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MULTIPLICITY OF POSITIVE SOLUTIONS FOR FOUR-POINT
BOUNDARY VALUE PROBLEMS OF IMPULSIVE

DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

LI SHEN, XIPING LIU, ZHENHUA LU

Abstract. Using a fixed-point theorem in cones, we obtain sufficient condi-

tions for the multiplicity of positive solutions for four-point boundary value
problems of third-order impulsive differential equations with p-Laplacian.

1. Introduction

Recently, there has been much attention focused on the theory of impulsive
differential equation as it is widely used in various areas such as mechanics, elec-
tromagnetism, chemistry. A lot of theories have been established to solve these
problems, see [9], [3] and the references therein. Guo [4] obtained the existence of
solutions, via cone theory, for second-order impulsive differential equation

x′′ = f(t, x, Tx), t ≥ 0, t 6= tk k = 1, 2, 3, . . . ,

∆x|t=tk
= Ik(x(tk)), k = 1, 2, 3, . . . ,

∆x′|t=tk
= Ik(x(tk)), k = 1, 2, 3, . . . ,

x(0) = x0, x′(0) = x∗0.

In [1], using Leggett-Williams fixed point theorem, authors studied the multi-
plicity result for second order impulsive differential equations

y′′ + φ(t)f(y(t)) = 0, t ∈ (0, 1) \ {t1, t2, . . . , tm},
∆y(tk) = Ik(y(t−k )), k = 1, 2, 3, . . . ,m,

∆y′(tk) = Jk(y(t−k )), k = 1, 2, 3, . . . ,m,

y(0) = y(1) = 0.

Kaufmann [8] studied a second-order nonlinear differential equation on an un-
bounded domain with solutions subject to impulsive conditions and the Sturm-
Liouville type boundary conditions. In [5]-[7], the authors studied positive solutions
of multiple points boundary value problems for second order impulsive differential
equations.
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All the works above concern boundary value problems with second-order impul-
sive equations, and there are just a few works that consider multiplicity of positive
solutions for third-order impulsive equations with p-Laplacian.

Motivated by all the works above, we concentrate on getting multiple positive so-
lutions for four-point boundary value problems of third-order impulsive differential
equations with p-Laplacian

(φp(u′′(t)))′ = f(t, u(t), u′(t)), t ∈ (0, 1)\{t1, t2, . . . , tm},
∆u′′(t)|t=tk

= 0, k = 1, 2, . . . ,m,

∆u′(t)|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,m,

∆u(t)|t=tk
= Jk(u(tk)), k = 1, 2, . . . ,m,

u′′(0) = 0, u′(0) = αu′(ξ) + βu′(η), u(1) = δu(0),

(1.1)

where φp is p-Laplacian operator

φp(s) = |s|p−2s, p > 1, (φp)−1 = φq,
1
p

+
1
q

= 1,

tk, k = 0, 1, 2, . . . ,m,m+ 1, are constants which satisfy

0 = t0 < t1 < t2 < · · · < tk < · · · < tm < tm+1 = 1,

∆u|t=tk
= u(t+k ) − u(t−k ), in which u(t+k ) (u(t−k ) respectively) denote the right

limit (left limit respectively) of u(t) at t = tk, and α, β > 0, α + β < 1; 0 < ξ,
η < 1; ξ, η 6= tk (k = 1, 2, . . . ,m); δ > 1; f ∈ C([0, 1] × [0,+∞) × R, [0,+∞)),
Ik, Jk ∈ C([0,+∞), [0,+∞)).

2. Preliminaries

Let J = [0, 1]\{t1, t2, . . . , tm}, PC[0, 1] = {u : [0, 1] → R, u is continuous at
t 6= tk, u(t+k ), u(t−k ) exist, and u(t−k ) = u(tk), k = 1, 2, . . . ,m}, PC1[0, 1] = {u ∈
PC[0, 1] | u′ is continuous at t 6= tk, u′(t+k ), u′(t−k ) exist, k = 1, 2, . . . ,m}, with the
norm

‖u‖PC = sup
t∈J

|u(t)|, ‖u‖PC1 =max
t∈J

{‖u‖PC , ‖u′‖PC}.

Obviously PC[0, 1] and PC1[0, 1] are Banach spaces.

Lemma 2.1. u ∈ PC1[0, 1]
⋂
C3[J ] is a solution of (1.1) if and only if

u(t) = u(0) + u′(0)t+
∫ t

0

(t− s)φq

( ∫ s

0

f(r, u(r), u′(r))dr
)
ds

+
∑
tk<t

(t− tk)Ik(u(tk)) +
∑
tk<t

Jk(u(tk)),
(2.1)
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where

u(0) =
α

∫ ξ

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds+ β

∫ η

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds

(δ − 1)(1− α− β)

+
α

∑
tk<ξ Ik(u(tk)) + β

∑
tk<η Ik(u(tk))

(δ − 1)(1− α− β)

+

∫ 1

0

∫ s

0
φq(

∫ r

0
f(w, u(w), u′(w))dw) dr ds

δ − 1

+
1

δ − 1

m∑
k=1

(
(1− tk)Ik(u(tk) + Jk(u(tk))

)
,

(2.2)

u′(0) =
α

∫ ξ

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds+ β

∫ η

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds

1− α− β

+
α

∑
tk<ξ Ik(u(tk)) + β

∑
tk<η Ik(u(tk))

1− α− β
.

(2.3)

Proof. Suppose u ∈ PC1[0, 1]
⋂
C3[J ] is a solution of (1.1), for all k = 1, 2, . . . ,m,

from Lagrange’s mean value theorem we have

u(tk)− u(tk − h) = u′(ξk)h, 0 < h < tk − tk−1, ξk ∈ (tk − h, tk),

because u′(t−k ) exists, we get

u′−(tk) = lim
h→0+

u(tk)− u(tk − h)
h

= lim
ξk→t−k

u′(ξk) = u′(t−k ).

Let u′(tk) = u′−(tk) = u′(t−k ), k = 1, 2, . . . ,m. We use Lagrange’s mean value
theorem again and obtain

u′(tk)− u′(tk − h) = u′′(ηk)h, 0 < h < tk − tk−1, ηk ∈ (tk − h, tk),

we can get u′′−(tk) exists from ∆u′′(t)|t=tk
= u′′(t+k )− u′′(t−k ) = 0, and

u′′−(tk) = lim
h→0+

u′(tk)− u′(tk − h)
h

= lim
ξk→t−k

u′′(ξk) = u′′(t−k ).

Let u′′(tk) = u′′(t−k ), k = 1, 2, . . . ,m. Integrating the differential equation (1.1) we
have

φp(u′′(t))− φp(u′′(0)) =
∫ t

0

f(s, u(s), u′(s))ds, 0 ≤ t ≤ t1.

By u′′(0) = 0, we have

u′′(t) = φq(
∫ t

0

f(s, u(s), u′(s))ds);

that is,

u′′(t) = φq(
∫ t

0

f(s, u(s), u′(s))ds),

and

u′′(t1) = φq(
∫ t1

0

f(s, u(s), u′(s))ds).
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Since ∆u′′(t)|t=t1 = u′′(t+1 )− u′′(t−1 ) = 0, for t1 < t ≤ t2, we obtain

u′′(t) = φq(
∫ t

0

f(s, u(s), u′(s))ds).

Similarly, by ∆u′′(t)|t=tk
= u′′(t+k )− u′′(t−k ) = 0, k = 1, 2, . . . ,m, we can show for

all t ∈ [0, 1],

u′′(t) = φq(
∫ t

0

f(s, u(s), u′(s))ds). (2.4)

For each t ∈ (0, 1), there exist 0 ≤ tk < tk+1 ≤ 1, such that tk < t ≤ tk+1, by
integrating both sides of (2.4), we obtain

u′(t−1 )− u′(0) =
∫ t1

0

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds,

u′(t−2 )− u′(t+1 ) =
∫ t2

t1

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds,

. . .

u′(t−k )− u′(t+k−1) =
∫ tk

tk−1

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds,

u′(t)− u′(t+k ) =
∫ t

tk

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds.

Hence,

u′(t) = u′(0) +
∫ t

0

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds+
∑
tk<t

Ik(u(tk)).

We have

αu′(ξ) = αu′(0) + α

∫ ξ

0

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds+ α
∑
tk<ξ

Ik(u(tk)),

βu′(η) = βu′(0) + β

∫ η

0

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds+ β
∑
tk<η

Ik(u(tk)).

It follows that

u′(0) =
α

∫ ξ

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds+ β

∫ η

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds

1− α− β

+
α

∑
tk<ξ Ik(u(tk)) + β

∑
tk<η Ik(u(tk))

1− α− β

from u′(0) = αu′(ξ) + βu′(η).
Similarly, we get the results as follows with the method above

u(t) = u(0) + u′(0)t+
∫ t

0

(t− s)φq

( ∫ s

0

f(r, u(r), u′(r))dr
)
ds

+
∑
tk<t

(t− tk)Ik(u(tk)) +
∑
tk<t

Jk(u(tk)).
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Note that by the boundary condition u(1) = δu(0),

u(0) =
α

∫ ξ

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds+ β

∫ η

0
φq(

∫ s

0
f(r, u(r), u′(r))dr)ds

(δ − 1)(1− α− β)

+
α

∑
tk<ξ Ik(u(tk)) + β

∑
tk<η Ik(u(tk))

(δ − 1)(1− α− β)

+

∫ 1

0

∫ s

0
φq(

∫ r

0
f(w, u(w), u′(w))dw) dr ds

δ − 1

+
1

δ − 1

m∑
k=1

[(1− tk)Ik(u(tk) + Jk(u(tk))].

On the other hand, let u ∈ PC1[0, 1]
⋂
C3[J ] be a solution of (2.1), differentiate

(2.1) when t 6= tk, we have

u′′(t) = φq(
∫ t

0

f(s, u(s), u′(s))ds);

that is,

φp(u′′(t)) =
∫ t

0

f(s, u(s), u′(s))ds .

Differentiating again,
(φp(u′′(t)))′ = f(t, u(t), u′(t)).

By (2.1), we can easily get

∆u′′(t)|t=tk
= 0, k = 1, 2, . . . ,m,

∆u′(t)|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,m,

∆u(t)|t=tk
= Jk(u(tk)), k = 1, 2, . . . ,m,

u′′(0) = 0, u′(0) = αu′(ξ) + βu′(η), u(1) = δu(0).

�

Next, we give the Bai-Ge fixed point theorem which is used in the proof of our
main result. Let E be a Banach space, P ⊂ E be a cone, θ, ψ : P → [0,+∞) be
nonnegative convex functions which satisfy

‖x‖ ≤ kmax{θ(x), ψ(x)}, for all x ∈ P, (2.5)

where k is a positive constant.

Ω = {x ∈ P : θ(x) < r, ψ(x) < L} 6= φ, where r > 0, L > 0. (2.6)

Let r > a > 0, L > 0 be constants, θ, ψ : P → [0,+∞) be two nonnegative
continuous convex functions which satisfy (2.5) and (2.6), and γ be a nonnegative
concave function on P . We define convex sets as follows

P (θ, r;ψ,L) = {x ∈ P : θ(x) < r, ψ(x) < L},
P (θ, r;ψ,L) = {x ∈ P : θ(x) ≤ r, ψ(x) ≤ L},

P (θ, r;ψ,L; γ, a) = {x ∈ P : θ(x) < r, ψ(x) < L, γ(x) > a},
P (θ, r;ψ,L; γ, a) = {x ∈ P : θ(x) ≤ r, ψ(x) ≤ L, γ(x) ≥ a}.
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Lemma 2.2 ([2]). Let E be Banach space, P ⊂ E be a cone and r2 ≥ d > b >
r1 > 0, L2 ≥ L1 > 0 be constants. Assume θ, ψ : P → [0,+∞) are nonnega-
tive continuous convex functions which satisfy (2.5) and (2.6). γ is a nonnegative
concave function on P such that for all x in P (θ, r2;ψ,L2) satisfies γ(x) ≤ θ(x).
T : P (θ, r2;ψ,L2) → P (θ, r2;ψ,L2) is a completely continuous operator. Suppose

(C1) {x ∈ P (θ, d;ψ,L2; γ, b) : γ(x) > b} 6= φ, and γ(Tx) > b, for
x ∈ P (θ, d;ψ,L2; γ, b);

(C2) θ(Tx) < r1, ψ(Tx) < L1, for x ∈ P (θ, r1;ψ,L1);
(C3) γ(Tx) > b, for x ∈ P (θ, r2;ψ,L2; γ, b) with θ(Tx) > d.

Then T has at least three fixed points x1, x2, x3 in P (θ, r2;ψ,L2). Further,

x1 ∈ P (θ, r1;ψ,L1), x2 ∈ {P (θ, r2;ψ,L2; γ, b) : γ(x) > b},
x3 ∈ P (θ, r2;ψ,L2)\

(
P (θ, r1;ψ,L1) ∪ P (θ, r2;ψ,L2; γ, b)

)
.

3. Main results

Let closed cone P be defined by

P = {u ∈ PC1[0, 1] : u(t) ≥ 0}.

Define operator T : P → PC1[0, 1] by

Tu(t) = u(0) + u′(0)t+
∫ t

0

(t− s)φq

( ∫ s

0

f(r, u(r), u′(r))dr
)
ds

+
∑
tk<t

(t− tk)Ik(u(tk)) +
∑
tk<t

Jk(u(tk)), t ∈ [0, 1],

which u(0), u′(0) are defined in (2.2), (2.3).
The nonnegative continuous convex functions θ, ψ, and nonnegative continuous

concave function γ are defined by

θ(u) = sup
0≤t≤1

u(t), ψ(u) = sup
0≤t≤1

|u′(t)|, γ(u) = min
t∈[am,bm]

u(t),

for all u ∈ P , where am = 3tm+tm+1
4 , bm = tm+3tm+1

4 . Let

l =
δ − 1∫ bm

am
(bm − r)φq(r − am)ds

=
2q+1q(q + 1)(δ − 1)

(1− tm)q+1
,

IR
u = max{I1(u), I2(u), . . . , Im(u)}, u ∈ [0, R],

M1 =
1− α− β∫ 1

0
φq(s)ds+m(1− α− β) + xα+ yβ

=
1− α− β

1/q +m(1− α− β) + xα+ yβ
,

where x and y satisfy tx < ξ < tx+1, ty < η < ty+1.

Theorem 3.1. Suppose there exist constants r2 ≥ d ≥ δb > b > r1 > 0, L2 ≥ L1 >
0 such that

r2 ≥
blδ(m+ 1/q)

(δ − 1)(1− α− β)
, L2 ≥

blδ(m+ 1/q)
1− α− β

,

and the following conditions hold
(H1) f(t, u, v) < φp(min{ δ−1

δ M1r1,M1L1}), (t, u, v) ∈ [0, 1]× [0, r1]× [−L1, L1];
(H2) φp(bl) < f(t, u, v), (t, u, v) ∈ [am, bm]× [b, d]× [−L2, L2];
(H3) f(t, u, v) < φp(min{ δ−1

δ M1r2,M1L2}), (t, u, v) ∈ [0, 1)× [0, r2]× [−L2, L2];
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(H4) tkIk(u) > Jk(u) for u ∈ [0, r2], Ir1
u < min{ δ−1

δ M1r1,M1L1},
Ir2
u < min{ δ−1

δ M1r2,M1L2}.
Then boundary-value problem (1.1) has at least three positive solutions u1, u2, u3 ∈
P (θ, r2;ψ,L2) which satisfy

sup
0≤t≤1

u1(t) ≤ r1, sup
0≤t≤1

|u′1(t)| ≤ L1;

b < min
t∈[am,bm]

u2(t) ≤ sup
0≤t≤1

u2(t) ≤ r2, sup
0≤t≤1

|u′2(t)| ≤ L2;

sup
0≤t≤1

u3(t) ≤ δd, sup
0≤t≤1

|u′3(t)| ≤ L2.

Proof. We need to prove δ−1
δ M1r1 ≥ bl in order to make sure that the theorem

makes sense, since we have r2 ≥ blδ m+1/q
(δ−1)(1−α−β) , and

δ − 1
δ

M1r1 =
(δ − 1)(1− α− β)

δ(1/q +m(1− α− β) + xα+ yβ)
r1

≥ δ − 1
δ

× 1− α− β

1/q +m
× m+ 1/q

(δ − 1)(1− α− β)
blδ

= bl.

Similarly, we have M1L2 ≥M1r2(δ−1) ≥ blδ > bl, so there has no contradiction
among conditions. It is easy to see that (1.1) has a solution if and only if

Tu(t) = u(0) + u′(0)t+
∫ t

0

(t− s)φq

(∫ s

0

f(r, u(r), u′(r))dr
)
ds

+
∑
tk<t

(t− tk)Ik(u(tk)) +
∑
tk<t

Jk(u(tk)), t ∈ [0, 1]

has a fixed point.
Next, we will check the conditions (C1), (C2) and (C3) of Lemma 2.2 are satisfied

for the operator T .
Obviously, we can get Tu(t) ≥ 0, (Tu)′(t) ≥ 0, for all t ∈ [0, 1] and u ∈ P , that

also means Tu is a monotone increasing function.
Firstly, we have θ(u) ≤ r2, ψ(u) ≤ L2 for all u ∈ P (θ, r2;ψ,L2). By the condition

(H4) tkIk(u) > Jk(u) and Ir2
u < min{ δ−1

δ M1r2,M1L2}, we get
m∑

k=1

(
(1− tk)Ik(u(tk)) + Jk(u(tk))

)
≤

m∑
k=1

Ik(u(tk)) ≤ m
δ − 1
δ

M1r2.

By condition (H3), f(t, u, v) < φp( δ−1
δ M1r2), we obtain

φq

( ∫ s

0

f(t, u(r), u′(r))dr
)
≤ δ − 1

δ
M1r2φq(s).

Hence,

u(0) ≤ α/q + β/q + xα+ yβ

δ(1− α− β)
M1r2 +

1
qδ
M1r2 +

m

δ
M1r2.

Similarly,

u′(0) ≤ (δ − 1)(α+ β + q(xα+ yβ))
qδ(1− α− β)

M1r2.
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Therefore, we can show that

θ(Tu) = sup
0≤t≤1

(u(0) + u′(0)t+
∫ t

0

(t− s)φq

( ∫ s

0

f(r, u(r), u′(r))dr
)
ds

+
∑
tk<t

(t− tk)Ik(u(tk)) +
∑
tk<t

Jk(u(tk)))

≤ α/q + β/q + xα+ yβ

δ(1− α− β)
M1r2 +

1
qδ
M1r2 +

m

δ
M1r2

+
(δ − 1)(α+ β + q(xα+ yβ))

qδ(1− α− β)
M1r2 +

(δ − 1)(1 +mq)
qδ

M1r2

=
1/q +m(1− α− β) + xα+ yβ

1− α− β
M1r2.

Since M1 = 1−α−β
1/q+m(1−α−β)+xα+yβ , we have θ(Tu) ≤ r2.

Similarly, we have

ψ(Tu) = sup
0≤t≤1

|(Tu)′(t)|

= sup
0≤t≤1

|u′(0) +
∫ t

0

φq(
∫ s

0

f(r, u(r), u′(r))dr)ds+
∑
tk<t

Ik(u(tk))|

≤ 1/q +m(1− α− β) + xα+ yβ

1− α− β
M1L2 = L2.

Therefore, T : P (θ, r2;ψ,L2) → P (θ, r2;ψ,L2), and it is easy to see that T is a
completely continuous operator.

The proof of the condition (C2) in Lemma 2.2 is similar to the one above.
To check condition (C1) of Lemma 2.2, we choose u0 = d. It is easy to see that

u0 ∈ P (θ, d;ψ,L2) and γ(u) = d > b, so {x ∈ P (θ, d;ψ,L2; γ, b) : γ(x) > b} 6= φ.
For u ∈ P (θ, d;ψ,L2; γ, b), we have b ≤ u(t) ≤ d, |u′(t)| ≤ L2 for all t ∈ [am, bm].

Since Tu is a monotone increasing function, and (Tu)(t) ≥ 0, t ∈ [0, 1], we have

γ(Tu) = min
t∈[am,bm]

(
u(0) + u′(0)t+

∫ t

0

(t− s)φq(
∫ s

0

f(r, u(r), u′(r))dr)ds

+
∑
tk<t

[(t− tk)Ik(u(tk) +
∑
tk<t

Jk(u(tk))
)

= Tu(am).

By (H2) and u(0), u′(0) defined before, we have

φp(bl) < f(t, u, v), (t, u, v) ∈ [am, bm]× [b, d]× [−L2, L2],
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Tu(am) = u(0) + u′(0)am +
∫ am

0

(am − s)φq(
∫ s

0

f(r, u(r), u′(r))dr)ds

+
∑

tk<am

(am − tk)Ik(u(tk)) +
∑

tk<am

Jk(u(tk))

≥ u(0)

≥ 1
δ − 1

∫ 1

0

∫ s

0

φq(
∫ r

0

f(w, u(w), u′(w))dw) dr ds

>
1

δ − 1

∫ bm

am

ds

∫ s

am

φq(
∫ r

am

φp(bl)dw)dr

=
bl

δ − 1

∫ bm

am

ds

∫ s

am

φq(r − am)dr

=
bl

δ − 1

∫ bm

am

(bm − r)φq(r − am)dr = b.

Thus γ(Tu) > b and the condition (C1) of Lemma 2.2 also holds.
Finally to prove (C3) of Lemma 2.2, we check γ(Tu) > b to be satisfied for

all u ∈ P (θ, r2;ψ,L2; γ, b) with θ(Tu) > d. Since Tu is a nonnegative monotone
increasing function, we can get

θ(Tu) = sup
0≤t≤1

Tu(t) = Tu(1),

γ(Tu) = min
t∈[am,bm]

Tu(t) = Tu(am),

Tu(am) ≥ Tu(0) =
1
δ
Tu(1) >

d

δ
≥ b;

that is, γ(Tu) > b.
We have checked Lemma 2.2 to make sure all the conditions are satisfied with

the work we have done in the section above. Then T has at least three fixed points
u1, u2, u3 in P (θ, r2;ψ,L2). Further,

u1 ∈ P (θ, r1;ψ,L1), u2 ∈ {P (θ, r2;ψ,L2; γ, b) : γ(x) > b},
u3 ∈ P (θ, r2;ψ,L2)\{P (θ, r1;ψ,L1) ∪ P (θ, r2;ψ,L2; γ, b)}.

Therefore (1.1) has at least three positive solutions u1, u2, u3. From the boundary
conditions we have u3(1) = δu3(0) and u3 is a monotone increasing function, so we
have

b > γ(u3) = min
am≤t≤bm

u3(t) = u3(am) ≥ u3(0) =
1
δ
u3(1) =

1
δ
θ(u3),

so θ(u3) ≤ δb, that means sup0≤t≤1 u3(t) ≤ δd, and u1, u2, u3 satisfy

sup
0≤t≤1

u1(t) ≤ r1, sup
0≤t≤1

|u′1(t)| ≤ L1;

b < min
t∈[am,bm]

u2(t) ≤ sup
0≤t≤1

u2(t) ≤ r2, sup
0≤t≤1

|u′2(t)| ≤ L2;

sup
0≤t≤1

u3(t) ≤ δd, sup
0≤t≤1

|u′3(t)| ≤ L2.

�
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