lauz) - alw) 2| Ve 2
=0

f—~ . da 2; )
< CCs| Y G S 2, Il [llauz) — a(un) 2] Va2
j=0

< CCy [2@(2@)43—3 eI [llatuz) = a(un) I2C)IA112-.
j=0

<[y cieay () |latue) - atun Beco) 111
j=0

< 0Cs[ Y (50 lotua) = atwn)I2CCI 2
j=0

< C(2Cs)*[la(ug) — a(w)|Z] £I5-
(2.24)
where we used that C; < Cg, and C7 = 4C3C%, and % < %, since C3Cg > 1.
From the third line in the proof of estimate , we have the inequality

lla(uz) — a(us)ll3

da 2
<C|== |, & 2+ 2R + 2Ju(x0) ) (lua |21 + lut 21wz — uall2
du 2 (2.25)

da 2
< C|@}s,@1(1 + R+ [u(x0))*(luzll§ + Cl[Vuzll2 + lluill
+ C[[Vur|12)Jug — ua |3

By inequality (B.5|) from Lemmain Appendix B, we have the estimate |Juz||2 <
Clluo||2+C||Vuol|5+C||Vual3 < C|Q|u(x0) > +C||Vuz||?. And a similar inequality



10 D. L. DENNY EJDE-2010/82

holds for |lu1||3. Substituting these L? estimates into ([2.25)) yields
la(uz) — a(u1)]?
da 2
< -] g, (U B Julxo) (19 [u(xo) |* + [IVuallS + Ve [5) ]z — wr ¥

|da2

<C (14 R+ Ju(x0)])* (|2 u(x0)[* + 4Cs || f1Z-1) w2 — a2

d R2
< Ol g2 6,0+ R+ JuGxo) P (920hu(x0) 4 405 (g ) o —

da 2
bGl

4CyC1 K1 R?
—C| L))” o —ui)?

2K,CCq
da
< O| : o (L R+ (14 [Q1Y2) u(x0))** (19 [u(x0)|* + B?)[uz — w3

(14 R+ fu(xo))? (I21luxo0) 2 +

< OC3L]

Tu |S Gy lluz —wf2

(2.26)
where we used ||f]|?_; < % Cg, where K; = max{1,|v|2.} and C5 = (2CC})"/2.
And we used the fact that Cg = CyC1 Ky, where Cy depends on s, ¢;. And we used
inequality to estimate ||Vuy||? and ||[Vuz||2. Also, L = C|Q||u(x¢)|* + CR?
from ,and Cy = C(1 +R+( + |Q|1/2)\u(xo)|)2s and C3 = MC» from (2.8),
where M > 1. Substituting ([2.26) into (2.24) yields

da 2
luz — w341 < CC3L(2C8)?| | & I3t luz — wi]f2

1
< CCsL(2C — ) |lug — uq ||? 2.27
sL208) (&) luz — (2.27)
CL
= (g ) =l
where we used the fact that C; = 4C2C% and ‘g
Case 2: Suppose that max{||D(a(u;))

proof of (2.24)—(2.27) yields the following:

luz — us %44

Sz < &
|IDv]|s,} = |[Dv||s,- Repeating the

||Sl7

S

<CG :Z(maX{IID(a(ul))H?l, IIDV||sl})J} IV - ((a(u2) = a(u1))Vuz) 24

j:O
<CGs ZIIDVII }H (u2) = a(u)[[3]| V|12

_ S 1 .

< CGs| Y (5)7] latuz) = aw) I2@Cs)IF112-,

St
< C(2Cs)?|la(uz) — a(un) [l £13 -
CL

< (G )lwe =l

which is the same estimate as ([2.27)).
Recall that L = C|Q||u(x0)|* + CR? from (2.13) , and C2 = C(1 + R+ (1 +

9QY2)u(x0)])?* and C3 = MCs from ([2:8). It follows that ZE < &7, where C
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depends on s. As in the proof of (2.21)), we define the constant M to be large

enough so that £ < 1. It follows that |Jup — u1|[2,; = 0, and therefore u; = us
and the solution is unique.

This completes the proof of Theorem Note that dp = mim{ci47 C%}, and

2

01 = %, and 0o = 02 in the statement of Theorem in which we assume that

o sG1||f|| < o, and |V - v[p~ < 41, and max{L [v[j.}|fllZ_; < d2, and

|Dv|s < i. And &g, 61, 62, Ca, Cs, C7 depend on s, ¢, R, |©, and |u(xo)|.

APPENDIX A. EXISTENCE FOR THE LINEAR EQUATION

In this section, we present the proof of the existence of a solution to the linear

problem , .

Lemma A.1. Leta; € CYQ)NH*(Q), f € C(QONH*"Y(Q), v e CLHQ)NH*(Q) be

given functions, where a1 (x) > ¢1 for some positive constant ¢y, forx € Q, Q =TV,

N =2 or N =3. We assume that |V - v|p § L, where C, is the constant fmm
Poincaré’s inequality ||u|2 < C.||Vul3, and where a(x) = u(x IQ\ Jo ul
Then there is a unique classical solution u € C?(Q) N H5T1(Q) of
-V (a1Vu)+ v -Vu=Ff, (A1)
u(xg) = uo, (A.2)

where ug is a given constant and xq € € is a given point, and where s > % + 1.

Proof. The operator in (A.1) is linear with a;(x) > ¢; for x € Q. The existence
of a zero-mean solution u(x) of equation ([A.1)) follows from the standard theory
for elliptic equations, speciﬁcally, the Lax—Milgram Lemma (see e.g., [4]). We then

define the chosen solution u(x) to (A1), (A-2) to be u(x) = u(x) — u(x0) + uo.
We remark that the condltlon for the Lax Milgram Lemma that ||i||? < CBla, i,
where B[u, @] = (a1Va, Va) + (v - Vi, @), and where 4(x) = u(x) — ﬁ Jo u(x)dx,
follows from the following inequality:
(1 Vu, Vu) < (a1Vu, Vu)
= —(v-Vu,u) + Blu, 4]

:%(V-v~a,a)+8[a,a]

IN

1
3|V Vizellalls + Bla, ]

IN

1
SCoIV VI~ | Vul3 + Bla,a

g%wvmﬁ+BWm1

where we used the fact that |V - v|= < Z-. And so 3(c;Vu, Vu) < B[, @]. From

Poincaré’s inequality ||u|]3 < C. HVUHO, we obtain the desired inequality |u|} =
_ 2(Cut1

lall3 + [Vull3 < (C. + 1) Vulf < 25 Bla, al.

The regularity of the chosen solution u(x) follows from the estimates (B.5)) from

Lemma and from Lemma in Appendix B, applied to equation (A.1)),
which yield:

[ulld < Cllulxo)lIg + ClIV (u(x0))I3 + Cl[Vull3 < Cllu(xo)[* + C[|Vull3
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S

IVull? < Cl[Z(maX{llDalllwIIDVIISJ) [t

=0

where s; = max{s — 1,50} =s—1,and so = [J]+1=2,and s > § +1, 50 s > 3.
It follows that u € C?(Q) N H**1(Q) by the above estimates and by Sobolev’s
inequality |h|7. < C||R|2, (see, e.g., [1.3]). O

APPENDIX B. A PRIORI ESTIMATES

Recall that we will be using the Sobolev space H*(§2) (where s > 0 is an integer)
of real-valued functions in L?(£2) whose distribution derivatives up to order s are in
L?(2), with norm given by [|g||? = 2jal<s Jo | D*g[?dx and inner product (g, h)s =
Z\a|<s Jo(D%g) - (D*h)dx. The domain € is the N-dimensional torus TV, where

= 2 or N = 3. Here, we are using the standard multi-index notation. For
convenience, we are going to denote derivatives by g, = D%g. And we will denote
the L? inner product by (g,h) = ng - h dx. We will use C' to denote a generic
constant whose value may change from one relation to the next. Recall that we let
both Vg and Dg denote the gradient of g.
We begin by listing several standard Sobolev space inequalities.

Lemma B.1 (Calculus Inequalities).
(a) Let g(u) be a smooth function on G, where u(x) is a continuous function and
where u(x) € Gy forx € Q and G; C G and v € H™(Q)NL>(Q). Then forr > 1,

1D (g(u))lo < €| 22

Tl 1+ Julz)"" | Dull—1, (B.1)

where |h|, q, = max{|du1 (ue)| : ux € G1,0 < j <1}, and where C depends on r,
Q.
(b) And

dg
lg(w) = g(v)[|» < CI ITG1 + [ulzee + [v]zee)([ullr + lollo)[[u = vllr,  (B.2)
where C' depends on r, €.

(¢c) If Dg € H™(Q), h € H"~1(Q), where r1 = max{r — 1,s0}, so = [§] + 1,
then for any r > 1, g, h satisfy the estimate

1D%(gh) — gD%hllo < C[|Dgllr, [|Allr—1, (B3)

where r = |a|, and the constant C' depends on r, Q.

(d) Let v, w be CY(Q) N H3(Y) functions on a bounded, open, connected, convex
domain 2. And let v(x0) = w(xo) at a point xg € Q. Then v —w and v satisfy the
estimates

lv = wlf§ < ClIV(v—w)|3, (B.4)
[v]lg < Cllwli§ + ClIVw|3 + C[[Voli3 (B.5)
Here C is a constant which depends on €.

Proofs of the inequalities (a), (b) may be found, for example, in [§], [I0]. Proof
of inequalities (¢), (d) may be found in [2]. Inequalities (a), (b) also appear in [3].

Lemmas [B.2) and [B-3] provide the key a priori estimates used in the proof of the
theorem.
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Lemma B.2. Let a1(x), v(x), and f(x) be sufficiently smooth functions in the
following equation

-V - (a1Vu) +v-Vu=f, (B.6)
where a1 (x) > ¢, for some positive constant c1, and for all x € Q, with Q = TV,
and N =2 or N = 3. We assume that |V-v|pe < &, where C is the constant from
Poincaré’s inequality ||ul|z < C.||Vul]3, and where u(x) = u(x) — ﬁfg u(x)dx.
Then we obtain the inequalities:

Ivull? < CIFI3, (B.7)
IVull? < Cmax{IDar 2, 1DVl HValZy + CIAIRL,  (BS)
IVul2 < &[S max{| Dali2,, DV ] I712- (B.9)

=0

where r > 1, where r; = max{r—1, s}, and where sy = [§]+1 = 2. Here constant
C in (B.7) depends on c1, and the constant C in (B.8) depends on r, c¢1, and the
constant Cy in depends on r, c;.

Proof. First, we obtain an L? estimate. Integrating equation by parts with
i, where (x) = u(x) — \ﬁll Jo u(x)dx, yields
(e1Vu,Vu) < (a1Vu, Vu) = —(V - (a1 Vu), @) = —(v - Vu, ) + (f,a)
1

= 5(Veveaa) + (fa)

1 - 1 - (B.10)
< 5V vl 11§ + ZEIIfIIS + €|l

1 1
< SCV Ve[ VulF + L3+ eC| Tull

where we used Cauchy’s inequality with e, namely gh < ﬁg2 + eh?, and where
we used the fact that a;(x) > ¢;. We also used Poincaré’s inequality (see, e.g.,
[B], []) to estimate ||ul|3 < C.|[Vul||3, where C, is a constant. We assume that
|V v|L= < &~ And we let € = y&-. Then from (B.10]), we obtain
IVulg < ClIfI3 (B.11)
where C depends on ¢;. This is the desired inequality (B.7).
Next, after applying D to the equation , we obtain the equation:
-V - (a1Vug) +v-Vu, = F, (B.12)
where F,, = fo + [V (@1VU)o — V- (a1Vus)] —[(v - Vu)o — v - Vug].
From (B.12) we obtain
¢1(Vug, Vug) < (a1Vug, Vug)
= —(V - (a1Vuy), uqs)
= —(v- Vg, ta) + (Fa, Ua)

(B.13)

IN

1
IV vz [uallf + [(Fas )
< CIDV1= | Vuli_y +|(Fa, ua)

where |a| = k.
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Next, we estimate |(Fy,uq)|. We use integration by parts, and then apply in-
equality from Lemma to obtain the following inequality:

|(Fos o)l

< [(far o)+ [([V - (@1Vu)a = V- (a1 Vua)], ta)| + [((V - Vi)o = v - Vig, ua)|

= [(fa—p, ta+s)| + [([(a1 VU)o — a1 Vua], Vua )| + [((V - VU)o — v - Vg, ua)|

< [[fa=sllolluatsllo + (a1 Vu)a — a1 Ve [lo]| Via o

+ (v - Vu)a = v - Vua|lolluallo
< Cllfllk=1[IVull + ClDarl, [Vulle—1[Vulle + CIDV Ik, [ Vullz

< SN + el ullt + S 1w, IVuliy + el + CIDVI, IVul}y
(B.14)
where |3| = 1, k = ||, and k; = max{k — 1,50}, with s = [§]+ 1. Again, we used
Cauchy’s inequality with e. Substituting (B.14)) into (B.13)), and adding over
|a| = k < r, including the estimate (B.10)), we obtain for r > 1 the estimate

C C
IVull? < Z(IDar |2, + 1DV IVullf_y + 7 + eClIVulz (B.15)

where 71 = max{r — 1, 5o}, with sg = [%] + 1, and where C depends on 7, ¢;. Here
we used Sobolev’s lemma to obtain |Dv|pe < C|Dvls,. Choosing e sufficiently
small yields

IVl < Cmax{||Darl?,, | DVl HIVul?_y + ClLFIZ (B.16)

where C depends on r, ¢;. This is the desired inequality (B.8]).
Applying the inequality (B.16) to ||Vu|?_; which appears on the right-hand side

of yields
IVull? < Cmax{ || Das |2, DV, })
x |Cmax{|Dar|[2,, 1DVl DIVulZ_y + CIFI2 o) + CIAIE,
< Clmax{|[Das |2, [ DV, })2IVul2_

717

+ C(max{|| Day|[?,, |DV]|r, DIFIF-2 + CIFI7

(B.17)

where 1 = max{r — 1, s}, ro = max{r — 2,50}, ro < ry, with s9 = [%] +1 =2 for
N =2,3.

Similarly, by applying the estimate to ||Vu|\72_j for j =2,3,...,7r—1,
which will appear in the term C(max{||Dai |2 , | Dv|,, })’|[Vul[7_; on the right-
hand side of , we obtain

r—1
IVl < € (max{ | Dasl,, | D]l ) 171,

J=1

+C’ma Da %a Dv 1 Tvu2+C 72"7
(max{|[Da1 |7, , [ DIl })" IVl + Cll 15 (B.18)

r—1

< [ Y (max{|Das |2, 1 DV]r Y [1£12-,

=0
+ C(max{||Day |2, | DV|l» " | Vull§

T1)
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Substituting the estimate ||Vul|3 < C||f]|3 into (B.18) yields

[Vul?
r—1

< C[Z(maX{IIDalllfl, HDVIIm})j] 1£1721 + C(max{|| Dax |7, , |1 DVl DI
j=0

< G| Y- (max{|[Dar %, 1DV Y 112

=0

where C] depends on 7, ¢;. This completes the proof. O

Lemma B.3. Let a(u) be a smooth function of u, and let v(x) and f(x) be suffi-
ciently smooth functions in the equation

-V (a(w)Vu)+v -Vu=f (B.19)

forx € Q, where Q = TN, N = 2,3, where a(u) > c1, for some positive constant cy,

and where |u — ug|r~ < R, where ug, R are given constants. We assume that |V -

Vl|L= < &, where C. is the constant from Poincaré’s inequality ||al|§ < C.||Vullg,

and where u(x) = u(x) — ﬁ Jou(x)dx. Then there exist constants C7, Cs, such
. 2 . .

that if % 57é1||f\|§71 < C%, and if |[Dv|s < 5, and if a”(u) < a(lu) (a/(u))?, then

u satisfies the inequality

Va2 < 2Cs]|£113-, (B.20)

We define C7 = 46’2082 and Cg = CoC1 K1, where Cy is the constant from estimate
in Lemma and where Cy = C(1+R+(1+|Q|Y?)|u(x0)|)?* and Cs = MCy
are the same constants as in from Pmposition and Cy is a constant which
depends on s, c1, where s > o + 1. We define the constant K; = max{1,|v[2..}.

And we define |%|S7@1 = max{|ﬂ%(u*) tuy, € Gp,0 <5 < s}

Proof. First we obtain estimates for ||[Vul|3, ||Vul?, |[Vul|3, and |[Vu||?, where
3 < r < s. It is necessary to have an estimate for ||Vu||§ in order to obtain an
estimate for ||Vu||§+1, for j =0,1,2,...,5s — 1. We will apply estimate from
Lemma to obtain an estimate for ||[Vul|2, when 3 <r < s.

From inequality in Lemma applied to equation , we obtain

IVull§ < ClIfIIg (B.21)

where C' depends on ¢;. We now obtain an estimate for ||Vu|?. Applying D to
equation (B.19)), with |a] = 1, yields

=V (a(u)Vuy) = V- ((a(u)aVu) — (V- Vu)y + fo (B.22)
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Integrating by parts with u,, where || = 1, and using the fact from equation
(B.19) that Va(u) - Vu = —a(u)Au + v - Vu — f, yields
(a(u)Vug, Vug) = —(V - (a(u)Vug), )
= (V- ((a(w)aVu),ua) = ((v - Vi), ta) + (fa, ta)
= —((a(u))aVu, Vua) = ((v - Vi) a, ua) + (fas ta)

—~

= _%((a(u))av (Vu-Vu)o) = ((v - Vu)a, ua) + (fas ta)
= — (' (Wta, (Vu-Vu)a) = (v VU)o, Ua) + (fa, ta)

[ LR S

= = 5t (0 (0) V- Vo) + 5 (0, (@' () (V- )

- ((V : Vu)a,ua) + (fomua)

1 1 12
= —§(Um (Va(u) - Vu)a) + i(uma (u)ue(Vu - Vu))

—((v- VU)o, ua) + (fa, ta)

= %(ua, (a(u)Au—v - Vu+ f)a) + %((ua)i a" (u)(Vu - Vu))

- ((V : V“)aa“a) + (favuot>

(ot 0(0)0) + S((9 - V), ) —

f7 ua+a)

5

| = N =

+ 5 (ua)?, 0 (u)(Vu - Vu))
Adding over |a] = 1 yields

Z (a(u)Vuqa, Vuy) = —% Z (Uata, a(u)Au) + g Z ((v-Vu),uata)

=1 |or|=1 lo|=1
S (Fttara) + g 3 (e, a (u)(Vu- V)
la|=1 la|=1
- f%@u a(u)Au) + 2((v - Vu), Au) — 2 (f, Au)
+ %((Vu Va),a" (u)(Vu - Vu))

(B.24)
Next, we estimate the term 3((Vu - Vu),a”(u)(Vu - Vu)) in (B:24). We assume
that a”(u) < —1~(a’(u))?. We then obtain the inequality

= a(u)

((Vu - Vu),a” (u)(Vu - Vu))

(

oty (@ W) (V- V), (Vu- V)
1

((Va(u) - Vu), m(Va(u) -Vu)) (B.25)
1

((a(u)Au —v - Vu+ f), m(a(u)Au —v-Vu+f))

N = N~ N~
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L
a(u)
+ (Au, f) — (v - Vu,Au) — (v - Vu, if)

a(u)
Substituting (B.26)) into (B.24)) yields

= %(Au, a(u)Au) + %(f, )+ %(v - Vu, Lv -Vu) (B.26)

a(u)

1, 1 1 1
laz_l(a(u)vum Vug) = i(f, mf) + §(V -Vu, mv -Vu)
1 1
=58, f)+ 5 (v Vu, Au) = (v - Vu, a(u) h (B.27)
< 100 0) 4 LB Il + )

1 Lo 2
+ 1766(ﬁ )+ 176€‘V|LO° (IVullg + e(Au, Au)

where we used Cauchy’s inequality with €, and we used the fact that a(u) > ¢;.
We now use the fact that 3, _; (Vua, Vua) = 32,121 (tata, Au) = (Au, Au).
We also use the fact that a(u) > c1, and we define e = . Then (B.27) becomes

Z (c1Vug, Vuy) < Z (a(u) Vg, Vig)

Ja|=1 la|=1

< (A )+ () + v | V2

= 2 ) 4C1 ) 401 Lo 0 (B28)
- C1 5 5 9 9

-5 |,1(V”“’V““) o (1) + vl |Vl

Subtracting the term 3, _;(Vua, Vua) on both sides of (B.28), and using
inequality (B.21)), namely ||Vu||2 < C||f||2, yields the estimate
> (Vta, Vua) < Cmax{1, [v[7< I fIl5 (B.29)

loe|=1

where C depends on c¢;. Adding the inequalities (B.29)), (B.21]) yields
IVull = IVull§ + > (Vua, Vue) < Cmax{l, [v[7= I flls = CK1| [ (B-30)
la]=1

where C' depends on ¢;, and where we define the constant K7 = max{1,|v|?.}.
We now obtain an estimate for ||Vu||3. Applying D® to equation (B.19), with

la| = 2, yields
Y - (0() Vi) = V- (@(w))a V) + T - ((a())asViig) + 7 - ((a(u)s Vo)
—v:-Vug, — Ve -Vu—vg-Vug_g—vVe_g-Vug+ fq
(B.31)
where |3| = 1. Integrating by parts with u,, where |a| = 2 and |3| = 1, and using

inequality from Lemma yields

((a(u)Vug, Vi)

= 7(V : (a(u)Vua),ua)

= (V- ((a(u))aVu),ua) + (V- ((a(u))a-pVug), va)
+ (V- ((a(u)sVia—p), tia) = (V- Via, )
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= (Va - Vu,ua) = (vg - Va—g, tta) = (Va—g - Vg, ta) + (fa; ta)
~((0(u))a Vi, Vo) = (a(w))a-pVuz, Vua)
— (@) Vta Vi) + 5 (7 V)it 1) = (Ve Vit )
~(

v Via—g,ta) = (Va—p - Vug, ua) = (fa—p; tatp)
< la(u)allolVulL<|[Vuallo + [(a(u))a—plre= | Vug|lol| Vuallo

1
+l(a()slr=IVta-slollVuallo + 51V - viee uall§ + [valo< [Vullolluallo
+ [vploe [Vua—pllolluallo + [Va-slr= IVugllofluallo + | fasllollua+sllo
< CD*(a(w))llo]| Vull2lVuallo + ClD(a() 2] Vuli[Vuallo + CIV - v]ze [ Vul[§
+ CID*V L= ||Vullo| Vully + CIDV|L[[Vul|? + ClIV £llo]|Vuallo
C C
< P @@) IVl + el Vuall§ + 1D (@) 31 Vullt + el Viallg
+ CIDV| Lo [ Vul[§ + CID?v]1 | Vul[§ + CID*v|L||Vull}
C
+ CIDVn< [ Vullt + IV + €l Vual§

< NPT + o[ 3 107 a9l

0<r<2

C
+ C(IDV]1ee + [D*v]1e) [ Vullt + CID*v]1o [Vul[§ + L[ VFI5 + 3¢ Vuallg

C  da 2
<TI0 0t lul IVl Ful
da 2 ,
| 5 Iglna (0 e IVul] vl
o<r

+ C(|Dv|Loo + | D?v|1)||Vul|? + C|D*v|L~||Vul2

C
+ VA1 + 3elVual 3 (B.32)
C da s
< Tl7 2 6, A+ lule=) > | Vul 2Vl
C da 2 %
Tl e Tulee)® [ 32 IVl vull

0<r<2
C
+ C(IDVlso + ID*V[|s)IVull + CIUD* Vs, [Vullg + IV + 3ellVuallg

C  da2 s C  da2
e e P N T e

+ CIDV|[[Vulli + C D[ Vullg + @IIVfH% + 3¢ Vua 3

C|da‘2
= 2¢!du's:Gr

C
+ CDV[s[IVullt + CIDVIIVullg + IV FIG + 3¢l Vuallg

C|da|2 (1
= 2¢!du's:Gr

L+ Jul ) [ Vul 3] Vul?

(1+ Ju = uolz= + [uo|L=)**||Vu[F] Vull3

+ R+ Ju(xo) ) [ Vul }|Vull3
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C
+CIDV[s[Vulli + CIDV[s[Vulg + IV G + 3¢l Vualis

where we used inequality (B.1]) from Lemma We also used Sobolev’s lemma
to obtain |Dv|p~ < C||Dv||s, and |D*v|y~ < C||D%*v||y,, where 5o = [§]+1 =2
and s > 3. We also used Cauchy S inequality with e.

We assume that romb where the constant C; will be defined

a2, <
later. And we assume that [|[Dv]|, < 1. Substitutlng estimates (B.30), (B.21)) for
[Vul?, [[Vulld into (B.32)), and using the fact that a(u) > ¢;, and letting ¢ = <,
yields

(c1Vug, Viug)

< ((a(u)Vuga, Vug)
da
du

+CIDVISIFIE + CIAIT + 5HWQIIS

2 s
< CKy| o[ o, (U4 R+ [ulxo) D[ IS IVull3 + CK1 DV £113

da 2 s c
< CK1|d—| o, (L R+ Ju(xo) ) FI3-1IVull3 + CEL | fIIF + §1||Vua||3
s c
< CFy () 1+ R+ fulosa) D IVl + CRl I + V0

(B.33)
where C' depends on s, ¢1, and where we used the facts that |Dv||s < 1, and that
K = max{1,|v|%.}.

Adding over all |a| = 2 after moving the term 4 ||Vuq||§ to the left-hand
side, and adding the estimate for ||[Vul|? yields

IVall3 = IVullf + ) (Via, Vua)

lo]=2

< Cr (g ) (1 Rt Jubso) [Vl + CEa ]

1
< O (& )0+ B+ (L 9] ulxo) ) Vul + CRAFIR - (B34
CoCo K
< (e ) IVull3 + CoKall 1
C C K
< (e ) IVulld + CoKall 1

where the constant Cy depends on s, ¢1, and Cy = C(1+ R+ (1 + |Q]'/2)|u(x0)[)>*
and C3 = M (5 are the same constants as in from Proposition and M > 1.
We now define C; = 4020202K 7, where Cy is the constant from , and
where C1 is the constant from estimate in Lemma and we may assume
that C7 > 1, Cy > 1, and C3 > 1. Substituting the definition of C; into

yields

1
2

IVl < e,

where we used that K7 > 1. We define Cs = CyC1 K. It follows from (B.35) that
IVull3 < 2Co K1 || 11 < 2Cs| f1IF - (B.36)

1
IVull + CoFa [ fIIf < 51Vulls + CoKalIfIT (B.35)
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Note that since Cg = CoC1 K7 we have C; = 4C3C3.
Next we estimate ||Vul|2, where 3 < r < s. Using estimate from Lemma

in Appendix B applied to equation (B.19)) yields
IVull? < C1[ > (max{ID(@()I2,, 1DVl D712

=0 (B.37)

T

< G| > (max{lID(a(@) |21, 1DV} [ 1712,

Jj=0

where r; = max{r — 1,s0} =7 — 1, and 5o = [§] +1=2.

We consider two cases: when max{||D(a(u))||?_,,||Dv],—1} = |D(a(uw)|?_,,
and when max{|[D(a(w))|2_,, | Dv]l»1} = | Dv]s 1.

Case 1: Suppose that max{||D(a(u))||?_ 1,||Dv||r 1} = ||D(a(w))||?_;. From

@3) in Propositiowe have || D(a(u))|2_; < Cs|42[? . |Vull?_,. Repeatedly
B.37]

applying estimate (B.37)), letting r = 3,4, ..., s and using the fact that [Vu|?_, <
2Cs||fII>_5, and using estimate (2.8)) for |[D(a(u))||?_;, and using the fact that
ry = max{r — 1,50} = r — 1 when r > 3, we obtain

IVul? < Cs[ S 1D 122, 112,
2
<Cy _chHs N T

gcsizcﬂ (208|222 71 5) U1

r ; o da 25 i (B.38)
<Gy Zc;(zosy@uélan?_l}ani_l
_j*O
<Gy ZCJ e () |l
<a]Y Gy]ise
— | £ 2 r—1
7=0
<2Gs]|f17-y
where we used the fact that | 4% | & IfI12, < 7, and C7 = 4C3C%, and C3Cg > 1.

Case 2: Suppose that max{HD( (u ))||T 1> ||DVHT,1} = ||Dv||—1. From (B.37),
and using the fact that |Dv|, < 1, we obtain the following:

S

IVull2 < Cs[ S IV ]I < s [ S (G 11 < 20sl 1
j=0

=0

for 3 < r < s, which is the same estimate as (B.38). Therefore we have ||Vu|? <
203\ fII>_; for 3 <7 < s. Tt follows that ||Vul|2 < 2Cs||f||?_;. This completes the
proof. |
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