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POSITIVE PERIODIC SOLUTIONS FOR NONAUTONOMOUS
IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL

SYSTEMS WITH TIME-VARYING DELAYS ON TIME SCALES

JINCHUN DAI, YONGKUN LI, TIANWEI ZHANG

Abstract. Using a fixed point theorem of strict-set-contraction, we prove the

existence of positive periodic solutions for a class of nonautonomous impulsive
neutral functional differential system with time-varying delays on time scales.

1. Introduction

Yang [13] studied the dynamic behavior of bounded solutions for the neutral
functional differential equation

(x(t)− x(t− r))′ = −F (x(t)) + G(x(t− r)), (1.1)

and obtained the ω limit set for bounded solutions. Variations of (1.1) have re-
ceived considerable attention in the literature, because they are used as models for
phenomena such as population growth, spread of epidemics, dynamics of capital
stocks, etc. For more details and references on this subject, we refer the reader to
[6, 10, 12].

As is well known, impulsive differential equations arise naturally in the descrip-
tion of physical and biological phenomena that are subjected to instantaneous
changes at some time instants called moments. For a review on this theory, which
has seen a significant development over the past decades, we refer the interested
reader to the monographs [7, 8].

It is well known that continuous and discrete systems are very important in
applications; also that Stefan Hilger introduce time scales to unify the continuous
and discrete analysis. Therefore, it is meaningful to study dynamic systems on time
scales which can unify differential and difference systems.

To the best of the authors’ knowledge, the existence of positive periodic solutions
for the following system has not been studied on time scales.

(x(t) + λc(t)x(t− τ(t)))∆ = −λf(t, x(t), (x(t− τ(t)), t 6= tk, t ∈ T,

x(t+k ) = x(t−k )− λIk(x(tk)),
(1.2)
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where λ > 0, T is an ω-periodic time scale, c(t) ∈ C1(T, R0), τ(t) ∈ C(T, R0) are
all ω-periodic functions, Ik(u) ∈ C(R, R0), f(t, x, y) ∈ C(T× R× R, R0) satisfies
f(t + ω, x, y) = f(t, x, y) for all (t, x, y) ∈ (T× R× R), ω > 0 is a constant, R0 =
[0,+∞), R− = (−∞, 0). For each interval I of R, we denote IT = I ∩ T, x(t+k ) and
x(t−k ) represent the right and the left limit of x(tk) in the sense of time scales, in
addition, if tk is right-scattered, then x(t+k ) = x(tk), whereas, if tk is left-scattered,
then x(t−k ) = x(tk), k ∈ Z. There exists a positive integer p such that tk+p = tk +ω,
Ik+p = Ik, k ∈ Z. Without loss of generality, we also assume that [0, ω)T ∩ {tk :
k ∈ Z} = {t1, t2, . . . , tp}.

The main purpose of this article is to establish criteria to guarantee the existence
of positive periodic solutions of system (1.2) by using a fixed point theorem of strict-
set-contraction. This article is organized as follows: In Section 2, we make some
preparations. Section 3, by using a fixed point theorem of strict-set-contraction,
we prove the existence of positive periodic solutions of system (1.2). In Section 4,
we give an example to illustrate the main results.

2. Preliminaries

In this section, we shall first recall some basic definitions, and lemmas which are
used in later.

Definition 2.1 ([2]). A function p : T → R is said to be regressive provided
1 + µ(t)p(t) 6= 0 for all t ∈ Tk, where µ(t) = σ(t) − t is the graininess function.
The set of all regressive rd-continuous functions f : T → R is denoted by R while
the set R+ is given by {f ∈ R : 1 + µ(t)f(t) > 0} for all t ∈ T. Let p ∈ R. The
exponential function is defined by

ep(t, s) = exp
( ∫ t

s

ξµ(τ)(p(τ))∆τ
)
,

where ξh(z) is the so-called cylinder transformation.

Lemma 2.2 ([2]). Let p, q ∈ R. Then
(a) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(b) 1

ep(t,s) = e	p(t, s), where 	p(t) = − p(t)
1+µ(t)p(t) ;

(c) ep(t, s) = 1
ep(s,t) = e	p(s, t);

(d) ep(t, s)ep(s, r) = ep(t, r);
(e) e∆

p (·, s) = pep(·, s).

Definition 2.3 ([2]). For f : T → R and t ∈ Tk, the delta derivative of f at t,
denoted by f∆(t), is the number (provided it exists) with the property that given
any ε > 0, there is a neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− t]| ≤ ε|σ(t)− s|, ∀s ∈ U.

Definition 2.4 ([2]). If F∆(t) = f(t), then we define the delta integral by∫ t

a

f(s)∆s = F (t)− F (a).

Definition 2.5 ([5]). We say that a time scale T is periodic if there exists p > 0
such that if t ∈ T, then t± p ∈ T. For T 6= R, the smallest positive p is called the
period of the time scale. Let T 6= R be a periodic time scale with period p. We
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say that the function f : T → R is periodic with period T if there exists a natural
number n such that T = np, f(t + T ) = f(t) for all t ∈ T and T is the smallest
number such that f(t + T ) = f(t). If T = R, we say that f is periodic with period
T > 0 if T is the smallest positive number such that f(t + T ) = f(t) for all t ∈ T.

To obtain the existence of a periodic solution of (1.2), we first make the following
preparations:

Let E be a Banach space and K be a cone in E. The semi-order induced by the
cone K is defined by x ≤ y if y− x ∈ K. In addition, for a bounded subset A ⊂ E,
let αE(A) denote the (Kuratowski) measure of non-compactness defined by

αE(A) = inf
{

δ > 0 : there is a finite number of subsets

Ai ⊂ A such that A = ∪iAi and diam(Ai) ≤ δ
}

,

where diam(Ai) denotes the diameter of the set Ai.
Let E,F be two Banach spaces and D ⊂ E. A continuous and bounded map

Φ : Ω̄ → F is called k-set contractive if for any bounded set S ⊂ D we have

αF (Φ(S)) ≤ kαE(S).

A map Φ is called strict-set-contractive if it is k-set-contractive for some 0 ≤ k < 1.
The following lemma, cited from [3, 4], is used in the proof of our main results.

Lemma 2.6 ([3, 4]). Let K be a cone of the real Banach space X and Kr,R =
{x ∈ K|r ≤ ‖x‖ ≤ R} with R > r > 0. Suppose that Φ : Kr,R → K is strict-set-
contractive such that one of the following two conditions is satisfied:

(i) Φx � x for all x ∈ K, ‖x‖ = r and Φx � x, for all x ∈ K, ‖x‖ = R.
(ii) Φx � x, for all x ∈ K, ‖x‖ = r and Φx � x, for all x ∈ K, ‖x‖ = R.

Then Φ has at least one fixed point in Kr,R.

For convenience, we introduce the notation:

fM = max
t∈[0,ω]T

|f(t)|, f l = min
t∈[0,ω]T

|f(t)|, fL = max
t∈[0,ω]T

|f∆(t)|.

We will use the following assumptions:
(H1) f(t, 0, y) = 0 and there exist positive constants lf and Lf such that

|f(t, x, y)− f(t, u, v)| ≤ Lf (|x− u|+ |y − v|)
for all (t, x, y), (t, u, v) ∈ (T, R, R).

(H2) There exists an ω-periodic function a(t) ∈ C(T, R−) such that

1 + a(t)µ(t) 6= 0, −ζλ−1a(t)− |c∆(t)| − ζcσ(t) ≥ 0 for all t ∈ [0, ω]T,

where ζ = γ2η2
γ1η1

, γ1 = maxt∈[0,ω]T

(
e�a(t, t− ω)− 1

)−1,

γ2 = mint∈[0,ω]T

(
e�a(t, t − ω) − 1

)−1, η1 = maxu∈[t−ω,t]T e�a(t, u), η2 =
minu∈[t−ω,t]T e�a(t, u).

(H3) (�a)M ≤ 1.
(H4)

max
t∈[0,ω]T

{
− λ−1a(t) + |c∆(t)|+ cσ(t) + Lf

}
≤ γ2η2

γ1κ

(
1 + (�a)l

)
×

∫ ω

0

(
− ζλ−1a(s)− |c∆(s)| − ζcσ(s)

)
∆s,
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where κ = maxt∈[0,ω]T

{
e�a(σ(t) + ω, t)− e�a(σ(t), t)

}
.

(H5) There exist positive constants I l
k, IM

k such that

I l
kx2 ≤ Ik(x) ≤ IM

k x2 for all x ∈ R, k ∈ Z.

(H6) γ1κcM < 1.
(H7) γ1η1a

Mω < 1,

λ <
1− γ1η1a

Mω

γ1η1(cLω + ζ−1cMω + Lf + IM )
,

where IM =
∑p

k=1 IM
k .

To apply Lemma 2.6 to system (1.2), we define

PC(T) =
{
x : T → R|x|(tk,tk+1)T ∈ C((tk, tk+1)T, R),

∃x(t−k ) = x(tk), x(t+k ), k ∈ Z
}
,

PC1(T) =
{
x : T → R|x|(tk,tk+1)T ∈ C((tk, tk+1)T, R),

∃x∆(t−k ) = x∆(tk), x(t+k ), k ∈ Z
}
.

Set
X = {x(t) ∈ PC(T) : x(t + ω) = x(t)}

with the norm |x|0 = maxt∈[0,ω]T |x(t)|, and

Y = {x(t) ∈ PC1(T) : x(t + ω) = x(t)}
with the norm |x|1 = maxt∈[0,ω]T{|x|0, |x∆|0}. Then X and Y are Banach spaces.
Defined the cone K in Y by

K = {x ∈ Y : x(t) ≥ ζ|x|1, t ∈ [0, ω]T}.

Lemma 2.7. A function x ∈ Y is a solution of (1.2) if and only if

x(t) =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk)),

where

G(t, s) =
e�a(t, s)

e�a(t, t− ω)− 1
,

F (s) = −λ−1a(s)xσ(s) + c∆(s)x(s− τ(s)

+ cσ(s)x∆(s− τ(s)) + f(s, x(s), x(s− τ(s)), s ∈ [t− ω, t]T,

and a(t) satisfies (H2).

Proof. Rewrite the first equation of (1.2) in the form

x∆(t) = −λc∆(t)x(t− τ(t)− λcσ(t)x∆(t− τ(t))− λf(t, x(t), x(t− τ(t)),

then
x∆(t) + a(t)xσ(t) = λ−1a(t)xσ(t)− λc∆(t)x(t− τ(t))− λcσ(t)x∆(t− τ(t))

− λf(t, x(t), x(t− τ(t))

:= −λF (t).

(2.1)

Let x ∈ Y be a solution of system (1.2). Multiply both sides of (2.1) by ea(t, 0) to
get (

x(t)ea(t, 0)
)∆ = −λea(t, 0)F (t). (2.2)
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For any t ∈ T, there exists k ∈ Z such that tk is the first impulsive point after t−ω.
For s ∈ [t− ω, tk]T, we integrate (2.2) from t− ω to s to obtain

x(s)ea(s, 0) = x(t− ω)ea(t− ω, 0)−
∫ s

t−ω

λea(r, 0)F (r)∆r.

Then

x(tk)ea(tk, 0) = x(t− ω)ea(t− ω, 0)−
∫ tk

t−ω

λea(r, 0)F (r)∆r.

For s ∈ (tk, tk+1]T, we integrate (2.2) from tk to s once more to obtain

x(s)ea(s, 0) = x(t+k )ea(tk, 0)−
∫ s

tk

λea(r, 0)F (r)∆r

= x(tk)ea(tk, 0)−
∫ s

tk

λea(r, 0)F (r)∆r − λea(tk, 0)Ik(x(tk))

= x(t− ω)ea(t− ω, 0)−
∫ s

t−ω

λea(r, 0)F (r)∆r − λea(tk, 0)Ik(x(tk)).

Repeating the above process for s ∈ [t− ω, t]T, we have

x(s)ea(s, 0) = x(t− ω)ea(t− ω, 0)−
∫ s

t−ω

λea(r, 0)F (r)∆r

−
∑

k:tk∈[t−ω,s]T

λea(tk, 0)Ik(x(tk)).

Let s = t in the above equality, we get

x(t)ea(t, 0) = x(t− ω)ea(t− ω, 0)−
∫ t

t−ω

λea(s, 0)F (s)∆s

−
∑

k:tk∈[t−ω,t]T

λea(tk, 0)Ik(x(tk)).

Then

x(t) =
∫ t

t−ω

e�a(t, s)
e�a(ω, 0)− 1

λF (s)∆s +
∑

k:tk∈[t−ω,t]T

e�a(t, tk)
e�a(ω, 0)− 1

λIk(x(tk))

=
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk)),

where we have used Lemma 2.2 to simplify the exponentials. The proof is complete.
�

Let the mapping Φ be defined by

(Φx)(t) =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk)), (2.3)

where x ∈ K, t ∈ T, F (s), G(t, s) is given by (2.1) and

0 < γ2η2 ≤ G(t, s) ≤ γ1η1, s ∈ [t− ω, t]T.

Lemma 2.8. Assume that (H1)–(H4) hold. Then Φ : K → K is well defined.
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Proof. For any x ∈ K, we have Φx ∈ PC1(T). In view of (2.3), for t ∈ T, we have

(Φx)(t + ω) =
1

e�a(t, t− ω)− 1

∫ t+ω

t

λe�a(t + ω, s)F (s)∆s

+
∑

k:tk∈[t,t+ω]T

λG(t + ω, tk)Ik(x(tk)).
(2.4)

Using the periodicity of a, c, τ , f , and letting u = s− ω, by (2.4) we obtain

(Φx)(t + ω) =
1

e�a(t, t− ω)− 1

∫ t

t−ω

λe�a(t + ω, u + ω)F (u)∆u

+
∑

k:tk∈[t−ω,t]T

λG(t + ω, tk + ω)Ik(x(tk + ω)).
(2.5)

At the same time, from the definition of ea(t, s) and the periodicity of a, we have
e�a(t+ω, u+ω) = e�a(t, u) and e�a(t+ω, u) = e�a(t, u−ω). Thus (2.5) becomes
(Φx)(t + ω) = (Φx)(t). In view of (H2), for x ∈ K, tk ∈ [0, ω]T, we obtain

F (t) = −λ−1a(t)xσ(t) + c∆(t)x(t− τ(t) + cσ(t)x∆(t− τ(t)) + f(t, x(t), x(t− τ(t))

≥ −ζλ−1a(t)|x|1 − |c∆(t)‖x|1 − ζcσ(t)|x|1
=

(
− ζλ−1a(t)− |c∆(t)| − ζcσ(t)

)
|x|1 ≥ 0.

(2.6)
For x ∈ K, t ∈ [0, ω]T, by (2.6) we obtain

|Φx|0 = max
t∈[0,ω]T

{∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))
}

≤ λγ1η1

∫ ω

0

F (s)∆s + λγ1η1

p∑
k=1

Ik(x(tk))

and

(Φx)(t) =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))

≥ λγ2η2

∫ ω

0

F (s)∆s + λγ2η2

p∑
k=1

Ik(x(tk))

≥ γ1η1

γ2η2
|Φx|0 = ζ|Φx|0.

(2.7)

Form (2.3) and (H3), we have

(Φx)∆(t) =
( ∫ ã

t−ω

λG(t, s)F (s)∆s +
∫ t

ã

λG(t, s)F (s)∆s

+
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))
)∆

=
e�a(σ(t), t)

(
1− ea(t− ω, t)

)
e�a(t, t− ω)− 1

λF (t) + �a(Φx)(t)

≤ �a(Φx)(t) ≤ (�a)M (Φx)(t) ≤ (Φx)(t),
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where ã ∈ [t− ω, t]T is an arbitrary constant. If (Φx)∆(t) ≥ 0, we have

|Φx|0 ≥ |(Φx)∆|0. (2.8)

If (Φx)∆(t) < 0, by (2.7) and (H4), we have

−(Φx)∆(t) =
e�a(σ(t) + ω, t)− e�a(σ(t), t)

e�a(t, t− ω)− 1
λF (t)−�a(Φx)(t)

≤ λγ1κ
(
− λ−1a(t)xσ(t) + c∆(t)x(t− τ(t)) + cσ(t)x∆(t− τ(t))

+ f(t, x(t), x(t− τ(t)))
)
− (�a)l(Φx)(t)

≤ λγ1κ
(
− λ−1a(t) + |c∆(t)|+ cσ(t) + Lf

)
|x|1 − (�a)l(Φx)(t)

≤ λγ2η2

(
1 + (�a)l

) ∫ ω

0

(
− ζλ−1a(s)− |c∆(s)| − ζcσ(s)

)
|x|1∆s

− (�a)l(Φx)(t)

≤ λγ2η2

(
1 + (�a)l

) ∫ ω

0

F (s)∆s− (�a)l(Φx)(t)

≤
(
1 + (�a)l

)(
Φx)(t)− (�a)l(Φx)(t)

= (Φx)(t).

(2.9)

Form (2.8) and (2.9), we have |(Φx)∆|0 ≤ |(Φx)|0. So |Φx|1 = |Φx|0. By (2.7) we
have (Φx)(t) ≥ ζ|Φx|1. Hence Φx ∈ K. The proof is complete. �

Lemma 2.9. Assume that (H1)-(H6) hold, then Φ : K ∩ ΩR → K is strict-set-
contractive, where ΩR = {x ∈ Y : |x|1 < R}.

Proof. Obviously, Φ is continuous and bounded on ΩR. Now we show αY
(
Φ(S)

)
≤

γ1κcMαY(S) for any bounded set S ⊂ ΩR. Let η = αY(S). Then for any positive
number ε < γ1κcMη, there exists a finite family of subsets {Si} satisfying S = ∪iSi

with diam Si ≤ η + ε. Hence,

|x− y|1 ≤ η + ε for all x, y ∈ Si. (2.10)

As S and Si are precompact in X, then there exist a finite family of subsets (Sij)
of Si such that Si = ∪ijSij and

|x− y|0 ≤ ε for all x, y ∈ Sij . (2.11)

Furthermore, for any x ∈ S, t ∈ [0, ω]T, we have

|(Φx)(t)| =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik

(
x(tk)

)
≤ λγ1η1R

∫ ω

0

(
λ−1|a(s)|+ |c∆(s)|+ |cσ(s)|+ Lf

)
∆s + λγ1η1R

2
m∑

k=1

IM
k

:= Γ

and

|(Φx)∆(t)| =
∣∣∣e�a(σ(t), t)− e�a(σ(t) + ω, t)

e�a(t, t− ω)− 1
λF (t)−�a(Φx)(t)

∣∣∣
≤ λγ1κR

(
λ−1aM + cL + cM + Lf

)
+ (�a)MΓ.
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Applying Arzela-Ascoli theorem on time scales [1], we know that Φ(S) is precompact
in X. So there exists a finite family of subsets {Sijk} of Sij such that Sij = ∪kSijk

and
|Φx− Φy|0 ≤ ε for all x, y ∈ Sijk. (2.12)

From (2.10)-(2.11), for any x, y ∈ Sijk, we have

|(Φx)∆ − (Φy)∆|0

= max
t∈[0,ω]T

{∣∣∣(�a)(Φx(t)− Φy(t))

+
e�a(σ(t), t)− e�a(σ(t) + ω, t)

e�a(t, t− ω)− 1
(
− λ−1a(t)xσ(t) + c∆(t)x(t− τ(t))

+ cσ(t)x∆(t− τ(t)) + f(t, x(t), x(t− τ(t))
)

− e�a(σ(t), t)− e�a(σ(t) + ω, t)
e�a(t, t− ω)− 1

(
− λ−1a(t)yσ(t) + c∆(t)y(t− τ(t))

+ cσ(t)y∆(t− τ(t)) + f(t, y(t), y(t− τ(t))
)∣∣∣}

≤ (�a)M
∣∣Φx(t)− Φy(t)

∣∣
0

+ γ1κλ−1aM max
t∈[0,ω]T

|xσ(t)− yσ(t)|

+ γ1κcL max
t∈[0,ω]T

|x(t− τ(t))− y(t− τ(t))|

+ γ1κcM max
t∈[0,ω]T

|x∆(t− τ(t))− y∆(t− τ(t))|

+ γ1κLf max
t∈[0,ω]T

|x(t)− y(t)|+ γ1κLf max
t∈[0,ω]T

|x(t− τ(t))− y(t− τ(t))|

≤ (�a)Mε + γ1κλ−1aMε + γ1κcLε + γ1κcM (η + ε) + 2γ1κLfε

= γ1κcMη + Ĥε,

where Ĥ = (�a)M + γ1κλ−1aM + γ1κcL + γ1κcM + 2γ1κLf . From the above
inequality and (2.12), we have

|Φx− Φy|1 ≤ γ1κcMη + Ĥε for all x, y ∈ Sijk.

Since ε is arbitrary small, we have

αY(Φ(S)) ≤ γ1κcMαY(S).

Hence, Φ is strict-set-contractive on K ∩ ΩR. The proof is complete. �

3. Main results

Theorem 3.1. Assume that (H1)–(H7) hold. Then (1.2) has at least one positive
ω-periodic solution.

Proof. Let

R =
1 + λγ2η2ω(cL + cM )

λγ2η2ωI lζ2

and 0 < r < min{1, R}, where I l =
∑p

k=1 I l
k. Then 0 < r < R. From Lemmas

2.8 and 2.9, we know that Φ is strict-set-contractive on Kr,R. In view of Lemma
2.7, we see that if there exists x∗ ∈ K such that Φx∗ = x∗, then x∗ is a positive
ω-periodic solution of (1.2). Now, we shall prove that condition (ii) of Lemma 2.6
holds.
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First, we prove that Φx � x, for all x ∈ K, |x|1 = r. Otherwise, there exists
x ∈ K, |x|1 = r, such that Φx ≥ x. So Φx− x ∈ K, which implies that

(Φx)(t)− x(t) ≥ ζ|Φx− x|1 ≥ 0 for all t ∈ [0, ω]T. (3.1)

In addition, for t ∈ [0, ω]T, from (H7) we obtain

(Φx)(t) =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))

=
∫ t

t−ω

λG(t, s)
(
− λ−1a(s)xσ(s) + c∆(s)x(s− τ(s) + cσ(s)x∆(s− τ(s))

+ f(s, x(s), x(s− τ(s))
)
∆s +

∑
k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))

≤ λγ1η1ω
(
λ−1aM |x|0 + cL|x|0 + ζ−1cM |x|0 + Lf |x|0

)
+ λγ1η1I

M |x|20
≤ λγ1η1

(
λ−1aMω + cLω + ζ−1cMω + Lf + IM

)
|x|0

< |x|0.
(3.2)

From (3.1) and (3.2), we find that

|x|0 ≤ |Φx|0 < |x|0,

which is a contradiction. Finally, we prove that Φx 
 x for all x ∈ K, |x|1 = R also
holds. For this case, we only prove that Φx ≮ x for all x ∈ K, |x|1 = R. Otherwise,
there exists x ∈ K and |x|1 = R such that Φx < x. Thus x − Φx ∈ K/{0}. Then
we have

x(t)− (Φx)(t) ≥ ζ|x− Φx|1 > 0 for all t ∈ [0, ω]T. (3.3)

At the same time, for any t ∈ [0, ω]T, we have

(Φx)(t) =
∫ t

t−ω

λG(t, s)F (s)∆s +
∑

k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))

=
∫ t

t−ω

λG(t, s)
(
− λ−1a(s)xσ(s) + c∆(s)x(s− τ(s) + cσ(s)x∆(s− τ(s))

+ f(s, x(s), x(s− τ(s))
)
∆s +

∑
k:tk∈[t−ω,t]T

λG(t, tk)Ik(x(tk))

≥ λγ2η2ω
(
λ−1alζ|x|1 − cL|x|1 − cM |x|1 + I lζ2|x|21

)
≥ λγ2η2ω(I lζ2R− cL − cM )R = R.

From (3.3) and above inequality, we obtain that |x|0 > |Φx|0 ≥ R, which is a
contradiction. Applying Lemma 2.6, we see that there is at least one nonzero fixed
point in K. Hence system (1.2) has at least one positive ω-periodic solution. The
proof is complete. �
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4. An example

When T = R, consider the system:

(x(t) + λ
1
4
x(t− τ(t)))′ = −λ(t2 +

1
2

sin2 x(t) +
1
4

cos2 x(t− 1)), t 6= tk, t ∈ R,

x(t+k ) = x(t−k )− λx2(tk), k ∈ Z,

(4.1)
where

λ < min
{ 2

10001π
,

4π − 2(e
1

10001 − 1)e
1

10001

10001π(2π + 5(e
1

10001 − 1)e
1

10001 )
,

20000e
1

10001 − 20002
10001(πe

1
10001 + 42)e

1
10001

}
,

ω = 2π, p = 10, Lf = 1, IM = 20. Let a(t) = − 1
20002π , so γ1 = γ2 = (e

1
10001 − 1)−1,

η1 = e
1

10001 , η2 = 1, ζ = e−
1

10001 . And it is easy to check that (H1)–(H6) are
satisfied. By Theorem 3.1, system (4.1) has at least one positive ω-periodic solution.
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