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INFINITY LAPLACE EQUATION WITH NON-TRIVIAL
RIGHT-HAND SIDE

GUOZHEN LU, PEIYONG WANG

Abstract. We analyze the set of continuous viscosity solutions of the infinity

Laplace equation −∆N
∞w(x) = f(x), with generally sign-changing right-hand

side in a bounded domain. The existence of a least and a greatest continuous

viscosity solutions, up to the boundary, is proved through a Perron’s construc-

tion by means of a strict comparison principle. These extremal solutions are
proved to be absolutely extremal solutions.

1. Introduction

In this article, we consider a nonlinear differential operator known as the nor-
malized infinity Laplacian and symbolically defined as

−∆N
∞w(x) = − 1

|∇w(x)|2
n∑

i,j=1

∂xi
w(x)∂xj

w(x)∂2
xixj

w(x), (1.1)

which is abbreviated as

−∆N
∞w(x) = − 1

|∇w(x)|2
〈D2w(x)∇w(x),∇w(x)〉. (1.2)

Here 〈·, ·〉 denotes the inner product in the Euclidean space <n. The expression
〈D2w(x)∇w(x),∇w(x)〉 stands for the un-normalized infinity Laplacian of w at x,
sometimes denoted by ∆∞w(x).

We assume Ω ∈ <n is a bounded open set and consider the boundary-value
problem

−∆N
∞w(x) = f(x) in Ω

w(x) = g(x) on ∂Ω.
(1.3)

Here we assume that f ∈ C(Ω) and g ∈ C(∂Ω). Next, we make clear the meaning
of ∆N

∞w(x). For a twice differentiable function ϕ, the normalized infinity Laplacian
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is

∆N
∞ϕ(x0) =

{
1

|∇ϕ(x0)|2 〈D
2ϕ(x0)∇ϕ(x0),∇ϕ(x0)〉 if ∇ϕ(x0) 6= 0

[λmin(D2ϕ(x0)), λmax(D2ϕ(x0))] if ∇ϕ(x0) = 0,
(1.4)

where λmin(M) and λmax(M) denote respectively the least and greatest eigenvalues
of a square matrix M . Another pair of symbols are ∆+

∞ϕ and ∆−
∞ϕ which are

given equivalently by ∆+
∞ϕ(x) = ∆−

∞ϕ(x) = ∆N
∞ϕ if ∇ϕ(x) 6= 0, and ∆+

∞ϕ(x) =
λmax(D2ϕ(x)) and ∆−

∞ϕ(x) = λmin(D2(ϕ(x))) if ∇ϕ(x) = 0. In case ∇ϕ(x) = 0,
∆N
∞ϕ(x) ≥ f(x) means that λmax(D2ϕ(x)) ≥ f(x) and ∆N

∞ϕ(x) ≤ f(x) means that
λmin(D2ϕ(x)) ≤ f(x). Equivalently, ∆N

∞ϕ(x) ≥ f(x) means that ∆+
∞ϕ(x) ≥ f(x)

and ∆N
∞ϕ(x) ≤ f(x) means that ∆−

∞ϕ(x) ≤ f(x). For a detailed explanation of
this definition, we refer to [27].

An upper semi-continuous function ,u ∈ USC(Ω), is a viscosity sub-solution of
the infinity Laplace equation

−∆N
∞u(x) = f(x) (1.5)

if the condition u ≺x0 ϕ for x0 ∈ Ω and ϕ ∈ C2(Ω) implies −∆N
∞ϕ(x0) ≤ f(x0).

Here USC(Ω) and LSC(Ω) denote the sets of upper semi-continuous and lower
semi-continuous functions in Ω respectively, and u ≺x0 ϕ means u − ϕ attains a
local maximum at x0. Similarly, a viscosity super-solution of (1.5) is a function
u ∈ LSC(Ω) which satisfies the condition that ϕ ≺x0 u for x0 ∈ Ω and ϕ ∈ C2(Ω)
implies −∆N

∞ϕ(x0) ≥ f(x0). A viscosity solution of (1.5) is both a viscosity sub-
solution and super-solution.

The study of the infinity Laplace equation ∆∞u(x) = 0 was initiated in the
1960s by Aronsson in [2, 3, 4], where he deduced the infinity Laplace equation
∆∞u(x) = 0 as the Euler-Aronsson equation for smooth absolute minimizers.
Partly due to the lack of a proper notion of solutions of the highly degenerate
nonlinear infinity Laplace equation, the study had been dormant for quite a while
until the introduction of viscosity solutions by Evans, Crandall, Ishii,Lions, et al
(see [15] and the references therein). The existence of a solution of the equation
was proved by Bhattacharya, DiBenedetto and Manfredi in [7]. Jensen presented
the first proof of the uniqueness of a viscosity solution of the Dirichlet problem
for the homogeneous infinity Laplace equation in a bounded domain in 1993 in
[19], which revived the study of the infinity Laplacian. Since then, the Dirichlet
problem for the infinity Laplace equation has received extensive attention. The
works [20, 11, 12, 6, 10, 18, 24, 9, 5, 16, 14] give a partial list of the references
in the literature. Among them, [6] contains a second proof of the uniqueness of a
viscosity solutions of the Dirichlet problem for the homogeneous infinity Laplacian
in a bounded domain. A third uniqueness proof is given in [14] which works for
unbounded domains. Meanwhile, the study of the eigenvalue problem for the infin-
ity Laplacian and the evolution problem for the infinity Laplacian were also taken
up (see [23, 16, 22, 21]). The authors of the current paper investigated in the well-
posedness of the inhomogeneous problems ∆∞u(x) = f(x) and ∆N

∞u(x) = f(x),
with f(x) > 0, in [26, 27], where the existence and uniqueness of a viscosity solu-
tion of the Dirichlet problem are proved. Peres-Schramm-Sheffield-Wilson provided
interpretation of the normalized infinity Laplacian from the point of view of the
differential game theory in [28]. Quoted from [28], the continuum value of a dif-
ferential game called the “tug-of-war” verifies the inhomogeneous infinity Laplace
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equation −∆N
∞u(x) = 2f(x), where f is the running payoff function which satisfies

inf f > 0 in the domain. A counter-example was also provided in [28] to show the
uniqueness of a viscosity solution of the Dirichlet problem for the inhomogeneous
equation fails if f could change sign. It is unclear what one can say about the
multiple viscosity solutions of the Dirichlet problem (1.3) for a general “payoff”
function f , though. The theme of this paper is to answer at least partially this
question. In fact, we prove that there always exist continuous viscosity solutions of
the Dirichlet problem (1.3) for the normalized infinity Laplacian and for any contin-
uous right-hand-side f (Theorem 3.1). Moreover, the greatest and least viscosity
solutions are constructed (Theorem 3.1) through the Perron’s method combined
with a strict comparison theorem (Theorem 2.4).

This article is organized as follows. The second section is devoted to the deriva-
tion of the local Lipschitz continuity of a viscosity sub-solution (Lemma 2.2) and
a strict comparison principle (Theorem 2.4). The third section contains the con-
struction of the least and the greatest solutions, i. e. the main theorem (Theorem
3.1). The last section contains closely related problems yet to be solved.

In this article, especially when the inhomogeneous term f is not continuous in its
arguments, the strict differential inequality −∆N

∞w(x) < f(x,∇w(x)) in Ω in the
viscosity sense is understood in the locally uniform sense that for any x0 ∈ Ω, there
exist a neighborhood N of x0 in Ω and a δ > 0 such that−∆N

∞w(x) ≤ f(x,∇w(x))−
δ in the viscosity sense in N . The differential inequality −∆N

∞w(x) > f(x,∇w(x))
is similarly understood.

We recall [27, Lemma 1.10], the proof of which may also be found therein.

Lemma 1.1. Assume Ω is an open subset of <n and f ∈ C(Ω). Λ is an index set.
(a) Suppose u(x) = supλ∈Λ uλ(x) < ∞, x ∈ Ω, where −∆N

∞uλ ≤ f in Ω in the
viscosity sense for every λ ∈ Λ. If u ∈ C(Ω), then −∆N

∞u ≤ f in Ω in the viscosity
sense.

(b) Similarly, if u(x) = infλ∈Λ uλ(x) > −∞, x ∈ Ω, where −∆N
∞uλ ≥ f in Ω in

the viscosity sense for every λ ∈ Λ. Then u ∈ C(Ω) implies that −∆N
∞u ≥ f in Ω

in the viscosity sense.

A similar result holds for the infinity Laplace equation −∆∞u = f , the proof of
which is simpler as the singularity caused by ∇u = 0 does not present in this case.

2. A Comparison Theorem

For a nonzero vector x, x̂ = x/|x| denotes its normalized vector. The notation
Cb(Ω) denotes the set of bounded continuous functions defined in Ω. For two sets
V and U , V ⊂⊂ U means that V is compactly contained in U .

We start out to prove a lifting lemma stated as follows.

Lemma 2.1. If u ∈ USC(Ω) is a viscosity sub-solution of ∆∞u = k1 in Ω, and
v ∈ C2(Σ) verifies ∆∞v ≥ k2 in Σ, for constants k1 and k2, then the function
w : (x, y) 7→ u(x) + v(y) is a viscosity sub-solution of ∆∞w(x, y) = k1 + k2 in
Ω× Σ.

Proof. It suffices to prove ∆∞ϕ(x0, y0) ≥ k1+k2 for any ϕ ∈ C2(Ω) and (x0, y0) ∈ Ω
such that u(x)+v(y) ≺(x0,y0) ϕ(x, y). Without the loss of generality, we may assume
(x0, y0) = (0, 0), u(0) = 0, v(0) = 0, ϕ(0, 0) = 0, and ϕ is a quadratic polynomial.
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Denote

∇ϕ(0, 0) =
(

ϕx(0, 0)
ϕy(0, 0)

)
and

D2ϕ(0, 0) =
(

ϕxx(0, 0) ϕxy(0, 0)
ϕyx(0, 0) ϕyy(0, 0)

)
Then

u(x) + v(y) ≤ ϕx(0, 0) · x + ϕy(0, 0) · y +
1
2
〈ϕxx(0, 0)x, x〉

+ 〈ϕxy(0, 0)x, y〉+
1
2
〈ϕyy(0, 0)y, y〉.

(2.1)

We write

v(y) = ∇v(0) · y +
1
2
〈D2v(0)y, y〉+ ◦(|y|2).

Replacing this in (2.1), we obtain

u(x) +∇v(0) · y +
1
2
〈D2v(0)y, y〉+ ◦(|y|2)

≤ ϕx(0, 0) · x + ϕy(0, 0) · y +
1
2
〈ϕxx(0, 0)x, x〉

+ 〈ϕxy(0, 0)x, y〉+
1
2
〈ϕyy(0, 0)y, y〉

or equivalently

u(x) ≤ ϕx(0, 0) · x + (ϕy(0, 0)−∇v(0)) · y +
1
2
〈ϕxx(0, 0)x, x〉

+ 〈ϕxy(0, 0)x, y〉+
1
2
〈(ϕyy(0, 0)−D2v(0))y, y〉+ ◦(|y|2)

for any small x and y.
It is clear that ϕy(0, 0) = ∇v(0) and ϕyy(0, 0) − D2v(0) ≥ 0. Denote B =

ϕyy(0, 0)−D2v(0). Then

u(x) ≤ ϕx(0, 0) · x +
1
2
〈ϕxx(0, 0)x, x〉

+ 〈ϕxy(0, 0)x, y〉+
1
2
〈By, y〉+ ◦(|y|2).

(2.2)

First, we assume the matrix B is invertible. So B = A2 for some symmetric
invertible matrix A. Then the right-hand-side of (2.2) is equal to

ϕx(0, 0) · x +
1
2
〈ϕxx(0, 0)x, x〉+ 〈A−1ϕxy(0, 0)x, Ay〉

+
1
2
〈Ay, Ay〉+ ◦(|y|2)

= ϕx(0, 0) · x +
1
2
〈(ϕxx(0, 0)− ϕxy(0, 0)B−1ϕxy(0, 0))x, x〉

+
1
2
|A−1ϕxy(0, 0)x + Ay|2 + ◦(|y|2),

(2.3)

where x and y are any small vectors. Take y = −B−1ϕxy(0, 0)x for each small x.
Then

u(x) ≤ ϕx(0, 0) · x +
1
2
〈(ϕxx(0, 0)− ϕxy(0, 0)B−1ϕxy(0, 0))x, x〉+ ◦(|x|2)
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for all small vector x. Therefore, on account of the fact that ∆∞u ≥ k1 in Ω, we
obtain

〈(ϕxx(0, 0)− ϕxy(0, 0)B−1ϕxy(0, 0))ϕx(0, 0), ϕx(0, 0)〉 ≥ k1. (2.4)

As a result, the following equalities and inequalities hold at (0, 0):

〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈ϕyyϕy, ϕy〉
= 〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈Bϕy, ϕy〉+ 〈D2v∇v,∇v〉
≥ 〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈Bϕy, ϕy〉+ k2

= 〈ϕxxϕx, ϕx〉+ 2〈A−1ϕxyϕx, Aϕy〉+ 〈Aϕy, Aϕy〉+ k2

= 〈(ϕxx − ϕxyB−1ϕxy)ϕx, ϕx〉+ |A−1ϕxyϕx + Aϕy|2 + k2

≥ k1 + k2,

according to (2.4). In general, when B is not invertible, we define Bε = B + εI for
every small ε > 0. Then Bε is invertible and the inequalities (2.2) and (2.4) still
hold with B replaced by Bε. Let Bε = A2 for a positive definite matrix A. In the
end, we have, at (0, 0),

〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈ϕyyϕy, ϕy〉+ ε|ϕy|2

= 〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈Bεϕy, ϕy〉+ 〈D2v∇v,∇v〉
≥ 〈ϕxxϕx, ϕx〉+ 2〈ϕxyϕx, ϕy〉+ 〈Bεϕy, ϕy〉+ k2

= 〈ϕxxϕx, ϕx〉+ 2 < A−1ϕxyϕx, Aϕy〉+ 〈Aϕy, Aϕy〉+ k2

= 〈(ϕxx − ϕxy(Bε)−1ϕxy)ϕx, ϕx〉+ |A−1ϕxyϕx + Aϕy|2 + k2

≥ k1 + k2,

for every small ε > 0. Then 〈ϕxxϕx, ϕx〉 + 〈2ϕxyϕx, ϕy〉 + 〈ϕyyϕy, ϕy〉 ≥ k1 + k2.
The proof is complete. �

Lemma 2.2. Suppose f ∈ C(Ω), and w ∈ USC(Ω) is locally bounded.
(a) If −∆∞w(x) ≤ f(x) in Ω, then w : Ω → < is locally Lipschitz continuous.
(b) If −∆N

∞w(x) ≤ f(x) in Ω, then w : Ω → < is locally Lipschitz continuous.
Furthermore, the Lipschitz constant of w over Ω′ ⊂⊂ Ω may be taken as C(1 +
‖w‖L∞(Ω̃)), where Ω′ ⊂⊂ Ω̃ ⊂⊂ Ω and C depends on ‖f‖L∞(Ω′).

Proof. Assume f(x) ≤ K, x ∈ Ω′ ⊂⊂ Ω. Without loss of generality, we also assume
‖w‖L∞(Ω) < ∞.

(a) Define u(x, y) = w(x) + Cy4/3, for x ∈ Ω, 1 ≤ y ≤ 2. We notice that Cy4/3

is a C2 solution of the equation ∆∞w(y) = 64
81C3 for y 6= 0. Then the preceding

lift lemma (2.1) implies that u is an infinity sub-harmonic function in Ω × (1, 2),
if C is sufficiently large. A well-known fact about semi-continuous infinity sub-
harmonic functions (see, for example, [5, Lemma 2.9] for continuous functions, and
[12], or [25] for semi-continuous functions) states that u is Lipschitz continuous on
Ω′ × [1.1, 1.9] with some Lipschitz constant L = L(‖w‖L∞(Ω)). As a result, w is
Lipschitz continuous on Ω′ with Lipschitz constant L.

(b) Clearly, that −∆N
∞w(x) ≤ f(x) in Ω in the viscosity sense implies that

−∆∞w(x) ≤ |∇w(x)|2f(x) in the viscosity sense in Ω (but not the converse).
Without the loss of generality, we assume that w > 0 in Ω. Take λ > 0 small so
that λ‖w‖L∞(Ω) < 1

2 . Define u = G(w) = w + λ
2 w2 in Ω. For simplicity, we assume
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w is C2. All steps of the following computation can be made rigorous by means
of viscosity solutions. We leave the details to the reader. Then G′(w) = 1 + λw
and G′′(w) = λ. In particular, 2 > G′(w) > 1

2 . Moreover, ∇u = G′(w)∇w,
D2u = G′(w)D2w + G′′(w)∇w ⊗∇w, and

−∆∞u = −(G′(w))3∆∞w − (G′(w))2G′′(w)|∇w|4

≤ (G′(w))3{f(x)− G′′(w)
G′(w)

|∇w|2}|∇w|2

=
(1 + λw)4

λ
{f(x)− λ

1 + λw
|∇w|2}λ|∇w|2

1 + λw

≤ (1 + λw)4

4λ
(f(x))2, (due to the Cauchy-Schwarz inequality)

<
4K2

λ

By (a), one deduces that u is locally Lipschitz continuous in Ω. So w = 2u
1+
√

1+2λu

is also locally Lipschitz continuous in Ω. �

The following comparison theorem is a generalization of a strict comparison
principle stated in [27, Theorem 3.1].

Theorem 2.3. Assume f ∈ C(Ω × <n), and the modulus of continuity of the
function x 7→ f(x, p) is independent of p ∈ <n. Suppose uj ∈ C(Ω), j = 1, 2, verify
in the viscosity sense either

∆N
∞u1(x) < f(x,∇u1) and ∆N

∞u2(x) ≥ f(x,∇u2)

or

∆N
∞u1(x) ≤ f(x,∇u1) and ∆N

∞u2(x) > f(x,∇u2)

in Ω.
If lim supx∈Ω→z(u2(x)− u1(x)) ≤ 0 for any z ∈ ∂Ω, then u2(x) ≤ u1(x) in Ω.

Proof. One may follow the proof of [27, Theorem 3.1] which can be simplified
substantially with the application of a fourth order penalty function wε(x, y) =
u2(x)−u1(y)− 1

4ε |x−y|4, (x, y) ∈ Ω×Ω, used in [13] and [22]. We leave the details
to the reader. �

The preceding comparison theorem and the lemma (2.2) imply the following
theorem immediately.

Theorem 2.4. Assume f ∈ C(Ω). Suppose u1 ∈ LSC(Ω), u2 ∈ USC(Ω), and
they verify either

∆N
∞u1(x) < f(x) and ∆N

∞u2(x) ≥ f(x)

or

∆N
∞u1(x) ≤ f(x) and ∆N

∞u2(x) > f(x)

in the viscosity sense in Ω.
If lim supx∈Ω→z(u2(x)− u1(x)) ≤ 0 for any z ∈ ∂Ω, then u2(x) ≤ u1(x) in Ω.
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3. Continuous Solutions Of The Dirichlet Problem

There are different approaches to the existence of a viscosity solution of the
boundary value problem (1.3). The approach used here is the Perron’s method
combined with a delicate albeit elementary analysis which depends essentially on
the strict comparison theorem (2.4).

For f ∈ C(Ω) and g ∈ C(∂Ω), we define the set of strict super-solutions

A+
f,g = {v ∈ C(Ω̄) : −∆N

∞v(x) > f(x) in Ω, and v ≥ g on ∂Ω} (3.1)

and the set of strict sub-solutions

A−f,g = {v ∈ C(Ω̄) : −∆N
∞v(x) < f(x) in Ω, and v ≤ g on ∂Ω}. (3.2)

Whenever there is little confusion, we will write A+ and A− for A+
f,g and A−f,g,

respectively. Obviously, A+ and A− are both nonempty.
Define w+(x) = infv∈A+ v(x) and w−(x) = supv∈A− v(x), x ∈ Ω̄. By definition,

w+ is upper semi-continuous and w− is lower semi-continuous on Ω̄. Obviously,
w+ and w− are both bounded on Ω̄, and w−(x) ≤ g(x) ≤ w+(x) on ∂Ω according
to the preceding comparison theorem (2.4).

Take a super-solution φ in A+
f,g. For example, φ(x) = −C|x−z|2+D for suitable

C and D. Define
A+

f,g,φ = {min(v, φ) : v ∈ A+
f,g}. (3.3)

Clearly, A+
f,g,φ ⊂ A+

f,g and w+(x) = infv∈A+
f,g,φ

v(x). For every v in A+
f,g,φ,

Lemma (2.2) says v is locally Lipschitz continuous with Lipschitz constant ≤
C(1 + ‖φ‖L∞(Ω)), i. e.A+

f,g,φ is locally Lipschitz equi-continuous.
On the other hand, one may pick a sequence {vk} inA+

f,g,φ such that vk converges
to w+ on a countable dense subset E of Ω̄. Define ṽk = min{v1, v2, . . . , vk}, k =
1, 2, . . . . Then ṽk ∈ A+

f,g,φ and ṽk converges to w+ on E. Replacing vk by ṽk, one
may assume that vk ≥ vk+1 for all k. Consequently, a subsequence of {vk}, which
will still be denoted by {vk}, converges to some v locally uniformly on Ω. Then
v ∈ C(Ω) and vk ≥ v ≥ w+ on Ω. Clearly, v = w+ on E ∩ Ω. As w+ is upper
semi-continuous on Ω̄, for any x ∈ Ω,

w+(x) ≥ lim sup
z∈E→x

w+(z) = lim sup
z∈E→x

v(z) = v(x). (3.4)

So w+ = v on Ω and whence {vk} converges to w+ locally uniformly on Ω. Therefore
w+ ∈ C(Ω) and −∆N

∞w+(x) ≥ f(x) on Ω on account of Lemma (1.1). Similarly,
w− ∈ C(Ω) and −∆N

∞w−(x) ≤ f(x) on Ω.
Next, we show w+ = w− = g on ∂Ω. For any z ∈ ∂Ω and any ε > 0, there exists

r > 0 such that g(x) ≤ g(z)+ε for all x ∈ ∂Ω with |x−z| ≤ r. Take C > ‖f‖L∞(Ω)

and D ≥ Cdiam(Ω) + 2‖g‖L∞(∂Ω). Define v ∈ C(Ω̄) by

v(x) = g(z) + ε− C|x− z|2 + D|x− z|. (3.5)

Then −∆N
∞v(x) = 2C > f(x) for x ∈ Ω. For x ∈ ∂Ω with |x − z| ≤ r, v(x) ≥

g(z) + ε + |x − z|{D − Cr} ≥ g(z) + ε ≥ g(x), while for x ∈ ∂Ω with |x − z| > r,
v(x) ≥ g(z) + ε + r{D−C diam(Ω)} ≥ g(z) + ε + 2‖g‖L∞(∂Ω) ≥ g(x). So v ∈ A+

f,g.
As a result, w+(z) ≤ v(z) = g(z) + ε, for all ε > 0. So w+ = g on ∂Ω. Similarly
w− = g on ∂Ω.
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Since w+ is upper semi-continuous and w− is lower semi-continuous on Ω̄, for
any z ∈ ∂Ω, the following inequalities hold

g(z) = w+(z) ≥ lim sup
x∈Ω→z

w+(x) ≥ lim inf
x∈Ω→z

w+(x) ≥ lim inf
x∈Ω→z

w−(x) ≥ w−(z) = g(z).

(3.6)
Consequently, all the above inequalities are indeed equalities. So

lim
x∈Ω→z

w+(x) = w+(z) = g(z). (3.7)

Similarly, one obtains
lim

x∈Ω→z
w−(x) = w−(z). (3.8)

Therefore w+ and w− are in C(Ω̄).
We now show that −∆N

∞w+(x) = f(x) and −∆N
∞w−(x) = f(x) in Ω. We need

only prove that −∆N
∞w+(x) ≤ f(x) in Ω. Suppose the contrary that there exist a

C2 function ϕ and a point x0 ∈ Ω such that w+ ≺x0 ϕ and ∆+
∞ϕ(x0) < f(x0).

For any small ε > 0, we define

ϕε(x) = ϕ(x0)+∇ϕ(x0) · (x−x0)+
1
2
〈D2ϕ(x0)(x−x0), x−x0〉+ ε|x−x0|2 (3.9)

so that x0 is a strict local maximum point of w+−ϕε. We claim that −∆+
∞ϕε(x) <

f(x) for all x sufficiently close to x0 if ε is small enough.
In fact, if ∇ϕ(x0) 6= 0, then ∇ϕ(x) 6= 0 in a neighborhood of x0, and in this

neighborhood,

∆+
∞ϕε(x) = 〈D2ϕε(x)∇̂ϕε(x), ∇̂ϕε(x) >= ∆+

∞ϕ(x0) + O(ε). (3.10)

The claim follows from the continuity of ∆+
∞ϕ and f .

If ∇ϕ(x0) = 0, then λmax(D2ϕ(x0)) = ∆+
∞ϕ(x0) < f(x0). As λmax(D2ϕε(x)) ≤

λmax(D2ϕ(x)) + Cε,

∆+
∞ϕε(x) ≤ λmax(D2ϕε(x)) < f(x) (3.11)

holds for x sufficiently close to x0.
We take δ > 0 small enough so that the function ϕ̂(x) := ϕε(x) − δ satisfies

ϕ̂ < w+ in a neighborhood of x0 which is contained in the set {x ∈ Ω : ∆+
∞ϕε(x) <

f(x)}, and ϕ̂ ≥ w+ outside this neighborhood of x0.
We know from the previous part of the proof that there exists a sequence {vk}

in A+
f,g that converges to w+ locally uniformly in Ω. Therefore there is an element

v of A+
f,g such that ϕ̂ < v in a neighborhood N of x0 which is a subset of the set

{x ∈ Ω : ∆+
∞ϕε(x) < f(x)}, and ϕ̂ ≥ v outside N and in some Ω′ ⊂⊂ Ω, if δ is

taken smaller as needed. We may without loss of generality modify the values of ϕ̂
near ∂Ω so that ϕ̂ ≥ v in Ω\N .

Take v̂ = min{ϕ̂, v}. Then v̂ = ϕ̂ in the neighborhood N of x0 and v̂ = v
elsewhere. So v̂ ∈ A+

f,g. But v̂ = ϕ̂ < w+ in a neighborhood of x0, which is
a contradiction to the definition of w+. So −∆N

∞w+(x) ≤ f(x) in Ω. Similarly,
−∆N

∞w−(x) ≥ f(x) in Ω.
Furthermore, the comparison theorem (2.4) implies that for any solution w ∈

C(Ω̄) of the Dirichlet problem

−∆N
∞w(x) = f(x) in Ω

w(x) = g(x) on ∂Ω
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w− ≤ w ≤ w+ holds on Ω̄, as it holds in Ω̄ that v2 ≤ w ≤ v1 for any v1 ∈ A+ and
any v2 ∈ A−. We have proved the following existence theorem.

Theorem 3.1. There exists at least one solution in C(Ω̄) of the boundary value
problem (1.3). Every continuous solution of (1.3) is locally Lipschitz continuous in
Ω. Among all the continuous solutions of the boundary value problem (1.3), there
are one least solution w− and one greatest solution w+ as constructed above.

Furthermore, we can acquire a clearer picture of the set of continuous solutions of
the Dirichlet problem (1.3) by inspecting the solutions in the following absolute way.
First, the construction of w+ and w− and the above theorem imply the following
theorem.

Theorem 3.2. For any open set V ⊂⊂ Ω, if w ∈ C(V̄ ) satisfies

−∆N
∞w(x) = f(x) (x ∈ V )

w(x) = w+(x) (x ∈ ∂V ),
(3.12)

then w ≤ w+ in V̄ .
Similarly, if w ∈ C(V̄ ) satisfies

−∆N
∞w(x) = f(x) (x ∈ V )

w(x) = w−(x) (x ∈ ∂V ),
(3.13)

then w ≥ w− in V̄ .

Proof. According to the preceding Theorem 3.1, we may assume that w is the
greatest solution in the region V with boundary data w+ on ∂V . Then w+ ≤ w on
V̄ . We need to prove the reverse inequality w ≤ w+. Define w̃ on Ω̄ by

w̃(x) =

{
w(x), x ∈ V

w+(x), x ∈ Ω̄\V.

Then −∆N
∞w̃(x) ≤ f(x) in Ω in the viscosity sense. In fact, if w̃ ≺x0 ϕ for a point

x0 ∈ Ω and a C2 function ϕ, and if x0 6∈ ∂V , then clearly −∆N
∞ϕ(x0) ≤ f(x0).

If x0 ∈ ∂V , then w+ ≺x0 ϕ as w+ ≤ w in V and w+ = w on ∂V . As a result,
−∆N

∞ϕ(x0) ≤ f(x0) holds.
For any v ∈ A+

f,g, Theorem 2.4 implies that v ≥ w̃. Consequently, w+(x) ≥ w̃(x),
x ∈ Ω, and in particular w+(x) ≥ w(x), x ∈ V̄ .

The proof of the second part is similar. �

Define the set of viscosity solutions of the Dirichlet problem (1.3) by

Af,g = {u ∈ C(Ω̄) : −∆N
∞u(x) = f(x) in Ω, and u = g on ∂Ω.} (3.14)

According to the preceding theorem (3.2), w+ and w− are the extremal solutions
in Af,h in an absolute sense as mentioned above.

We conclude this section with a lemma which will be used in the next section.
The proof of the following partial continuity of the infinity Laplacian lemma is
straightforward if one observes that if ∇ϕ(x0) = 0 for a smooth function ϕ, then
∆+
∞ϕ(x0) = λmax(D2ϕ(x0)).

Lemma 3.3. Suppose ϕ is a C2 function, and xk → x0.
(i) If ∇ϕ(x0) 6= 0, then ∆N

∞ϕ(xk) → ∆N
∞ϕ(x0).

(ii) If ∇ϕ(x0) = 0, then ∆+
∞ϕ(x0) ≥ lim supk ∆+

∞ϕ(xk).
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Remark: In Lemma 3.1(ii), the inequality holds obviously. In many cases, the
inequality is indeed an equality. However, in general, the equality is not true. For
example, in 2D, take ϕ(x, y) = 1

2x2 − 1
2y2. Then ∆+

∞ϕ(0, 0) = 1 but ∆+
∞ϕ(x, y) =

x2−y2

x2+y2 does not necessarily converge to 1 as (x, y) → (0, 0).

4. Unanswered Questions

Following the proof of the existence of the maximum and minimum solutions
of the Dirichlet problem (1.3) with non-trivial right-hand-side in this work, some
closely related problems need to be answered.

Naturally, one would ask when the uniqueness of a viscosity solution of the
Dirichlet problem (1.3) holds even if f changes sign. More precisely, what is the
necessary and sufficiency condition on f (and possibly on g as well) and on the
domain Ω that ensures the Dirichlet problem (1.3) has a unique continuous solution?
Are there always more than one viscosity solutions of the Dirichlet problem if f
changes sign? A recent work by Armstrong and Smart, [1], answered part of the
questions. Interested reader may read their work for up-to-date development.

One may also ask at most how many distinct solutions can the Dirichlet prob-
lem (1.3) have for any non-trivial right-hand-side? Under what condition are there
infinitely many solutions? In case there exist multiple solutions, what is the struc-
ture of the set of the continuous solutions of the Dirichlet problem (1.3)? Do the
extremal solutions w+ and w− determine all the solutions of the Dirichlet problem
in some way? Or parallelly, “What is a criterion for a continuous function to be an
element of Af,g?”

We will be more precise in our notations below and hope that the following
discussion will justify our use of multiple subscripts. Let Af,g(Ω) denote the set
of the viscosity solutions of the Dirichlet problem (1.3) in a bounded open set Ω.
w+

f,g,Ω and w−f,g,Ω denote the maximum and minimum solutions in Af,g(Ω). The
following theorem is a criterion which is not quite up to the authors’ satisfaction
in that it depends on the maximum and minimum solutions for every open subset
and does not give enough information about the solution u solely in terms of w+

f,g,Ω

and w−f,g,Ω.

Theorem 4.1. Suppose u ∈ C(Ω). Then −∆N
∞u(x) = f(x) in Ω if and only if for

every open set V ⊂⊂ Ω,

w−f,g,V (x) ≤ u(x) ≤ w+
f,g,V (x), for x ∈ V,

where g = u|∂V .

Proof. The necessity follows from the Theorem (3.1).
To show the sufficiency, we only prove −∆N

∞u ≤ f in Ω, as the proof of −∆N
∞u ≥

f is similar. Suppose u ≺x0 ϕ for some x0 ∈ Ω and some C2 function ϕ. For any
small r > 0, let V = Br(x0) and w+

r be the maximum solution of the Dirichlet
problem in V . As w+

r ≥ u in V and w+
r = u on ∂V , it is clear that w+

r ≺xr ϕ
for some point xr ∈ V . So −∆N

∞ϕ(xr) ≤ f(xr). Sending r to 0, one obtains
−∆N

∞ϕ(x0) ≤ f(x0) on account of the continuity of f and the smoothness of ϕ,
noticing the fact that −λmax(D2ϕ(x0)) ≤ lim infr↓0−∆N

∞ϕ(xr) if ∇ϕ(x0) = 0. �

Clearly, u ∈ C(Ω̄) is an element of Af,g(Ω) if and only if u verifies the condition
stated in the preceding theorem and u = g on ∂Ω. On the other hand, it is
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unknown if the comparison property supV (u − w+
f,g,Ω) ≤ max∂V (u − w+

f,g,Ω) and
infV (u − w−f,g,Ω) ≥ min∂V (u − w−f,g,Ω) for every open subset V ⊂ Ω alone implies
u ∈ Af,g(Ω).

In addition, can we anticipate a differential game theory interpretation of the
Dirichlet problem (1.3) with the nontrivial right-hand-side f as we do with the case
supΩ f(x) < 0 ([28], [8] and [17])? This question has been partially answered by
Armstrong and Smart in [1]. Furthermore, one may still ask the questions such as
“Are there any connections between the maximal and minimal solutions and the
value functions of the players II and I in the generalized ‘tug-of-war’ game?”

In the end, one may also consider the inverse problem of the Dirichlet problem
(1.3), “For what continuous functions u, are there continuous functions f such that
−∆N

∞u = f?” The uniqueness of f was initially considered in [28] and has recently
been proved by Y.Yu ([29]).

Acknowledgments. We would like to thank the referees for very valuable sug-
gestions and corrections, especially for their comments on open questions and the
suggestion to revise part of the proofs. After we submitted this paper, we received
a preprint from S.N. Armstrong and C.K. Smart [1] in which they independently
established similar results to ours among other things through a finite difference
method.
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