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REMARKS ON AN EIGENVALUE PROBLEM ASSOCIATED
WITH THE p-LAPLACE OPERATOR
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Dedicated to Professor Gheorghe Moroşanu on his 60-th birthday

Abstract. In this article we study eigenvalue problems involving p-Laplace

operator and having a continuous family of eigenvalues and at least one isolated

eigenvalue.

1. Introduction and statement of main results

Eigenvalue problems have been studied in various settings lately. The leading
example of linear eigenvalue problem is to find all non-trivial solutions of the equa-
tion ∆u + λu = 0 with boundary values zero in a given bounded domain in RN .
This is called a Dirichlet boundary-value problem.

In this article we study the eigenvalue problem

−∆pu = λf(x, u), in Ω
u = 0, on ∂Ω ,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, f : Ω × R → R is
a given function and λ is a real number. The operator ∆pu := div(|∇u|p−2∇u)
is called p-harmonic, and appears in many contexts in physics reaction-diffusion
problems, non-linear elasticity, etc. The p-harmonic operator is defined as

∆pu := div(|∇u|p−2∇u) = |∇u|p−4
(
|∇u|p−2∆u + (p− 2)

∑ ∂u

∂xi

∂u

∂xi

∂2u

∂xi∂xj

)
,

where 1 < p < N .

Definition 1.1. We say that u ∈ W 1,p
0 (Ω) \ {0} is an eigenfunction of (1.1), if∫

Ω

|∇u|p−2∇u∇v dx = λ

∫
Ω

f(x, u)v dx,

for all v ∈ W p
1 (Ω). The corresponding real number λ is called the eigenvalue of

(1.1).
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The Sobolev space W 1,p
0 (Ω) is the completion of C∞

0 (Ω) with respect to the norm

‖ϕ‖ =
( ∫

Ω

(|ϕ|p + |div ϕ|p)dx
)1/p

.

As usual, the space C∞
0 (Ω) is the class of smooth functions with compact sup-

port in Ω. By standard elliptic regularity theory an eigenfunction is continuous.
The smallest eigenvalue of (1.1) can be characterized by the minimum of Rayleigh
quotient,

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|pdx∫
Ω

updx
.

The study of eigenvalues involving Laplace and p-Laplace operators starts with
the following basic problem, which represents a particular case of (1.1),

−∆u = λu, in Ω
u = 0, on ∂Ω .

(1.2)

As mentioned in [15] problem (1.2) goes back to the Riesz-Fredholm theory for
compact operators on Hilbert spaces, where it is proved that it has an unbounded
sequence of eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λn . . . . Also, in [15] other eigenvalue
problems are mentioned; for example we have problems involving p(x)-Laplace
operator in the case when f(x, u) = |u|p(x)−2u where we obtain the nonlinear model
equation

−∆p(x)u = λ|u|p(x)−2u, in Ω
u = 0, on ∂Ω ,

(1.3)

where p(·) : Ω → (1, 2∗) is a given continuous function and 2∗ denotes the critical
Sobolev exponent,

2∗ =

{
2N

N−2 if N ≥ 3
+∞ if N ∈ {1, 2}.

By specific methods of nonlinear analysis (Ekeland variational principle, mountain
pass theorem, etc) many properties are established about problem (1.3). For further
discussions of this problem as well as generalizations and extensions we refer to
[5, 14, 15]. In the particular case, when f(x, u) = |u|p−2u we obtain the eigenvalue
problem

−∆pu = λ|u|p−2u, in Ω
u = 0, on ∂Ω ,

(1.4)

which was introduced by Lieb [11] in 1983 and then studied by Lindqvist in [12], [9]
and a modified eigenvalue problem (1.4) involving the weight function V (·) which
changes sign and has nontrivial positive part by Cuesta in [3]. Inspired by the work
of Mihăilescu and Rădulescu from [15], we study (1.1) in the case when

f(x, t) =

{
h(x, t) if t ≥ 0
t if t < 0,

(1.5)

where h : Ω × [0,∞) → R is a Carathéodory function satisfying the following
properties

(P1) there exists a positive constant k ∈ (0, 1) such that |h(x, t)| ≤ k · tp−1, for
all t ≥ 0 and a.e. x ∈ Ω;

(P2) there exists t0 > 0 such that H(x, t0) =
∫ t0
0

h(x, s)ds > 0 for a.e. x ∈ Ω;
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(P3) limt→∞
h(x,t)
tp−1 = 0, uniformly in x.

These assumptions are related to those used by Diaz and Saa [4], to deduce an
existence and uniqueness result for a quasilinear problem with Dirichlet boundary
condition (see Brezis and Oswald [2] for the semilinear case).

Examples of functions satisfying properties (P1), (P2) and (P3) are mentioned
in [15]. Regarding (1.1), we also point out the recent work of Pucci and Rădulescu
[17] in which they study the problem for polyharmonic operator provided that f
satisfies the same conditions as those in [15].

The main result of this article establishes a property of the (1.1) provided that
f is defined as above and satisfies (P1), (P2) and (P3). It and shows that (1.1)
has both isolated eigenvalues and a continuous spectrum in a neighborhood of the
origin.

Theorem 1.2. Assume that f is defined by the relation (1.5) and satisfies prop-
erties (P1), (P2), (P3). Then the eigenvalue λ1 defined by the Rayleigh quotient
is isolated, and the corresponding set of eigenvectors form a cone. Moreover, there
is no eigenvalue λ ∈ (0, λ1), but there exists µ1 > λ1 such that any λ > µ1 is an
eigenvalue of (1.1).

2. Proof of the main result

We shall use the method of Stamppachia and for any u ∈ W 1,p
0 (Ω) we denote

u± = max{±u(x), 0}, for all x ∈ Ω. Then u+, u− ∈ W 1,p
0 (Ω) and

∇u+ =

{
0, if u ≤ 0
∇u, if u > 0 ,

∇u− =

{
0, if u ≥ 0
∇u, if u < 0 ,

It follows that, with f given by (1.5), (1.1) becomes
−∆pu = λ[h(x, u+)− u−], in Ω

u = 0, on ∂Ω ,
(2.1)

and λ > 0 is an eigenvalue of (2.1) if there exists u ∈ W 1,p
0 (Ω) \ {0} such that∫

Ω

|∇u+|p−2∇u+∇v dx−
∫

Ω

|∇u−|p−2∇u−∇v dx− λ

∫
Ω

[h(x, u+)− u−]v dx = 0 ,

(2.2)
for all v ∈ W 1,p

0 (Ω).
To prove the main result, Theorem 1.2, we shall begin with the following lem-

mata.

Lemma 2.1. There are no eigenvalues of (2.1) in the interval (0, λ1).

Proof. Assume that λ > 0 is an eigenvalue of (2.1) and u is its corresponding
eigenfunction. We put v = u+ and v = u− in (2.2) and we infer that∫

Ω

|∇u+|p dx = λ

∫
Ω

h(x, u+)u+dx (2.3)

and ∫
Ω

|∇u−|pdx = λ

∫
Ω

up
−dx. (2.4)

By property (P1) and relations (2.3) and (2.4), we obtain

λ1

∫
Ω

up
+dx ≤

∫
Ω

|∇u+|pdx = λ

∫
Ω

h(x, u+)u+dx ≤ λ

∫
Ω

up
+dx
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and

λ1

∫
Ω

up
−dx ≤

∫
Ω

|∇u−|pdx = λ

∫
Ω

up
−dx.

If λ is an eigenvalue of problem (2.1), then the corresponding eigenvector u is not
null and thus, at least one of the eigenfunctions u+ and u− is not the zero function.
This means that λ is an eigenvalue of (2.1), and by the definition of the Rayleigh
quotient, λ ≥ λ1. �

Lemma 2.2. λ1 is an eigenvalue of (2.1), and is isolated. Moreover, the set of
eigenvectors corresponding to λ1 form a cone.

Proof. Indeed, as we already pointed out, λ1 is the smallest eigenvalue of (1.2),
it is simple, that is, all the associated eigenfunctions are merely multiples of each
other (see, e.g., Gilbarg and Trudinger [8]) and the corresponding eigenfunctions of
λ1 never change signs in Ω. In other words, there exists e1 ∈ W 1,p

0 (Ω) \ {0}, with
e1(x) < 0 for any x ∈ Ω such that∫

Ω

|∇e1|p−2∇e1∇v dx− λ1

∫
Ω

e1v dx = 0 ,

for any v ∈ W 1,p
0 (Ω). Thus, we have (e1)+ = 0 and (e1) = −e1 and we deduce that

relation (2.2) holds with u = e1 ∈ W 1,p
0 (Ω) \ {0} and λ = λ1. In other words, λ1 is

an eigenvalue of (1.1) and the set of its corresponding eigenvectors lies in a cone of
W 1,p

0 (Ω). Now, we prove that λ1 isolated in the set of eigenvalues of problem (2.1).
Indeed, by the Lemma 2.1 we have that there does not exist an eigenvalue of (2.1)
in the interval (0, λ1). On the other hand it is clear that if λ is also an eigenvalue
of (2.1) for which u+ is not identically zero, then we have

λ1

∫
Ω

up
+ dx ≤

∫
Ω

|∇u+|p dx = λ

∫
Ω

h(x, u+)u+ dx ≤ λk

∫
Ω

up
+ dx ,

and thus since k ∈ (0, 1) we have λ ≥ λ1
k > λ1. This means that for any eigenvalue

λ ∈ (0, λ1/k) of (2.1) we must have u+ = 0. It follows that λ is an eigenvalue of
(1.2) with the corresponding eigenfunction negative in Ω. As it has been already
noticed, the set of eigenvalues of (1.2) is discrete and λ1 < λ2. Now, let us consider
ε = min{λ1/k, λ2} and we have that ε > λ1 and any λ ∈ (λ1, ε) cannot be an
eigenvalue of (1.2) and (2.1) and thus λ1 is isolated in the set of eigenvalues of
(2.1). �

Next, we show that there exists µ1 > 0 such that any λ ∈ (µ1,∞) is an eigenvalue
of (2.1). With that end in view, we consider the eigenvalue problem

−∆pu = λh(x, u+), in Ω
u = 0, on ∂Ω ,

(2.5)

We say that λ is an eigenvalue of (2.5) if there exists u ∈ W 1,p
0 (Ω) \ {0} such that∫

Ω

|∇u|p−2∇u∇v dx− λ

∫
Ω

h(x, u+)v dx = 0 ,

for any v ∈ W 1,p
0 (Ω).

We notice that if λ is an eigenvalue for (2.5) with the corresponding eigenfunction
u, then taking v = u− in the above relation we deduce that u− = 0, and thus, we find
u ≥ 0. In other words, the eigenvalues of (2.5) possesses nonnegative corresponding



EJDE-2010/49 AN EIGENVALUE PROBLEM 5

eigenfunctions. Moreover, the above discussion show that an eigenvalue of (2.5) is
an eigenvalue of (2.1).

Now, for each λ > 0 we define the energy functional associated to (2.5) by
Iλ : W 1,p

0 (Ω) → R,

Iλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

∫
Ω

H(x, u+) dx ,

where H(x, t) =
∫ t

0
h(x, s) ds. Standard arguments show that Iλ ∈ C1(W 1,p

0 (Ω), R)
with the derivative given by

〈I ′λ(u), v〉 =
∫

Ω

|∇u|p−2∇u∇v dx− λ

∫
Ω

h(x, u+)v dx ,

for any u, v ∈ W 1,p
0 (Ω). Thus, λ > 0 is an eigenvalue of (2.5) if and only if there

exists a critical nontrivial point of functional Iλ.

Lemma 2.3. The functional Iλ defined as above is bounded from below and co-
ercive. Moreover, there exists λ? > 0 such that assuming that λ ≥ λ? we have
infW 1,p

0 (Ω) Iλ < 0.

Proof. By (P3) we deduce that

lim
t→∞

H(x, t)
tp

= 0, uniformly in Ω .

Then for a given λ > 0 and λ1 defined as the Rayleigh quotient, there exists a
positive constant Cλ > 0 such that

λH(x, t) ≤ λ1

2p
tp + Cλ, ∀ t ≥ 0, a.e. x ∈ Ω .

Thus, for any u ∈ W 1,p
0 (Ω),

Iλ(u) ≥ 1
p

∫
Ω

|∇u|p dx− λ1

2p

∫
Ω

up dx− Cλ|Ω| ≥
1
2p
‖u‖p − Cλ|Ω| ,

where by ‖ · ‖p is denoted the norm on W 1,p
0 (Ω), that is ‖u‖p = (

∫
Ω
|∇u|p dx)1/p.

This shows that Iλ is bounded from below and coercive. Now, we prove the second
part of the lemma. We employ the property (P2) which states that there exists
t0 > 0 such that H(x, t0) > 0 a.e. for all x ∈ Ω. Let us consider Ω1 ⊂ Ω be a
sufficiently large compact subset and u0 ∈ C1

0 (Ω) ⊂ W 1,p
0 (Ω) such that u0(x) = t0

for x ∈ Ω1 and 0 ≤ u0(x) ≤ t0 for any x ∈ Ω− Ω1. By (P1) we have∫
Ω

H(x, u0)dx ≥
∫

Ω1

H(x, t0)dx−
∫

Ω−Ω1

kup
0dx ≥

∫
Ω

H(x, t0)dx− ktp0|Ω−Ω1| > 0.

This means that Iλ(u0) < 0 for sufficiently large λ > 0 and thus, we obtain
infW 1,p

0 (Ω) Iλ < 0. �

By Lemma 2.3, the functional Iλ has a negative global minimum for λ > 0
sufficiently large and any large λ > 0 is an eigenvalue of (1.1) and thus is an
eigenvalue of (2.1). By Lemma 2.1, the statement of Theorem 1.2 holds.
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