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EXACT MULTIPLICITY OF SOLUTIONS FOR A CLASS OF
TWO-POINT BOUNDARY VALUE PROBLEMS

YULIAN AN, RUYUN MA

Abstract. We consider the exact multiplicity of nodal solutions of the bound-

ary value problem

u′′ + λf(u) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = 0,

where λ ∈ R is a positive parameter. f ∈ C1(R, R) satisfies f ′(u) >
f(u)

u
, if

u 6= 0. There exist θ1 < s1 < 0 < s2 < θ2 such that f(s1) = f(0) = f(s2) = 0;

uf(u) > 0, if u < s1 or u > s2; uf(u) < 0, if s1 < u < s2 and u 6= 0;R 0
θ1

f(u)du =
R θ2
0 f(u)du = 0. The limit f∞ = lims→∞

f(s)
s

∈ (0,∞). Using

bifurcation techniques and the Sturm comparison theorem, we obtain curves of

solutions which bifurcate from infinity at the eigenvalues of the corresponding

linear problem, and obtain the exact multiplicity of solutions to the problem
for λ lying in some interval in R.

1. Introduction

Consider the problem

u′′ + λf(u) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(1.1)

where λ is a positive parameter.
The existence and uniqueness of positive solutions to (1.1) has been extensively

studied in the literature, see [3, 4, 6, 12] and references therein. On the other hand, a
full description of the positive solution set of (1.1) for most nonlinearities f remains
open. Tiancheng Ouyang and Junping Shi [11] determined the exact multiplicity
of positive solutions of (1.1) for some special f by applying bifurcation techniques.
However, little is known about the whole solution set(including one-sign and sign
changing solutions) of (1.1). Junping Shi and Junping Wang [8] considered the
whole solution set of (1.1) under the following conditions:
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(C1) f ∈ C1(R, R) satisfies f(0) = 0, f ′(0) > 0;
(C2) f ′(u) > f(u)

u , if u 6= 0;
(C3) The limit f∞ = lims→∞

f(s)
s ∈ (0,∞).

They obtained a full description of the the first N solution curves which bifurcate
from the line of trivial solutions. Anuradha and Shivaji [1] gave some similar results
where f satisfied f(0) < 0 and other conditions. Motivated by these works, we will
consider the existence and uniqueness of one-sign and sign changing solutions of
(1.1) under the following conditions

(H1) f ∈ C1(R, R), f ′(u) > f(u)
u , if u 6= 0;

(H2) the limit f∞ = lim|s|→∞
f(s)

s ∈ (0,∞);
(H3) There exist θ1 < s1 < 0 < s2 < θ2 such that f(s1) = f(0) = f(s2) = 0;

uf(u) > 0, if u < s1 or u > s2; uf(u) < 0, if s1 < u < s2 and u 6= 0;∫ 0

θ1
f(u)du =

∫ θ2

0
f(u)du = 0.

We obtain curves of one-sign and sign changing solutions of (1.1), bifurcating
from ∞ at the eigenvalues of the corresponding linear problem of (1.1), and obtain
exact multiplicity of one-sign and sign changing solutions of (1.1) for λ lying in
some interval in R.

Remark 1.1. Shi and Wang [8] gave precise global bifurcation structure for the
whole solution set of (1.1) when the nonlinearity f satisfying f ′(0) > 0. However,
(H3) implies that f ′(0) < 0. Meanwhile, (C1) and (C2) implies that f(u)u > 0,
if u 6= 0, but f(u)u has negative parts if f satisfying (H3). So it is interesting to
find precise global bifurcation structure for the whole solution set of (1.1) under
the conditions (H1)-(H3).

Remark 1.2. The uniqueness and exact multiplicity of positive solutions have
been studied by many authors, see [5, 10] and the references therein. The exact
multiplicity results about sign changing solutions have also been researched, see
[1, 11] and the references therein. Bari and Rynne [2] consider the global structure
of the nodal solutions of the problem

(−1)mu(2m)(t) = λg(u(t))u(t), t ∈ (0, 1),

u(i)(−1) = u(i)(1) = 0, i = 0, . . . ,m− 1,

where λ > 0 is a parameter, the function g ∈ C1(R, R) satisfying lim|ξ|→∞ g(ξ) =
∞, and g(0) > 0, ±g′(ξ) > 0, for all ±ξ > 0.

2. Preliminary results

Let Y = C[0, 1] with the norm ‖y‖∞ = maxt∈[0,1] |y(t)|, and let

E = {y ∈ C1[0, 1] : y′(0) = y(1) = 0},

with the norm ‖y‖E = max{‖y‖∞, ‖y′‖∞}. Define the operate L : D(L) ⊂ E → Y ,
by Lu := −u′′, u ∈ D(L), where

D(L) = {u ∈ C2[0, 1] : u′(0) = u(1) = 0}.

Then L−1 : Y → E is a completely continuous operator and (1.1) is equivalent to
the operator equation

u− λL−1(f(u)) = 0.
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We introduce some notation to describe the nodal properties of solutions to (1.1).
Firstly, for any C1 function u, x0 is a simple zero of u if u(x0) = 0 and u′(x0) 6= 0.
Now, for any integer k ≥ 1 and any ν ∈ {+,−}, we define sets Sν

k ⊂ C2[0, 1] as
follows: if u ∈ Sν

k , then

(i) u′(0) = 0, νu(0) > 0;
(ii) u has only simple zeros in [0, 1] and has exact k − 1 zeros in (0, 1).

The sets Sν
k are open in E and disjoint.

Let E = R×E, under the product topology. We add the point {(λ,∞)p|λ ∈ R}
into the space E. Put Φν

k = R× Sν
k .

Clearly, u ≡ 0 is a solution of (1.1) for any λ ∈ R. (λ, 0) is called a trivial solution
of (1.1). Note that (H1) ensures that the solution of the initial value problem for
the differential equation in (1.1) is unique. This fact will be used repeatedly in the
following proof so, for brevity, it will be abbreviated to “IVPU”.

We first prove the following result about the nodal properties of nontrivial solu-
tions of (1.1).

Lemma 2.1. Suppose (λ, u) is a nontrivial solution of (1.1). Then

(i) u ∈ Sν
k for some k ∈ N and ν ∈ {+,−};

(ii) maxt∈[0,1] u(t) > θ2 and mint∈[0,1] u(t) < θ1 if k ≥ 2; maxt∈[0,1] u(t) > θ2 if
u ∈ S+

1 ; mint∈[0,1] u(t) < θ1 if u ∈ S−1 ;
(iii) u(0) = maxt∈[0,1] u(t), if u ∈ S+

k , and u(0) = mint∈[0,1] u(t), if u ∈ S−k .
(iv) u has no positive local minimum and/or negative local maximum.

Proof. (i) Since u is nontrivial, “IVPU” implies that all zeros of u are simple. So,
(i) is true. In particular, by the boundary condition in (1.1), we have u(0) 6= 0
since u′(0) = 0. We now describe the qualitative “shape” of the solution u.

Without loss of generality, assume that u ∈ S+
k for some k ∈ N in the following

proof. When u ∈ S−k , the proof is similar. It follows from the fact that f is
independent of t and “IVPU” that the graph of u consists of a sequence of positive
and negative bumps, together with a half bump at the left end of the interval [0, 1],
with the following properties (ignoring the half bump):

(a) all the positive (resp. negative) bumps have the same shape (the shapes of
the positive and negative bumps may be different);

(b) all the positive (resp. negative) bumps attain the same maximum (resp.
minimum) value.

(c) if ξ ∈ (α, β) ⊂ (0, 1) is a critical point of u and α, β are two consecutive
zeros of u, then the graph of u is symmetric about t = ξ on the interval
(α, β).

Armed with these properties on the shape of u we can continue the proof of the
Lemma.

(ii) On the contrary, suppose maxt∈[0,1] u(t) ≤ θ2. Let u(0) = c, then 0 < c ≤ θ2.
Obviously, u(t) > 0 when t > 0 is small. Suppose t1 is the first zero of u, then
u(t) > 0 on [0, t1) and u(t1) = 0, u′(t1) < 0. Note that (λ, u) satisfies the equation

u′′ = −λf(u). (2.1)

Multiplying both sides of (2.1) by u′,

u′′(t)u′(t) = −λf(u(t))u′(t). (2.2)
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Integrating (2.2) from 0 to t1,∫ t1

0

u′′(t)u′(t)dt = −λ

∫ t1

0

f(u(t))u′(t)dt. (2.3)

It follows from (2.3) and (H3) that

1
2
(u′(t1))2 = −λ

∫ t1

0

f(u(t))du(t) = −λ

∫ 0

c

f(u)du = λ

∫ c

0

f(u)du ≤ 0. (2.4)

since c ≤ θ2. However, the left side of (2.4) is positive. This is a contradiction. If
k = 1, then the proof is completed. If k ≥ 2, suppose mint∈[0,1] u(t) ≥ θ1. Denote t2
is the second zero of u, then u(t) < 0 on (t1, t2) and u(t1) = u(t2) = 0, u′(t1) < 0.
From (a) and (b) in (i), there exists a ξ1 ∈ (t1, t2) such that u′(ξ1) = 0 and
u(ξ1) = mint∈[0,1] u(t) ≥ θ1. Integrating (2.2) from t1 to ξ1,∫ ξ1

t1

u′′(t)u′(t)dt = −λ

∫ ξ1

t1

f(u(t))u′(t)dt. (2.5)

It follows from (2.5) and (H3) that

−1
2
(u′(t1))2 = −λ

∫ ξ1

t1

f(u(t))du(t) = −λ

∫ u(ξ1)

0

f(u)du = λ

∫ 0

u(ξ1)

f(u)du ≥ 0.

(2.6)
since u(ξ1) ≥ θ1. However, the left side of (2.6) is negative. This is a contradiction.
Thus, (ii) is true.

Statements (iii) and (iv) follow from (c) in (i). �

Remark 2.2. (iv) implies that the zeros of u and the zeros of u′ are separated,
that is each bump of u contains a single zero of u′, and there is exact one zero of
u between consecutive zeros of u′. Moreover, if u ∈ Sν

k , then u has k − 1 zeros in
(0, 1) and u′ has exact k − 1 zeros in (0, 1).

For a nontrivial solution of (1.1), (λ, u) is degenerate if the problem

w′′ + λf ′(u)w = 0, t ∈ (0, 1),

w′(0) = 0, w(1) = 0
(2.7)

has a nontrivial solution, otherwise it is nondegenerate.
Now, we consider the initial value problem

φ′′ + λf ′(u)φ = 0, t ∈ (0, 1),

φ′(0) = 0, φ(0) = 1.
(2.8)

It plays very important role to study the exact multiplicity of solutions of (1.1).
Note that if φ is the unique solution of (2.8), then any solution of (2.7) can be
written w = cφ, where c ∈ R is a constant.

Lemma 2.3. If (λ, u) ∈ Φν
k is a nontrivial solution of (1.1). Then (λ, u) is non-

degenerate.

Proof. Suppose (λ, w), (λ, φ) is the solutions of (2.7), (2.8), respectively. We claim
that

φ(1) 6= 0. (2.9)
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From this claim, we obtain immediately that (2.7) has only trivial solution since
w(1) = cφ(1) = 0 if and only if c = 0. So (λ, u) is nondegenerate. Therefore, we
only need to prove that (2.9) holds.

Since u ∈ Sν
k , then all zeros of u are simple. By Lemma 2.1 and Remark 2.2, u

has exact k− 1 zeros in (0, 1), and especially, u′ has also exact k− 1 zeros in (0, 1).
The function u satisfies

u′′ + λf(u) = 0, t ∈ (0, 1). (2.10)

Define the function

p(t) =

{
f(u(t))

u(t) , u(t) 6= 0,

f ′(0), u(t) = 0.

Then (2.10) is equivalent to

u′′ + λp(t)u = 0. (2.11)

On the other hand, note that φ and u′ satisfy the following equations respectively:

φ′′ + λf ′(u)φ = 0, (2.12)

(u′)′′ + λf ′(u)u′ = 0. (2.13)

By (H1), (H2), (H3), we have p(t) ≤ f ′(u(t)) for all t ∈ (0, 1). Applying the Sturm
comparison lemma to (2.11) and (2.12), we obtain, there exists at least one zero of
φ between any two consecutive zeros of u. We extend evenly u, φ to [−1, 0), then
u has exact 2(k − 1) zeros in (−1, 1), that is, u has exact 2k zeros in [−1, 1]. This
implies that φ has at least 2k − 1 zeros in (−1, 1). Note that φ is a even function
in [−1, 1], and φ(0) 6= 0, then φ has at least 2k zeros in (−1, 1). Therefore, φ has
at least k zeros in (0, 1). On the other hand, between any two consecutive zeros of
φ, there exists at least one zero of u′. Suppose (2.9) does not hold, i.e., φ(1) = 0.
Then φ has at least k + 1 zeros in (0, 1]. Moreover, u′ has at least k zeros in (0, 1).
It is impossible! Thus, φ(1) 6= 0. �

The following Lemma shows that every solution of (1.1) which belongs to Φ+
k

(resp. Φ−k ) can be parameterized by its maximum (resp. minimum).

Lemma 2.4. Given k ∈ N for each d > 0(resp. d < 0), there exists at most one
λ > 0 such that (1.1) has at most a solution u which belongs to S+

k (resp. S−k ) and
satisfies u(0) = d.

The proof of the above lemma can be found in [9].

3. The main result and its proof

Our main result reads as follows.

Theorem 3.1. Let (H1)-(H3) hold. Then for every k ∈ N and ν ∈ {+,−}, we
have:

(i) Equation (1.1) has no degenerate solutions. All solutions of (1.1) that
belong to Φν

k lie on a unique continuous curve Dν
k . This curve starts

from ( λk

f∞
,∞)p ∈ E, and extends for increasing λ such that ProjR Dν

k =
( λk

f∞
,∞) ⊂ R+.
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(ii) For every given parameter λ ∈ ( λk

f∞
,∞) ⊂ R+, there exists exactly one

solution of (1.1) which belongs to Sν
k ; for every given parameter λ ∈ (0, λk

f∞
],

there exists no solution of (1.1) which belongs to Sν
k , where λk is the kth

eigenvalue of the linear problem
ϕ′′ + λϕ = 0, t ∈ (0, 1),

ϕ′(0) = 0, ϕ(1) = 0.
(3.1)

Remark 3.2. It is well-known that the eigenvalues of (3.1) satisfy

0 < λ1 < λ2 < · · · < λk < λk+1 < . . . , lim
k→∞

λk = ∞,

for each λk is simple and the corresponding eigenfunction ϕk has exactly k−1 zeros
in (0, 1).

From Theorem 3.1, we obtain immediately the following corollary.

Corollary 3.3. Let (H1)-(H3) hold. Then for every k ∈ N and λ > 0: (1.1) has
no nontrivial solution when λ ∈ (0, λ1

f∞
]; has exactly two nontrivial solutions, one

positive and one negative, when λ ∈ ( λ1
f∞

, λ2
f∞

]; has exactly four nontrivial solutions
when λ ∈ ( λ2

f∞
, λ3

f∞
], a positive solution, a negative solution, a solution which has

one zero on (0, 1) and u(0) > 0 and a solution which has one zero on (0, 1) and
u(0) < 0. In general, when λ ∈ (λk/f∞, λk+1/f∞], (1.1) has exactly 2k nontrivial
solutions, where

u1 ∈ S+
1 , u2 ∈ S−1 , u3 ∈ S+

2 , u4 ∈ S−2 , . . . u2k−1 ∈ S+
k , u2k ∈ S−k .

Let ζ ∈ C(R, R) be such that

f(u) = f∞u + ζ(u). (3.2)

Clearly,

lim
|u|→∞

ζ(u)
u

= 0. (3.3)

Let us consider
Lu− λf∞u = λζ(u) (3.4)

as a bifurcation problem from infinity. We note that (3.4) is equivalent to (1.1).
The results from Rabinowitz [7] for (3.4) can be stated as follows:

Lemma 3.4. For each integer k ≥ 1, ν ∈ {+, −}, all nontrivial solutions of (1.1)
near

(
λk

f∞
,∞

)
p

lie on a smooth local curve Dν
k , and Dν

k \ {
(

λk

f∞
,∞

)
p
} ⊂ Φν

k.

Proof of Theorem 3.1. (i) From Lemma 2.3, (1.1) has no degenerate solution. We
give the proof only for u(0) > 0. When u(0) < 0, the proof is similar.

By Lemma 3.4, all solutions of (1.1) near the point ( λk

f∞
,∞)P and u(0) > 0

lie on a unique continuous local curve D+
k which bifurcating from

(
λk

f∞
,∞

)
p
, and

D+
k \ {

(
λk

f∞
,∞

)
p
} ⊂ Φ+

k . By Lemma 2.3 and the implicit function theorem, we can
continue this local curve to a maximal interval of definition over the λ-axis. We
still denote the curve D+

k . If we extend D+
k for decreasing λ, then this curve will

intersect with the hyperplane {0} × E at some point (ũ, 0) with ũ(0) > θ2. This
contradicts u ≡ 0 if λ = 0, since f(0) = 0. So, we must extend D+

k for increasing
λ. By Lemma 2.3 and the implicit function theorem, it cannot stop at a point such
as (λ0, u0) where λk

f∞
< λ0 < ∞ and u0(0) < ∞. On the other hand, by Lemma
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2.4, it also can not blow up at some point (λ∗,∞)p with λk

f∞
< λ∗ < ∞. Therefore,

this curve must continue for increasing λ such that ProjR D+
k = ( λk

f∞
,∞) ⊂ R.

Moreover, if (λ, u) ∈ D+
k and λ →∞, then there must be a constant M ≥ θ2 such

that ‖u‖∞ → M .
Finally, we claim that all solutions of (1.1) which belong to Φ+

k must lie on D+
k .

If M = θ2, by Lemma 2.4, the above claim is naturally right. If M > θ2, on
the contrary, we suppose there is a solution (λ0, u0) of (1.1) and (λ0, u0) ∈ Φ+

k ,
but (λ0, u0) 6∈ D+

k . By Lemma 2.3 and the implicit function theorem, all solutions
of (1.1) near (λ0, u0) must lie on a unique local curve which through (λ0, u0). We
denote this local curve Γ0. Then for any (λ, u) ∈ Γ0, we have θ2 < ‖u‖∞ < M from
Lemma 2.1. By Lemma 2.3 and the implicit function theorem, Γ0 must continue
with decreasing λ. However, (1.1) has only trivial solution if λ = 0. Thus, when
Γ0 continues with decreasing λ, it will have no place to go. Therefore, the above
claim is correct.

Statement (ii) is a direct consequence of (i). The proof is complete. �
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