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A GLOBAL CURVE OF STABLE, POSITIVE SOLUTIONS FOR A
p-LAPLACIAN PROBLEM

BRYAN P. RYNNE

Abstract. We consider the boundary-value problem

−φp(u′(x))′ = λf(x, u(x)), x ∈ (0, 1),

u(0) = u(1) = 0,

where p > 1 (p 6= 2), φp(s) := |s|p−1 sign s, s ∈ R, λ ≥ 0, and the function

f : [0, 1]× R → R is C1 and satisfies

f(x, ξ) > 0, (x, ξ) ∈ [0, 1]× R,

(p− 1)f(x, ξ) ≥ fξ(x, ξ)ξ, (x, ξ) ∈ [0, 1]× (0,∞).

These assumptions on f imply that the trivial solution (λ, u) = (0, 0) is the
only solution with λ = 0 or u = 0, and if λ > 0 then any solution u is positive,

that is, u > 0 on (0, 1).

We prove that the set of nontrivial solutions consists of a C1 curve of
positive solutions in (0, λmax) × C0[0, 1], with a parametrisation of the form

λ → (λ, u(λ)), where u is a C1 function defined on (0, λmax), and λmax is a

suitable weighted eigenvalue of the p-Laplacian (λmax may be finite or ∞),
and u satisfies

lim
λ→0

u(λ) = 0, lim
λ→λmax

|u(λ)|0 =∞.

We also show that for each λ ∈ (0, λmax) the solution u(λ) is globally asymp-

totically stable, with respect to positive solutions (in a suitable sense).

1. Introduction

We consider the boundary-value problem

−φp(u′(x))′ = λf(x, u(x)), x ∈ (0, 1), (1.1)

u(0) = u(1) = 0, (1.2)

where p > 1 (p 6= 2), φp(s) := |s|p−1 sign s, s ∈ R, λ ≥ 0, and the function
f : [0, 1]× R → R is C1 and satisfies

f(x, ξ) > 0, (x, ξ) ∈ [0, 1]× R, (1.3)

(p− 1)f(x, ξ) ≥ fξ(x, ξ)ξ, (x, ξ) ∈ [0, 1]× (0,∞). (1.4)
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The condition (1.3) ensures that the trivial solution (λ, u) = (0, 0) is the only
solution with λ = 0 or u = 0, and if λ > 0 then any solution u is positive, that is,
u > 0 on (0, 1).

In the semilinear case (p = 2) the problem (1.1)–(1.2) has been considered in
many papers, under various hypotheses on f , see for example [9, 12, 14, 17, 21,
22, 23, 24, 26, 27]. When f is independent of x, detailed results for this case are
obtained in [9] and [24]. These papers use quadrature to derive explicit formulae for
a C1 curve of solutions in [0,∞)× C0[0, 1], passing through (λ, u) = (0, 0), with a
parametrisation of the form s → (λ(s), u(s)), where the parameter s = |u(s)|0. The
results on the shape of the solution curve are then obtained by investigating the
function s → λ(s). However, when f depends on x, such a formula for the solutions
is not available. Despite this, curves of solutions, with similar properties to those
in the x independent case, have been constructed in, for example, [12, Section 4],
and [17, 21, 22, 23, 24, 26, 27] (again under a variety of hypotheses on f). In these
papers the strategy is to use the implicit function theorem to construct a solution
curve in [0,∞) × C0[0, 1] by continuation away from the solution (λ, u) = (0, 0),
and then investigate the structure of this curve directly.

The case of general p > 1 (p 6= 2) with f independent of x has been considered in
many recent papers using the quadrature method, see for example, [2, 1, 4, 10, 20,
28]. In this paper we consider the general p case, with f dependent on x, and we
use the continuation approach to prove the following results. There exists λmax > 0
(λmax may be finite or ∞) such that the set of nontrivial solutions of (1.1)–(1.2)
consists of a C1 curve of globally stable, positive solutions in (0, λmax) × C0[0, 1],
with a parametrisation of the form λ → (λ, u(λ)), where u is a C1 function defined
on the interval (0, λmax). Furthermore,

lim
λ→0

λ−p∗u(λ) = −∆−1
p (f(0)), lim

λ→λmax
|u(λ)|0 = ∞,

(where ∆−1
p is the inverse of the p-Laplacian operator, and p∗ := (p− 1)−1), so the

curve meets the point (0, 0). We also characterise the value of λmax as a weighted
eigenvalue of the p-Laplacian

Under the hypotheses (1.3), (1.4), similar results have been obtained in the
semilinear case p = 2, and in the general p case with f independent of x. Other
hypotheses on f yield so called ‘S-shaped’ curves of solutions (the form of the
parametrisation described above shows that S-shaped curves are precluded by (1.3),
(1.4)), see for example [9, 22, 28], and the references therein.

The continuation approach relies on the use of the implicit function theorem. In
order to apply the implicit function theorem to the above problem we require some
recent results on differentiability of the inverse of the p-Laplacian. These results
will be described in Section 2.1, and the solution curve will then be constructed
in Section 3. In Section 4 it will be shown that the solutions on this curve are
globally asymptotically stable with respect to positive solutions (in a sense to be
made precise below). Finally, in Section 5, we briefly consider the situation when
we change the condition (1.3) to allow f(·, 0) = 0 (while retaining (1.4)), and we
show that a similar C1 curve of solutions exists.

2. Preliminaries

For any integer r ≥ 0, Cr[0, 1] will denote the standard Banach space of real
valued, r-times continuously differentiable functions defined on [0, 1], with the norm
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|u|r =
∑r

i=0 |u(i)|0, where | · |0 denotes the usual sup-norm on C0[0, 1] (throughout,
all function spaces will be real). For any q ≥ 1, Lq(0, 1) will denote the standard
Banach space of real valued functions on [0, 1] whose qth power is integrable, with
norm ‖ · ‖q. We let W 1,q(0, 1), with norm ‖ · ‖1,q, denote the usual Sobolev space
of absolutely continuous functions u on [0, 1], with derivative u′ ∈ Lq(0, 1), while
W 1,q

0 (0, 1) denotes the set of functions in W 1,q(0, 1) satisfying (1.2).
If F : X → Z is a function between Banach spaces X and Z, then Df(x) : X → Z

will denote the Fréchet derivative of F at x; partial Fréchet derivatives will be
indicated by subscripts, for example, DxG(x, y), DyG(x, y) will denote the partial
derivatives of a function G depending on x and y.

2.1. The p-Laplacian and its inverse. Letting

Dp : {u ∈ C1[0, 1] : u satisfies (1.2) and φp(u′) ∈ W 1,1(0, 1)} ,

we define the p-Laplacian operator ∆p : Dp → L1(0, 1) by

∆p(u) = φp(u′)′, u ∈ Dp.

This operator is (p − 1)-homogeneous, that is, ∆p(tu) = tp−1∆p(u), for any t ∈ R
and u ∈ Dp. The following invertibility result is well known — see, for example,
[6, Theorem 3.1], [18, Theorem 20] (these references prove the result for periodic
boundary conditions, but the proof can readily be modified to deal with Dirichlet
boundary conditions).

Theorem 2.1. For any h ∈ L1(0, 1), the problem

∆p(u) = h, h ∈ L1(0, 1), (2.1)

has a unique solution u = ∆−1
p (h) ∈ Dp. The operator ∆−1

p : L1(0, 1) → C1[0, 1]
is continuous and p∗-homogeneous (recall that p∗ := (p − 1)−1). The operator
∆−1

p : L1(0, 1) → C0[0, 1] is compact.

Next we discuss the differentiability of the operator ∆−1
p . The following result

is proved in [6, Theorem 3.4] for the periodic case; the proof in the Dirichlet case is
similar (but simpler). A similar result is described in Theorem 5 and Corollary 6
of [15], however, the arguments in the proofs in [15] seem to be incomplete.

Theorem 2.2. For h ∈ L1(0, 1), let u = u(h) := ∆−1
p (h).

(A) Suppose that p > 2 and h ∈ C0[0, 1] is such that u′(x) = 0 =⇒ h(x) 6= 0,
for x ∈ [0, 1]. Then there exists a neighbourhood V of h in C0[0, 1] such
that:
(a) for h ∈ V , |u(h)′|2−p ∈ L1(0, 1);
(b) the mapping h → |u(h)′|2−p : V → L1(0, πp) is continuous;
(c) the mapping ∆−1

p : V → W 1,1
0 (0, 1) is C1 and

w = D∆−1
p (h)h̄ =⇒ (|u′|p−2w′)′ = p∗h̄, h̄ ∈ C0[0, 1]. (2.2)

(B) Suppose that 1 < p < 2. Then the mapping ∆−1
p : L1(0, 1) → C1[0, 1] is

C1, and (2.2) holds for h̄ ∈ L1(0, 1).

Remark 2.3. In either case (A) or case (B) of Theorem 2.2, the implication in
(2.2) is that the function |u′|p−2w′ ∈ W 1,1(0, 1), so that the derivative (|u′|p−2w′)′

is defined in the L1 sense (at least). This remark also applies to the function w in
Lemma 3.3 below.
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2.2. Principal eigenvalues of the p-Laplacian. We briefly consider the weighted,
nonlinear eigenvalue problem

−∆p(w) = µρφp(w), w ∈ Dp, (2.3)

where µ ∈ R and the weight function ρ ∈ L1(0, 1) satisfies ρ ≥ 0 on [0, 1], and ρ > 0
on a set of positive measure. A principal eigenvalue of (2.3) is an eigenvalue µ for
which there is a corresponding eigenfunction wµ ≥ 0. The following result is well
known — see, for example, [13, Sections 3-4].

Lemma 2.4. Under the above hypotheses on the weight function ρ the eigenvalue
problem (2.3) has a unique principal eigenvalue µ0(ρ). In addition, µ0(ρ) > 0,
wµ0(ρ) is positive and∫ 1

0

|w′|p ≥ µ0(ρ)
∫ 1

0

ρ|w|p, w ∈ W 1,p
0 (0, 1).

If ρ1, ρ2 are two such weight functions, with

ρ1 ≤ ρ2 on [0, 1] and ρ1 < ρ2 on a set of positive measure,

then µ0(ρ1) > µ0(ρ2).

We can now define the number λmax which will be shown to characterise the
right-hand end point of the curve of solutions. Define g : [0, 1] × (0,∞) → [0,∞)
by

g(x, ξ) := f(x, ξ)/ξp−1, (x, ξ) ∈ [0, 1]× (0,∞). (2.4)
It follows from (1.4) that

gξ(x, ξ) = (fξ(x, ξ)ξ − (p− 1)f(x, ξ))/ξp ≤ 0, (x, ξ) ∈ [0, 1]× (0,∞), (2.5)

which implies that the following limits exist

γ∞(x) := lim
ξ→∞

g(x, ξ) ≥ 0, x ∈ [0, 1], (2.6)

and γ∞ ∈ L∞(0, 1). Now let

λmax :=

{
µ0(γ∞) < ∞, if γ∞ 6= 0,
∞, if γ∞ = 0.

3. Main results

For any u ∈ C0[0, 1], we define f(u) ∈ C0[0, 1] by f(u)(x) = f(x, u(x)), x ∈ [0, 1]
(that is, f will denote both a function and its corresponding Nemitskii operator).
Then (1.1)–(1.2) can be rewritten as

−∆p(u) = λf(u), (λ, u) ∈ [0,∞)×Dp. (3.1)

Clearly, (λ, u) = (0, 0) is a solution of (3.1) and, by Theorem 2.1 and the fact that
f(0) > 0, the only solution of (3.1) with λ = 0 or u = 0 is (0, 0). Let

S := {(λ, u) ∈ (0,∞)×Dp satisfying (3.1)}.
We first prove some basic positivity properties of solutions of (3.1).

Lemma 3.1. Every solution (λ, u) ∈ S satisfies:
(a) u > 0 on (0, 1);
(b) u′(0) > 0, u′(1) < 0.
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Proof. For any (λ, u) ∈ S, it follows from the differential equation (1.1) and the
positivity condition (1.3) that u cannot have a local minimum in the interval (0, 1),
so u ≥ 0 on [0, 1], and u′(0) ≥ 0, u′(1) ≤ 0. If u′(0) = 0 then by (1.1) there exists
δ > 0 such that u′ < 0 on (0, δ), which contradicts the fact that u ≥ 0. Hence,
u′(0) > 0 and similarly u′(1) < 0, and it then follows, by the preceding argument,
that u > 0 on (0, 1). �

We now prove our main result on the structure of S.

Theorem 3.2. There exists a C1 function u : (0, λmax) → C0[0, 1] such that:
(a) limλ→0 λ−p∗u(λ) = −∆−1

p (f(0)) and limλ→λmax |u(λ)|0 = ∞
(if p∗ > 1 then u extends to a C1 function through 0);

(b) if λ ∈ (0, λmax) then u(λ) is the unique solution of (3.1);
(c) if λ ≥ λmax then (3.1) has no solution.

Hence, S consists precisely of the curve of solutions {(λ, u(λ)) : λ ∈ (0, λmax)}.
Theorem 3.2 will be proved by a series of intermediate steps. We first note that,

by Theorem 2.1, equation (3.1) is equivalent to the equation

F (λ, u) := u + λp∗∆−1
p (f(u)) = 0, (λ, u) ∈ [0,∞)× C0[0, 1], (3.2)

and the function F : R× C0[0, 1] → C0[0, 1] is continuous. Since f(u) > 0, for any
u ∈ C0[0, 1], Theorem 2.2 yields additional properties of F which, for reference,
we state in the following lemma. This lemma also unifies the cases 1 < p < 2 and
p > 2 in Theorem 2.2, and is tailored to our use of the implicit function theorem
below (the lemma would be trivial in the linear case p = 2).

Lemma 3.3. If (λ, u) ∈ S then F is C1 on a neighbourhood of (λ, u) in (0,∞)×
C0[0, 1]. The derivative DuF (λ, u) = I + λp∗Ku, where I denotes the identity on
C0[0, 1] and Ku : C0[0, 1] → C0[0, 1] is defined by

Kuw := D∆−1
p (f(u))(fξ(u)w), w ∈ C0[0, 1].

The operator Ku is compact, so DuF (λ, u) is singular if and only the null space
N(DuF (λ, u)) 6= {0}. Also, w ∈ N(DuF (λ, u)) if and only if w ∈ W 1,1

0 (0, 1) and
satisfies the linear, weighted Sturm-Liouville problem

−(|u′|p−2w′)′ = p∗λfξ(u)w,

w(0) = w(1) = 0
(3.3)

Remark 3.4. By Theorem 2.2, the coefficient function |u′|p−2 in (3.3) satisfies
the standard linear Sturm-Liouville hypothesis: 1/|u′|p−2 ∈ L1(0, 1). Hence, in
particular, if w is a non-trivial solution of (3.3) then |u′|p−2w′ ∈ W 1,1(0, 1) and
|u′|p−2w′|i 6= 0, i = 0, 1 (where |u′|p−2w′|i denotes the value of the continuous
function |u′|p−2w′ at x = i).

Proposition 3.5. If (λ, u) ∈ S then DuF (λ, u) is non-singular.

Proof. Suppose that DuF (λ, u) is singular. By Lemma 3.3, there exists a non-trivial
w ∈ W 1,1(0, 1) satisfying (3.3), with |u′|p−2w′|0 > 0. Let

x0 := inf{x ∈ (0, 1] : w(x) = 0}
(w(1) = 0, so the set on the right is non-empty). Clearly, x0 > 0, w(x0) = 0,
w(x) > 0 for x ∈ (0, x0) and |u′|p−2w′|x0 < 0. Now let

W := −φp(u′)w + u|u′|p−2w′.
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By the properties of u and w, we have W ∈ W 1,1(0, 1), W (0) = W (1) = 0, and, by
(1.2), (1.4), and (3.3)

W ′ = λ(f(u)− p∗ufξ(u))w ≥ 0, on (0, x0), (3.4)

with strict inequality when x > 0 is sufficiently close to 0 (by (1.3)). Combining
these results yields

0 < W (x0) = u|u′|p−2w′|x0 ≤ 0,

and this contradiction proves Proposition 3.5. �

Proposition 3.6. Suppose that (λn, un) ∈ S, n = 1, 2, . . . , satisfies |un|0 → ∞.
Then λn → λmax.

Proof. Without loss of generality we may suppose that λn → λ∞, for some λ∞ ≥ 0
(we allow λ∞ = ∞), and |un|0 > 1 for each n ≥ 1.

We first suppose that λ∞ < ∞. Let

ũn := un/|un|0, f̃n := f(un)/|un|p−1
0 , n ≥ 1.

Dividing (3.2) by |un|0 and using the p∗-homogeneity of ∆−1
p shows that

−ũn = ∆−1
p (λnf̃n) = ∆−1

p (λng(un)φp(ũn)), n ≥ 1. (3.5)

By (2.5),

0 ≤ f̃n ≤ |g(·, 1)|0 + max{f(x, ξ) : (x, ξ) ∈ [0, 1]2}, n ≥ 1, (3.6)

so by (3.5), Theorem 2.1, and the compactness of the embedding C1[0, 1] → C0[0, 1],
we may suppose that ũn → ũ∞ in C0[0, 1], for some ũ∞ ∈ C0[0, 1] with |ũ∞|0 = 1.

We now claim that

f̃n → γ∞φp(ũ∞), in L1(0, 1). (3.7)

Results of this form are well known, so we simply sketch a proof. By (2.6), for any
x ∈ [0, 1] and ε > 0, there exists C(x, ε) > 0 such that, for n ≥ 1,

f̃n(x) ≤ C(x, ε) + (γ∞(x) + ε)un(x)p−1

|un|p−1
0

→ (γ∞(x) + ε)ũ∞(x)p−1.

Together with a similar lower bound, and dominated convergence (recall (3.6)), this
proves (3.7).

Now, letting n →∞ in (3.5) (using Theorem 2.1 and (3.7)), yields

−ũ∞ = ∆−1
p (λ∞γ∞φp(ũ∞)).

Since ũ∞ 6= 0, this implies that γ∞ 6= 0, and so we have shown that λ∞ < ∞ =⇒
γ∞ 6= 0 (and λ∞ 6= 0). Furthermore, since ũ∞ ≥ 0, it follows from Lemma 2.4 that
λ∞ = µ0(γ∞) = λmax.

Now suppose that γ∞ 6= 0. Choose a closed subinterval I ⊂ (0, 1) such that the
restriction γ∞,I := γ∞|I 6= 0 in L∞(I). Applying Lemma 2.4 on the interval I, there
exists a principal eigenvalue µ∞,I > 0 and a positive eigenfunction w∞,I ∈ C1(I)
satisfying the eigenvalue problem

−φp(w′∞,I)
′ = µ∞,Iγ∞,Iφp(w∞,I), on I,

w∞,I = 0, on ∂I.
(3.8)

Now, for any n ≥ 1, g(un) ≥ γ∞,I on I, so comparing (3.5) and (3.8) shows that
if λn > µ∞,I then wn must have a zero in I (by the p-Laplacian form of the
Sturm comparison theorem, see [18, Theorem 6]). However, this contradicts the
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positivity of un, so in fact λn ≤ µ∞,I for all n ≥ 1. Thus, we have shown that
γ∞ 6= 0 =⇒ λ∞ < ∞, which completes the proof of Proposition 3.6. �

Proposition 3.7. There exists a C1 function u : (0, λmax) → C0[0, 1] having the
properties (a)-(b) described in Theorem 3.2.

Proof. We first search for solutions of (3.2) near to (λ, u) = (0, 0). Writing λp∗ = λ̃,
equation (3.2) becomes

F̃ (λ̃, u) := u + λ̃∆−1
p (f(u)) = 0, (λ̃, u) ∈ R× C0[0, 1].

By Theorem 2.2, F̃ is C1 near to (0, 0) (since f(0) > 0), and clearly F̃ (0, 0) = 0,
DuF̃ (0, 0) = I. Hence, by the implicit function theorem, there exists ε > 0 and a
C1 function ũ : (−ε, ε) → C0[0, 1], such that F̃ (λ̃, ũ(λ̃)) = 0, λ̃ ∈ (−ε, ε). Also, it
is clear that ũ′(0) = −∆−1

p (f(0)). Defining u : (0, ε) → C0[0, 1] by u(λ) = ũ(λp∗),
this function has the required properties on the interval (0, ε). We now need to
extend this function to (0, λmax).

Suppose that (λ0, u0) ∈ S. By Proposition 3.5 the derivative DuF (λ0, u0) is non-
singular so, by the implicit function theorem, there exists a C1 function u, defined
on a neighbourhood of λ0, such that u(λ0) = u0 and F (λ, u(λ)) ≡ 0. Hence, the
function u constructed above near to λ = 0 extends in a C1 manner to a maximal
interval (0, λ̄), for some λ̄ ∈ (0,∞].

Lemma 3.8. If (λn) is a sequence in (0, λ̄) with λn → λ̄, then |u(λn)|0 →∞.

Proof. Suppose that the sequence (|u(λn)|0) is bounded (the same argument deals
with the case where a subsequence is bounded). First suppose that λ̄ < ∞. Then,
by (3.2) and the compactness of the operator ∆−1

p : L1(0, 1) → C0[0, 1] (Theo-
rem 2.1), we may suppose that u(λn) → u∞ in C0[0, 1], and hence, by the continuity
of F , (λ̄, u∞) ∈ S0. But now, by the implicit function theorem, the parametrisation
can be extended to the right of λ̄, which contradicts the maximality of the interval
(0, λ̄) and shows that the case λ̄ < ∞ cannot occur.

Now suppose that λ̄ = ∞. Then by (1.3) and the boundedness of the sequence
(|u(λn)|0), there exists δ > 0 such that f(un) ≥ 4δ on [0, 1]. For each n, the
function un attains its maximum at a point xn. Suppose that xn ≥ 1/2 (the case
xn < 1/2 is similar). Then, since u′n(xn) = 0 and (λn, un) satisfies (1.1), we have

φp(u′n) ≥ λnδ, on [0, 1
4 ],

and hence, by (1.2), un( 1
4 ) ≥ 1

4φp∗(λnδ). Since λn → ∞, this contradicts the
boundedness of (|u(λn)|0), and so proves the lemma. �

Combining Proposition 3.6 with Lemma 3.8 shows that λ̄ = λmax, which com-
pletes the proof of Proposition 3.7. �

Let S0 denote the curve of solution {(λ, u(λ)) : λ ∈ (0, λmax)}. We now show
that this is the only curve of solutions.

Proposition 3.9. S = S0.

Proof. Suppose, on the contrary, that there exists a solution (λ1, u1) ∈ S \ S0,
and let S1 denote the connected component of S containing (λ1, u1). Then the
proof of Proposition 3.7 shows that S1 is a C1 curve in (0,∞) × C0[0, 1], having
a parametrisation of the form λ → (λ, ũ(λ)) defined on a maximal open interval
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I1 ⊂ (0,∞), and the only possible non-zero end point of I1 is λmax. Hence, the left
end point of I must be at λ = 0. However, Proposition 3.6 shows that the function
ũ is bounded near to λ = 0, and so, by (3.2), limλ→0 ũ(λ) = 0. However, by the
implicit function theorem, this would imply that S1 = S0 (recall the first part of the
proof of Proposition 3.7), contradicting the assumption that (λ1, u1) ∈ S \ S0. �

Combining Propositions 3.7 and 3.9 completes the proof of Theorem 3.2.

4. Stability

We now consider the following time-dependent, initial value problem

vt(t) = ∆p(v(t)) + λf(v(t)), t ≥ 0, (4.1)

v(0) = v0 ≥ 0, (4.2)

for λ ≥ 0. Clearly, any positive solution of (3.1) is an equilibrium solution of (4.1)-
(4.2), so by Theorem 3.2, for each λ ∈ [0, λmax), (4.1)-(4.2) has a unique equilibrium
solution u(λ) (here, we write u(0) = 0). In this section we will briefly consider the
stability of this solution.

To state precisely what we mean by a solution of (4.1)-(4.2), we define the space

Sp := C([0,∞),W 1,p
0,w(0, 1)) ∩W 1,2((0,∞), L2(0, 1)),

where C([0,∞),W 1,p
0,w(0, 1)) denotes the space of W 1,p

0 (0, 1)-valued, weakly contin-
uous functions on [0,∞). The compactness of the embedding W 1,p

0 (0, 1) → C0[0, 1]
implies that C([0,∞),W 1,p

0,w(0, 1)) ⊂ C([0,∞), C0[0, 1]).

Definition 4.1. For any λ ≥ 0 and v0 ∈ Dp, a solution of (4.1)-(4.2) is a function
v(λ, v0) ∈ Sp satisfying (4.2), such that, for almost all t ≥ 0, v(λ, v0)(t) ∈ Dp and
(4.1) holds (in the L2(0, 1) sense).

We now prove that u(λ) is globally asymptotically stable, with respect to positive
solutions, in the sense of the following theorem.

Theorem 4.2. For each λ ∈ (0, λmax) and 0 ≤ v0 ∈ Dp, the problem (4.1)-(4.2)
has a unique solution v(λ, v0) ∈ Sp. In addition, v(λ, v0) satisfies:
(a) 0 ≤ v(λ, v0)(t) ∈ Dp, for each t ≥ 0;
(b) limt→∞ v(λ, v0)(t) = u(λ), in C0[0, 1].

Proof. We consider fixed λ ∈ (0, λmax) and 0 ≤ v0 ∈ Dp, and suppose, for now,
that a solution v(λ, v0) ∈ Sp exists. Then the non-negativity property in (a) is well-
known, but for convenience we give a short proof. For any function w, let w−(x) :=
min{w(x), 0}. By the definition of Sp, the function ‖v(λ, v0)−(·)‖2 is absolutely
continuous on [0,∞), with ‖v(λ, v0)−(0)‖2 = 0 and, writing v for v(λ, v0)(t),

1
2

d

dt
‖v−‖22 =

∫ 1

0

vtv
− =

∫ 1

0

∆p(v)v− + λ

∫ 1

0

f(v)v− ≤ 0, a.e. t ≥ 0

(the differentiability properties follow from [29, Prob 30.9] and a slight modification
of [16, Lemma 7.6]; the final inequality follows from an integration by parts and
(1.3)). Hence, ‖v(λ, v0)−(·)‖2 ≡ 0, which proves the non-negativity.
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By the preceding argument, we need only search for non-negative solutions. We
now define the set W 1,p

0,+(0, 1) := {w ∈ W 1,p
0 (0, 1) : w ≥ 0}, and the functions

F (x, ξ) :=
∫ ξ

0

f(x, s) ds, (x, ξ) ∈ [0, 1]× [0,∞),

E(w) :=
1
p

∫ 1

0

|w′|p − λ

∫ 1

0

F (w), w ∈ W 1,p
0,+(0, 1).

The function E : W 1,p
0,+(0, 1) → R is continuous.

Lemma 4.3. There exists an increasing function M : R → (0,∞) such that,

|w|0 + ‖w‖1,p < M(E(w)), w ∈ W 1,p
0,+(0, 1).

Proof. Suppose that there exists R ∈ R and 0 6= wn ∈ W 1,p
0,+(0, 1), n = 1, 2, . . . , such

that E(wn) ≤ R and ‖wn‖1,p →∞; let w̃n := wn/‖wn‖1,p. By the compactness of
the embedding W 1,p

0 (0, 1) → C0[0, 1], we may assume that w̃n → w̃∞ in C0[0, 1], for
some 0 ≤ w̃∞ ∈ C0[0, 1], and it suffices to show that this leads to a contradiction.

A similar argument to the proof of (3.7) shows that∫ 1

0

F (wn)
‖wn‖p

1,p

→ 1
p

∫ 1

0

γ∞w̃p
∞. (4.3)

Now suppose that
∫ 1

0
γ∞w̃p

∞ > 0. Then, by Lemma 2.4, for each n ≥ 1,∫ 1

0

|w̃′n|p ≥ µ0(γ∞)
∫ 1

0

γ∞w̃p
n → µ0(γ∞)

∫ 1

0

γ∞w̃p
∞ > 0, (4.4)

and combining (4.3) with (4.4) shows that E(wn) →∞ (since λ < λmax = µ0(γ∞)).
However, this contradicts the initial assumption that E(wn) ≤ R, n ≥ 1. Next,
suppose that

∫ 1

0
γ∞w̃p

∞ = 0, but w̃p
∞ 6= 0. Then, by Lemma 2.4,∫ 1

0

|w̃′n|p ≥ µ0(1)‖w̃n‖p
p → µ0(1)‖w̃∞‖p

p > 0 (4.5)

(where 1 denotes the weight function that is identically 1 on [0, 1]), and combining
(4.3) with (4.5) again yields the contradiction E(wn) → ∞. Finally, suppose that
w̃p
∞ = 0. Since ‖w̃n‖1,p = 1, n ≥ 1, this implies that

∫ 1

0
|w̃′n|p → 1, which again

yields a contradiction, and so completes the proof of the lemma. �

By the definition of Sp, [8, Lemma 3.3], and the argument in the proof of [11,
Lemma 3.1], the function E(v(λ, v0)(·)) is absolutely continuous and decreasing, so
by Lemma 4.3, any solution v(λ, v0) of (4.1)-(4.2) satisfies

|v(λ, v0)(t)|0 < M(E(v0)), t ≥ 0. (4.6)

Now, choosing a decreasing function θ0 ∈ C∞(R, R), with

θ0(s) =

{
1, s ≤ M(E(v0)),
0, s ≥ 2M(E(v0)),

and defining f̂0 : [0, 1]× R → (0,∞) by

f̂0(x, ξ) = f(x, θ0(ξ)ξ), (x, ξ) ∈ [0, 1]× R,
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we consider the initial value problem

v̂t(t) = ∆p(v̂(t)) + λf̂0(v̂(t)), t ≥ 0, (4.7)

v̂(0) = v0. (4.8)

It follows from the form of θ0 and f̂0, and (4.6), that any solution of (4.1)-(4.2) is
a solution of (4.7)-(4.8), and vice versa. Now, since f̂0 is bounded and Lipschitz,
(4.7)-(4.8) has a unique solution v̂(λ, v0) ∈ Sp, see [3, Theorem 3.4] (the existence
and properties of solutions under the hypothesis that f̂0 is bounded and Lipschitz
is also discussed in [11, Remark 2.2]). Hence, v̂(λ, v0) is in fact a solution of (4.1)-
(4.2), which we will denote by v(λ, v0). In addition, [3, Theorem 3.4] also shows
that v(λ, v0)(t) ∈ Dp, for all t ≥ 0.

Finally, suppose that there exists ε > 0 and tn > 0, n = 1, 2, . . . , such that
tn → ∞ and |v(λ, v0)(tn) − u(λ)|0 ≥ ε. By Lemma 4.3 and compactness we may
suppose that v(λ, v0)(tn) → v∞ in C0[0, 1], for some v∞ ≥ 0. By the argument
in the proof of [11, Lemma 3.1], this now implies that v∞ must be an equilibrium
solution of (4.1), so that v∞ = u(λ). However, this contradicts the choice of the
sequence (tn) and so completes the proof of Theorem 4.2. �

5. The case when f(·, 0) = 0

In this final section we briefly consider the situation when we replace the condi-
tion (1.3) with the condition

f(x, 0) = 0, f(x, ξ) > 0, (x, ξ) ∈ [0, 1]× (0,∞). (5.1)

We continue to assume that (1.4) holds so that, for each x ∈ [0, 1], the function
g(x, ·) is still decreasing on (0,∞) and the following limit exists

γ0(x) := lim
ξ→0+

g(x, ξ) ≥ γ∞(x), x ∈ [0, 1] (5.2)

(recall that g was defined in (2.4)). We also impose the additional assumption:

γ0 ∈ L1(0, 1) and lim
ξ→0+

gξ(x, ξ) < 0 for x in a set of positive measure. (5.3)

This implies that γ0 > γ∞ in a set of positive measure, and so by Lemma 2.4,

λmin := µ0(γ0) < λmax = µ0(γ∞).

Under the assumption (5.1), (λ, 0) is a solution of (3.1) for all λ ∈ R, and
solutions need not be positive. Hence, we define the set of positive solutions

S+ := {(λ, u) ∈ S: u 6= 0 and u ≥ 0}.
We will show that with these assumptions a C1 curve of positive solutions of (3.1)
exists, similar to that constructed in Theorem 3.2, but now defined over the interval
(λmin, λmax).

It will be useful to observe that, by the above hypotheses on f (and hence g)
any solution (λ, u) ∈ S+ of (3.1) satisfies the equation

−∆p(u) = λg(u)φp(u), (5.4)

with g(u) ∈ L1(0, 1) and
γ0 ≥ g(u) ≥ γ∞, (5.5)

and these inequalities are strict on (possibly different) sets of positive measure.

Lemma 5.1. The results of Lemma 3.1 hold for every (λ, u) ∈ S+.
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Proof. This follows from the arguments in the proof of Lemma 3.1 and the unique-
ness of solutions of the initial value problem for the differential equation (5.4), see
for example [5, Lemma 3.1]. �

We now have the following analogue of Theorem 3.2

Theorem 5.2. Suppose that f satisfies (1.4), (5.1) and (5.3).
There exists a C1 function u : (λmin, λmax) → C0[0, 1] such that:

(a) limλ→λmin u(λ) = 0 and limλ→λmax |u(λ)|0 = ∞;
(b) if λ ∈ (λmin, λmax) then u(λ) is the unique positive solution of (3.1);
(c) if λ ∈ (0,∞) \ (λmin, λmax) then (3.1) has no positive solution.

Hence, S+ consists precisely of the curve of solutions {(λ, u(λ)) : λ ∈ (λmin, λmax)}.

Proof. The proof is similar to the proof of Theorem 3.2, so we will merely sketch
the necessary modifications to the preceding arguments. By (5.1) and Lemma 5.1,
if (λ, u) ∈ S+ then f(u) > 0 in (0, 1) and f(u)(0) = f(u)(1) = 0, so it follows from
Theorem 2.2 and Lemma 3.1 that Lemma 3.3 holds here. Also, Propositions 3.5,
3.6 and their proofs hold unchanged, while a similar argument to the proof of
Proposition 3.6 also proves the following result.

Proposition 5.3. Suppose that (λn, un) ∈ S+, n = 1, 2, . . . , satisfies |un|0 → 0.
Then λn → λmin.

Proposition 5.4. There exists a C1 function u : (λmin, λmax) → C0[0, 1] having
the properties (a)-(c) described in Theorem 5.2.

Proof. For any λ > 0, it follows from [19, Lemma 3.3] that a positive solution u of
(5.4) (if it exists) must be unique (using the fact that for each x ∈ [0, 1], the function
g(x, ·) is decreasing). Now, if λ 6∈ (λmin, λmax) then by (5.5) and Lemma 2.4,
(5.4) has no positive solution. On the other hand, if λ ∈ (λmin, λmax) then [25,
Theorem 6.4] shows that (3.1) has a positive solution. The preceding argument
then constructs a suitable C1 function u with the required properties. �

This completes the proof of Theorem 5.2. �
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