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AN INVERSE BOUNDARY-VALUE PROBLEM FOR
SEMILINEAR ELLIPTIC EQUATIONS

ZIQI SUN

Abstract. We show that in dimension two or greater, a certain equivalence

class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u +
a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the

equation on a bounded domain with smooth boundary. We also show that the
coefficient a(x, u) can be determined by the Dirichlet to Neumann map under

some additional hypotheses.

1. Introduction

In this article, we study the inverse boundary-value problem (IBVP) for the
semilinear equation

La(u) := ∆u + a(x, u) = 0 in Ω ⊂ Rn,

u|∂Ω = f, f ∈ C2,α(∂Ω),
(1.1)

where 0 < α < 1 and Ω ⊂ Rn is a bounded domain with smooth boundary. We
assume that the coefficient of the equation satisfies

a(x, u), au(x, u) ∈ Cα(Ω̄×R), (1.2)

au(x, u) ≤ 0. (1.3)

Then the Dirichlet problem (1.1) has an unique solution u ∈ C2,α(Ω̄) [2, 8]. We
define the nonlinear Dirichlet to Neumann map Λa:

Λa(f) =
∂u

∂ν

∣∣∣
∂Ω

,

where ν is the unit outer normal on the boundary ∂Ω. The inverse problem is to
recover a(x, u) from knowledge of Λa.

It was shown in [7] that if a(x, u) satisfies the condition

a(x, 0) = 0, (1.4)

then the uniqueness holds for the above inverse problem.
In this paper we shall study the above inverse problem without the assumption

(1.4). We first observe that in the general case, the Dirichlet to Neumann map Λa

does not determine the coefficient a uniquely.
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To see the nonuniqueness, let a be a coefficient satisfying (1.2) and (1.3) and let
φ be a function satisfying

φ(x) ∈ C2,α(Ω̄), φ|∂Ω = ∇φ|∂Ω = 0. (1.5)

Define the transformation Tφ by

(Tφa)(x, u) = a(x, u + φ(x)) + ∆φ(x) (1.6)

Then the new coefficient Tφa satisfies the same assumptions (1.2) and (1.3). It is
easy to check that LTφa(u−φ) = 0, and the assumption φ|∂Ω = ∇φ|∂Ω = 0 implies

(u− φ)|∂Ω = u|∂Ω,
∂(u− φ)

∂ν

∣∣∣
∂Ω

=
∂u

∂ν

∣∣∣
∂Ω

.

Therefore,
ΛTφa = Λa. (1.7)

We define in the set of coefficients satisfying (1.2) and (1.3) an equivalence rela-
tion induced by Tφ as follows:

a ∼ ã if ã = Tφa. (1.8)

Then we see from the above discussion that Λa remains the same for any coefficient
in the equivalence class [a]. Therefore, the correct uniqueness question for (1.1) in
the general setting is to ask whether Λa determines [a] uniquely.

The main purpose of this article is to give an affirmative answer to this question.
To state the result, let us define for each coefficient a, a set Ea ∈ Rn ×R by

Ea = ((x, u) ⊂ Ω×R; ∃ solution u of (1.1) with u = u(x)), (1.9)

and the transformation of Ea by Tφ by

TφEa = ((x, u + φ(x)) ⊂ Ω×R; ∃ solution u of (1.1) with u = u(x)). (1.10)

Theorem 1.1. Given a(x, u) and ã(x, u) satisfying the conditions (1.2) and (1.3).
If Λa = Λã, then there is a function φ satisfying (1.5) such that

Eã = T−φEa, (1.11)

ã(x, u) = Tφa(x, u) on Eã. (1.12)

As the example illustrates in [7], in general the set Ea in (1.9) may be a proper
subset, and thus (1.12) is the best one can hope for.

Another purpose of this article is to generalize the uniqueness result proven in
[7]. The condition (1.4) implies that zero is a constant solution of the equation
(1.1). Thus, the equation (1.1) with the coefficient a satisfying (1.4) must carry a
common solution u ≡ 0. We shall show that the uniqueness holds in the general
case as long as a common solution, not necessarily u ≡ 0, exists.

Theorem 1.2. Given a(x, u) and ã(x, u) satisfying the conditions (1.2) and (1.3).
Assume that the equation (1.1) carries a common solution for both coefficients a
and ã. If Λa = Λã, then

Ea = Eã, (1.13)

a(x, u) = ã(x, u) on Ea. (1.14)
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Similar problems have been studied for various semilinear and quasilinear elliptic
equations and systems [4, 5, 6, 11, 13, 3, 9]. We refer to the survey papers [12, 14]
for other recent developments in the field of inverse boundary value problems for
semilinear and quasilinear elliptic equations.

The proof of both theorems are based on a linearization argument and the
uniqueness result for the linear elliptic equations. In the next section, we give
a proof of Theorems 1.1 and 1.2.

2. Proofs of Theorems

Let uf be the unique solution to (1.1). Using the argument in [12] that is based
on Schauder’s estimate, we can show that the map f → uf is differentiable in the
space C2,δ(Ω̄) for any δ with 0 < δ < α.

Let g ∈ C2,α(∂Ω). Denote by u∗ the unique solution to the linear problem

∆u∗ + au(x, uf )u∗ = 0, u∗|∂Ω = g. (2.1)

Then for any δ, 0 < δ < α,

lim
t→0

‖uf+tg − uf

t
− u∗‖C2,δ(Ω̄) = 0. (2.2)

We denote by u̇f,g the solution u∗ in (2.1) as the derivative of u at f in the
direction g. Similarly, we have that uf+tg is differentiable in t at any value of t
under the C2,δ(Ω̄) norm, 0 < δ < α, and the derivative, denoted by u̇f+tg,g, satisfies

∆u̇f+tg + au(x,∇uf+tg) · ∇u̇f+tg,g = 0, u̇f+tg,g|∂Ω = g. (2.3)

Proof of Theorem 1.1. Given a(x, u) and ã(x, u) satisfying the conditions (1.2) and
(1.3). We denote by uf the unique solution of (1.1) and by ũf the unique solution
of (1.1) with a replaced by ã, where a and ã are two semilinear coefficients assumed
in Theorem 1.1. Under the assumption that Λa = Λã, we have that

∂uf

∂ν

∣∣∣
∂Ω

=
∂ ũf

∂ν

∣∣∣
∂Ω

(2.4)

for each f ∈ C2,α(∂Ω). Then for any g ∈ C2,α(∂Ω),

∂uf+tg

∂ν

∣∣∣
∂Ω

=
∂ũf+tg

∂ν

∣∣∣
∂Ω

, ∀t ∈ R. (2.5)

Differentiating (2.5) in t at t = 0, we get

∂u̇f,g

∂ν

∣∣∣
∂Ω

=
∂ ˙̃uf,g

∂ν

∣∣∣
∂Ω

, (2.6)

where u̇f,g and ˙̃uf,g satisfy

∆u̇f,g + au(x, uf )u̇f,g = 0, u̇f,g|∂Ω = g, (2.7)

∆ ˙̃uf,g + ãu(x, ũf ) ˙̃uf,g = 0, ˙̃uf,g|∂Ω = g. (2.8)

Since for a fixed f ∈ C2,α(∂Ω), (2.6) holds for all g ∈ C2,α(∂Ω), we have that the
Dirichlet to Neumann maps of (2.7) and (2.8) must be equal; i.e.

Λ∗au(x,uf ) = Λ∗ãu(x,ũf ). (2.9)

Then the uniqueness results established in [10] can be applied to obtain

au(x, uf ) = ãu(x, ũf ) on Ω, (2.10)
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and consequently,
u̇f,g(x) = ˙̃uf,g(x) onΩ. (2.11)

Replacing f by tf and g by f in (2.11) we get

u̇tf,f (x) = ˙̃utf,f (x) on Ω, ∀t ∈ R. (2.12)

In other words,

d/dt(utf (x)) = d/dt(ũtf (x)) on Ω, ∀t ∈ R.

Thus, there is a function φ ∈ C2,α(Ω̄), independent of t, such that

uf (x) = ũf (x) + φ(x), x ∈ Ω. (2.13)

Clearly, the function φ is independent of f , since by (2.12), each f carries the same
φ as f = 0 does.

Since (2.13) holds for all f , we have that (2.13) implies (1.11). Also, combining
(2.4) with (2.13), we see that φ satisfies the boundary condition in (1.5).

Substituting the right hand side of (2.13) in (1.1), we obtain

∆(ũf + φ) + a(x, ũf + φ) = 0. (2.14)

Since
∆ũf + ã(x, ũf ) = 0, (2.15)

combining (2.14) with (2.15) yields

ã(x, ũf ) = a(x, ũf + φ) + ∆φ,

which implies (1.12). This completes the proof. �

Proof of Theorem 1.2. Repeating the argument used in the proof of Theorem 1.1,
yields that (2.13) holds for all f . Since there is a common solution, we have that
the function φ must be the zero function. Thus, for all f ,

uf (x) = ũf (x), x ∈ Ω. (2.16)

This shows that Ea = Eã, which is (1.13). Substituting (2.16) in (1.1), we obtain
that for all f ,

a(x, uf ) = ã(x, ũf ), x ∈ Ω.

Therefore,
a(x, u) = ã(x, u), (x, u) ∈ Ea.

This completest the proof. �
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