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MULTIPLICITY OF POSITIVE SOLUTIONS FOR FOUR-POINT
BOUNDARY VALUE PROBLEMS OF IMPULSIVE
DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

LI SHEN, XIPING LIU, ZHENHUA LU

ABSTRACT. Using a fixed-point theorem in cones, we obtain sufficient condi-
tions for the multiplicity of positive solutions for four-point boundary value
problems of third-order impulsive differential equations with p-Laplacian.

1. INTRODUCTION

Recently, there has been much attention focused on the theory of impulsive
differential equation as it is widely used in various areas such as mechanics, elec-
tromagnetism, chemistry. A lot of theories have been established to solve these
problems, see [9], [3] and the references therein. Guo [4] obtained the existence of
solutions, via cone theory, for second-order impulsive differential equation

2= f(t,x,Tx), t>0,t#txk=1,23,...,
Axli=t, = I(z(ty)), k=1,2,3,...,
Az ooy, = Ii(z(ty)), k=1,2,3,...,
z(0) = 2o, 2'(0) = x.

In [1], using Leggett-Williams fixed point theorem, authors studied the multi-
plicity result for second order impulsive differential equations

v o) f(y(t) =0, te (0, \{tr,t2,.. tm},
Ay(te) = In(y(ty ), k=1,2,3,...,m,
Ay'(t) = Je(y(t), k=1,2,3,...,m,
y(0) =y(1) =0.
Kaufmann [§] studied a second-order nonlinear differential equation on an un-
bounded domain with solutions subject to impulsive conditions and the Sturm-
Liouville type boundary conditions. In [5]-[7], the authors studied positive solutions

of multiple points boundary value problems for second order impulsive differential
equations.
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All the works above concern boundary value problems with second-order impul-
sive equations, and there are just a few works that consider multiplicity of positive
solutions for third-order impulsive equations with p-Laplacian.

Motivated by all the works above, we concentrate on getting multiple positive so-
lutions for four-point boundary value problems of third-order impulsive differential
equations with p-Laplacian

(dp(u” (1)) = f(t,u®), W' (t), te€(0,\{tr,t2,... tm},
Au" ()=, =0, k=1,2,...,m,
AU (t) |zt = Ie(u(ty)), k=1,2,...,m, (1.1)
Au(t)le=t, = Je(ulty)), k=1,2,...,m,
u’(0) =0, '(0)=au'(§)+pu'(n), u(l)=0u(0),

where ¢, is p-Laplacian operator

- _ 1 1
¢P(S) = |S|p 25717 > 17 (¢P) ! = ¢qa -4 -= 1?
P q
tk, k=0,1,2,...,m,m+ 1, are constants which satisfy
O:t0<t1<t2<"'<tk<"’<tm<tm+1:1’

Auli—y, = u(t{) — u(ty), in which u(t]) (u(t;) respectively) denote the right
limit (left limit respectively) of u(t) at t = &, and o, > 0, a+ 8 < 1; 0 < &,
n<l;&n#t (k=12,...,m); d>1; f e C(0,1] x[0,400) x R, [0, +0)),
I, Ji, € C([0, +00), [0, +00)).

2. PRELIMINARIES

Let J = [0,1]\{¢1,t2,...,tm}, PC[0,1] = {u : [0,1] — R, wu is continuous at
t # i, u(tl), u(ty) exist, and u(t;) = u(ty),k = 1,2,...,m}, PC'[0,1] = {u €
PC[0,1] | u is continuous at ¢ # ty, v/ (), u/(t;,) exist, k = 1,2,...,m}, with the
norm

[ullpc = sup [u(t)|, [lullpcr =max {[lu]pc, [v'[ pc}-
teJ teJ

Obviously PCI0,1] and PC*[0, 1] are Banach spaces.

Lemma 2.1. u € PC[0,1] N C3[J] is a solution of if and only if

u(t) = u(0) +u/(0)t+/0 (t—s)qﬁq(/os f(r,u(r),uf(r))dr)ds
+ (=t Te(u(tr)) + Y Jr(u(ty)),

tp <t tr<t

(2.1)
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where
0y 228 ol () o) s 3 Y 64 ule) o 1)) s
(-1 —-a-p5)
N sy, < le(ult ))+5Ztk<nfk(u(tk))
(-1 -a-p) (22)
fo fo bq fo w,u(w),u (w))dw) dr ds
J— 1
+ 5 12 (1 —t) I (ulte) + Je(u(te))),
k=1
u/(o) Oéfo ¢q fO ( ))d’l" d8+ﬁf0 (bq fo /(T'))dT)dS
1-a-§ (2.3)
ad e Tu(ut)) + 6832, < Ii(u(ty))
+ e .

Proof. Suppose u € PC*[0,1](C3[J] is a solution of (1.1, for all k =1,2,...,m,
from Lagrange’s mean value theorem we have

u(tk) — u(tk — h) = u’(fk)h, 0<h<tp—tr_1, & € (tk - h,tk),
because u'(t; ) exists, we get

u(tk) — u(tk — h)

R RG]
Let u/(ty) = v’ (tx) = W' (t;), k = 1,2,...,m. We use Lagrange’s mean value

theorem again and obtain
u’(tk) — u'(tk —h) = u”(nk)h, 0<h<ty—tg_1, Nk € (tp — h,tg),

we can get u” (ty) exists from Au(t)]i—s, = u” () —u"(t;) = 0, and

W (t) =t —h) _
) = iy, TR = i (60 =)

Let u”(ty) =" (t; ), k =1,2,...,m. Integrating the differential equation (1.1)) we
have

(0 (0) = &, (0) = [ fscu). ' s)ds 0=t <

By " (0) = 0, we have

= 64l / £ (s, u(s), () ds);
that is,

= ou( [ sl 61,
and

() = bg( [ f(s,u(s), w(5))ds).

0
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Since Au''(t)]4=¢, = u"(t]7) —u"(t7) = 0, for t; < t < t3, we obtain

1) = duf / F(s,u(s), o (s))ds).

Similarly, by Au”(t)|i=, = u"(t) —u"(t;) =0, k=1,2,...,m, we can show for
all t € [0,1],

= byl / F(s,u(s), ' (s))ds). (2.4)

For each t € (0, 1), there exist 0 < ¢, < tr+1 < 1, such that t;, < ¢ < tp41, by
integrating both sides of (2.4)), we obtain

u' () — u'(0) z/h(bq/sfrur u'(r))dr)ds,
w) -6 = [ o [ st oyanas

u(ty) — tkl /tklgbq/fru dr)ds,
() — ' (t}) = / X / £, u(r), ' (r))dr)ds.

u'(t) /¢q/fru drds—l—ZIk (tk))-

tp<t

Hence,

‘We have

£ s
ol (€) = o (0) + a / 64l / £ u(r), ' (r)dr)ds + a3 Tu(u(ty)),

tr <&

B’ (n) = Bu’(0) + B 10} flr u( ))dr)ds + 8 I (

f e 3 wtut

It follows that
, ozfo bq fo o' (r))dr)ds —i—ﬁfo bq fo o' (r))dr)ds
u'(0) = p—
L2 Dotp<e L(u(te)) + B4, < Ie(ulty))
l—a-0

from u/(0) = au’(§) + Bu'(n).
Similarly, we get the results as follows with the method above

u(t) = u(0) +u' (0)t + /0 (t = )y /O S Fru(r), ol (r))dr ) ds
+ )t te)Ie(u(te) + > Tn(ulte))

tp<t tp<t
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Note that by the boundary condition u(1) = du(0),

w(0) = cho g fo u'(r))dr)ds +ﬁf0 By fo ,u/(r))dr)ds
(-1 —a-p)
N ady, ce In(utr)) + B2, o Te(ultr))
(60— 1)(1 —a—f)
fo Iy ¢a([fy f(w, u(w), v (w))dw) dr ds
(5 — 1

i 1*tk Ik tk)+Jk(u(tk))].
k:

On the other hand, let u € PC'[0,1](C3[J] be a solution of (2.1)), differentiate
(2.1) when t # ti, we have

— 4, / £ (s, u(s), w/(5))ds);

' )):/0 f(s,u(s),u'(s))ds.

(p(u”(1))" = (£, u(t), u'(¢)).
By , we can easily get
AU () |i=, =0, k=1,2,...,m,
AU (t))i=t, = Ie(u(ty)), k=1,2,...,m
Au(t)|i=t, = Jp(uty)), k=1,2,....m
u’(0) =0, u'(0) = au'(§) + Bu'(n), u(l)=ou(0).

that is,

Differentiating again,

O

Next, we give the Bai-Ge fixed point theorem which is used in the proof of our
main result. Let E be a Banach space, P C E be a cone, 6, ¢ : P — [0,400) be
nonnegative convex functions which satisfy

|lz]] < kmax{0(x),y(x)}, forallx e P, (2.5)
where k is a positive constant.
Q={zeP:0(x) <ryx)<L}#¢, wherer > 0,L > 0. (2.6)

Let » > a > 0,L > 0 be constants, 6, ¢ : P — [0,+00) be two nonnegative
continuous convex functions which satisfy (2.5) and (2.6), and v be a nonnegative
concave function on P. We define convex sets as follows

PO,r;¢, L) ={x € P:0(x) <r,(x) < L},
P(O,r;¢, L) ={z € P:0(x) <r(x) <L},
P07, Liv,a) = {x € P: 0(z) <r¢(z) < L,y(z) > a},
P(0,r31, Liy,a) = {z € P: 0(z) < r,¢(x) < L,y(z) > a}.
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Lemma 2.2 ([2]). Let E be Banach space, P C E be a cone and ro > d > b >
r1 > 0,Le > Ly > 0 be constants. Assume 0,1 : P — [0,+00) are nonnega-
tive continuous convex functions which satisfy and . v s a nonnegative
concave function on P such that for all x in P(0,rq;1, La) satisfies y(z) < 0(x).
T : P(0,7r9;1, Ly) — P(0,79;1, Ly) is a completely continuous operator. Suppose

(C1) {z € P(0,d;, La;v,b) : y(z) > b} # ¢, and y(Tx) > b, for
@ € P(0,d;9, La;v,b);
(C2) O(Tx) <y, Y(Tx) < Ly, for x € P(0,71;%, L1);
(C3) v(Tx) > b, for x € P(0,r9;%, La;y,b) with (Tx) > d.
Then T has at least three fived points x1, w2, x3 in P(0,72;%, Ly). Further,
Ty € ?(Gurl;ww[/l)? Tg € {ﬁ(97r2;w7L2;77b) : ’V(x) > b}a

x3 S F(977’2; 71[}3 LQ)\<F(97T1; w7L1) UF(Q, T2;7/}7 L2;77 b))

3. MAIN RESULTS
Let closed cone P be defined by
P ={uec PC'0,1] : u(t) > 0}.
Define operator T : P — PC'[0,1] by

Tu(t) = u(0) +u'(0)t + / (t — s)¢q /S fru(r), u’(r))dr) ds
+ 37—t I(uti) + > Julu(te)), t € [0,1],

te<t tr<t

which u(0), v/(0) are defined in (2.2)), (2.3).

The nonnegative continuous convex functions 6,1, and nonnegative continuous
concave function 7 are defined by

O(u) = sup u(t), (u)= sup |[W/(t)], ~(u)= min wu(t),
0<t<1 0<t<1 t€[am, b

for all u € P, where a,, = M, b = W’#. Let

4
] = 6—1 _2q+1q(q+1)(5_1)
: ff;n (b — 1) g(r — am)ds (L= tm)?F1 7
LIE = max{h(U)Jz(u), . ,Im(u)}7 = [O,R],
l—a—ﬁ B 1_@_5

f0¢q d8+m(lfoz—ﬁ)+xo¢+yﬂ_1/q+m(1_a_ﬂ)+xa+yﬂa
where x and y satisfy ¢, < § < {tpq1, ty <1 < lyq1.

Theorem 3.1. Suppose there exist constants ro > d > 0b>b>ry >0, Ly > L1 >
0 such that
ry > blé(m+1/q) 7
(-1 -a-p)
and the following conditions hold
(H1) f(t,u,v) < qbp(mm{‘s LMyry, MLy }), (t,u,v) € 0,1] x [0,71] x [~L1, L1];
(H2) ¢,(bl) < f(t,u,v), (t U, V) € |G, bim] X [b,d] X [—La, La];
(H3) f(t,u,v) < dp( S Myrg, MyLa}), (t,u,v) € [0,1) x [0, 2] X [~ Ly, L];

blo(m + 1/q)
Ly > — 22
2 Z 1-0[—5 ’

)
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(H4) tiIi(u) > Ji(u) foru € [0,73], IT < mln{ M17"17M1L1}
I < min{%M17‘27M1L2}-
Ihen boundary-value problem (L.1)) has at least three positive solutions ui,us,us €
P(0,7r9;%), La) which satisfy
sup uy(t) <ry,  sup |uy(t)] < Li;
0<t<1 0<t<1

b< min wus(t) < sup ua(t) <ro, sup |ubh(t)] < Lo;
t€[am,bm] 0<t<1 0<t<1

sup uz(t) <éd, sup |uj(t)| < Lo.
0<t<1 0<t<1

Proof. We need to prove %Mﬂ"l > bl in order to make sure that the theorem

m+1/q
(0-1)(1—a-p)’

§—1 B -1 -a-p5)
TMlTl - 5(1/g+m(l—a—p) —|—za+y,6’)r1
0—1 1—-a-p m+1/q
=5 “Tarm G-D(-a—5
= bl.

makes sense, since we have ro > bld and

blo

Similarly, we have M; Lo > Mira(6— 1) > bld > bl, so there has no contradiction
among conditions. It is easy to see that ( has a solution if and only if

Tu(t) = u(0) + ' (0)t —|—/ (t—2s) (/ flr u( ))dr> ds
+Zmeum+Zhuk,gMu

tp<t <t

has a fixed point.

Next, we will check the conditions (C1), (C2) and (C3) of Lemma 2.2 are satisfied
for the operator T.

Obviously, we can get Tu(t) > 0, (Tu)'(t) > 0, for all t € [0,1] and u € P, that
also means T'u is a monotone increasing function.

Firstly, we have 0(u) < ro, ¥(u) < Lo for allu € P(6,72;1, Ly). By the condition
(H4) t 15 (u) > Jip(u) and I? < min{ﬂerg,Mng}, we get

m

3 (0 - )L ufta) + Ju(u(ta))) < E)g ) < m’ My,

k=1

By condition (H3), f(t,u,v) < ¢,(35: Mi72), we obtain

ou( [ #tutr)ar) < 2 a0

Hence,
a/q+ B/q+ za+yp 1 m
< — — .
U(O)i 5(1—a—ﬂ) M1T2+q5M1T2+ 6M1’I"2
Similarly,
-1
w(0) < G- Dt B+gatyf)),

(1 —a—p)
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Therefore, we can show that

O(Tu) = sup (u(0) + v’ (0)t + /Ot(t - s)qﬁq(/os f(r,u(T),u’(T))dr)ds

0<t<1
+ (= te) Te(u(te)) + Y Jr(u(tr)))
te<t tr<t
ol
(0 —1)(a+ B+ q(za +ypB)) (6 = 1)(1 +mq)
q0(1 —a—p) Mira & q0
~1/g+m(l —a-p)+za+ys
B l—a-p

M1T2

Ml’f'g.

. 1—a—
Since M, = 1/q+m(170¢afﬁﬁ)+wa+yﬁ’ we have 0(Tu) < 7.

Similarly, we have

(Tu) = sup |(Tw)'(t)|

0<t<1
= s u/(0) + | el [ . eans + 3 htuto)

1/¢g+m(l—a—p)+za+ys
l—a—-p

IN

MLy = Ls.

Therefore, T : P(0,7r9;%, Ly) — P(0,72;, L), and it is easy to see that T is a
completely continuous operator.

The proof of the condition (C2) in Lemma [2.2]is similar to the one above.

To check condition (C1) of Lemma we choose ug = d. It is easy to see that
up € P(6,d;v, Ly) and y(u) = d > b, so {x € P(0,d;, La;v,b) : v(z) > b} # ¢.

For u € P(0,d; v, La;v,b), we have b < u(t) < d, [u/(t)] < Lo for all t € [ay,, by].
Since Tu is a monotone increasing function, and (Tw)(t) > 0, t € [0, 1], we have

¥(Tu)= min (u(0) +u'(0)t +/O (t— s)gbq(/os flryu(r),u'(r))dr)ds

tE[am bm ]
+ 3 [ — ) I (ulte) + ) Ji(u(ty))
= Tu(am).

By (H2) and u(0),%'(0) defined before, we have

¢p(bl) < f(t,u,v), (tvuav) € [amabm] X [b, d] X [*LQ,L2]a
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Tu(am) = u(0) + u'(0)an, +/0 $) g / f(ryu(r),u'(r))dr)ds
+ Z m — i) Ik (u Z Ji(u
r/ / b, / F(w, ulw), o (w))dw) dr ds

1
> 51 ds/ q( ¢p(bl)dw)

m

bl
=57 / ds d)q(r — ap)dr

o bm(b —1)pq(r — ap)dr =b
=1, " e mem e
Thus v(Tw) > b and the condition (C1) of Lemma [2.2] also holds.

Finally to prove (C3) of Lemma we check y(Tu) > b to be satisfied for
all u € P(0,r9;9, La;7,b) with 6(Tu) > d. Since T is a nonnegative monotone
increasing function, we can get

O0(Tu) = sup Tu(t) = Tu(l),
0<t<1

Y(Tu) = min Tu(t) = Tulay),
te[anubm,]
d
Tu(am) > Tu(0) = gTu( ) > 52 > b;
that is, y(T'w) > b.
We have checked Lemma 2.2 to make sure all the conditions are satisfied with
the work we have done in the section above. Then T has at least three fixed points

uy, g, uz in P(0, 1931, L). Further,
uy € P(ev'rl”/}aLl)a Uz € {P(Gﬂ"z;%Lz;% b) : ’Y(I) > b}v
uz € P(0, 72,9, La)\{P(0,71;¢, L1) UP(0,72;¢, La; v, b)}.

Therefore ([1.1)) has at least three positive solutions w1, ug, us. From the boundary
conditions we have us(1) = Jus(0) and ug is a monotone increasing function, so we
have

. 1 1
b>y(us) = ., oin, uz(t) = uz(am) > uz(0) = 5U3(1) = 59@3),

s0 O(u3) < b, that means supg<,<q u3(t) < dd, and uy, ug, uz satisfy

sup ui(t) <ry, sup |[uj(t)] < Ly;
0<t<1

0<t<1
b< min wus(t) < sup ug(t) <re, sup |us(t)| < Lo;
t€[am ,bm] 0<t<1 0<t<1
sup uz(t) <déd, sup |uj(t)] < Lo.
0<t<1 0<t<1
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