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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
OSCILLATION A THIRD-ORDER DIFFERENTIAL EQUATION

PITAMBAR DAS, JITENDRA KUMAR PATI

Abstract. We show that under certain restrictions the following three con-
ditions are equivalent: The equation

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = f(t)

is oscillatory. The equation

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = 0

is oscillatory. The second-order Riccati equation

z′′ + 3zz′ + a(t)z′ = z3 + a(t)z2 + b(t)z + c(t)

does not admit a non-oscillatory solution that is eventually positive.
Furthermore, we obtain sufficient conditions for the above statements to

hold, in terms of the coefficients. These conditions are sharp in the sense that
they are both necessary and sufficient when the coefficients a(t), b(t), c(t) are
constant.

1. Introduction

Consider the third-order non-homogenous differential equation

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = f(t), (1.1)

the associated homogenous equation

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = 0, (1.2)

and the second-order Riccati equation

z′′ + 3zz′ + a(t)z′ = z3 + a(t)z2 + b(t)z + c(t), (1.3)

where t ≥ t0 for some constant t0,
(i) a ∈ C2([t0,∞), (0,∞)), b ∈ C1([t0,∞), (−∞, 0)), c ∈ C([t0,∞), (0,∞)),

and f ∈ C([t0,∞), (0,∞));
(ii) a′(t) ≥ 0, f ′(t) ≤ 0 almost everywhere in [t0,∞).

We prove that under these conditions, the following three statements are equivalent:
(A) Equation (1.1) is oscillatory;
(B) Equation (1.2) is oscillatory;
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(C) Equation (1.3) does not admit non-oscillatory solutions which are eventu-
ally positive.

Further (C) holds, if
(D) ∫ ∞

t0

{2a3(t)
27

− a(t)b(t)
3

+ c(t)− 2
3
√

3

(a2(t)
3

− b(t)
)3/2}

dt = ∞

Condition (D) is sharp in the sense that it is a necessary and sufficient condition
for (C) to hold, when a(t), b(t), c(t) are constant.

As usual, a function y ∈ C(R, R) is said to be non-oscillatory, if there exist a
point t0 such that y(t) > 0 for all t ≥ t0, or y(t) < 0 for all t ≥ t0. Otherwise, y is
said to be oscillatory.

Equations (1.1) and (1.2) is said to be non-oscillatory if all of their solutions
are non-oscillatory. Otherwise, they is said to be oscillatory. Such a classification
of definitions has been made, because, there are third order differential equations
which admit both oscillatory and non oscillatory solutions. For example y1(t) = et

and y2(t) = e−t/2 sin(
√

3
2 t) are such solutions of y′′′(t)− y(t) = 0.

The results of this paper are motivated from the properties of solutions to

y′′′ + ay′′ + by′ + cy = f (1.4)

and the corresponding homogenous differential equation

x′′′ + ax′′ + bx′ + cx = 0, (1.5)

where a, b, c, f are constants and a > 0, b < 0, c > 0 and f > 0.
It is established in [5, 15] that (1.4) and (1.5) admit oscillatory solutions if and

only if
2a3

27
− ab

3
+ c− 2

3
√

3

(a2

3
− b

)3/2

> 0

In this article, we establish similar results for equations with variable coefficients.
The following definition of Hanan [11] is used in the sequel.

Equation (1.2) is said to be of Class I (CI for short) if its solution x(t) with
x(a) = x′(a) = 0, x′′(a) > 0 (t0 < a < ∞) satisfies x(t) > 0 in (t0, a).

2. Proof of (A) ⇔ (B)

The following lemma plays a vital role in the entire paper.

Lemma 2.1. Suppose that the following conditions hold:
(H1) u, ϑ ∈ C1(R, R);
(H2) α, β ∈ R are consecutive zeros of ϑ(t), ϑ(α) = ϑ(β) = 0;
(H3) u(t) is of one sign in [α, β].

Then there exist a constant λ 6= 0 and a point t0 ∈ (α, β) such that the function

w(t) = λu(t)− ϑ(t)

has a double zero at t0 (i.e., w(t0) = w′(t0) = 0) and w(t) is of one sign in (t0, β)).

Proof. Without loss of generality, assume that u(t) > 0 and ϑ(t) > 0 in (α, β).
consider the set

Ā = {µ | µu(t)− ϑ(t) > 0, t ∈ (α, β)}
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Setting

k = max
α≤t≤β

ϑ(t)
u(t)

it follows that k is positive and finite. Any number greater than k is obviously an
element of Ā. Clearly, the set Ā is nonempty and bounded below.

Let λ be the greatest lower bound of Ā. We claim that w(t) = λu(t)− ϑ(t) has
a double zero at some point t0 in (α, β) and of one sign in (t0, β).

By definition of λ, there exists a sequence of real numbers 〈λn〉 in Ā which
converges to λ. The sequence of continuous bounded functions 〈λnu(t) − ϑ(t)〉 >
converges uniformly to λu(t)− ϑ(t) in (α, β). This gives

λu(t)− ϑ(t) ≥ 0, t ∈ (α, β) (2.1)

Now we claim that λu(t)−ϑ(t) vanishes at least once in (α, β). If possible suppose
that λu(t)− ϑ(t) > 0 in (α, β). Then there exist ε > 0 such that

λu(t)− ϑ(t) > ε > 0, t ∈ (α, β), (2.2)

and K > 0 such that u(t) < K, t ∈ (α, β). From (2.2) it follows that

(λ− ε1(t))u(t)− ϑ(t) > 0, t ∈ (α, β) (2.3)

where
ε1(t) =

ε

u(t)
>

ε

K

From (2.3) and the inequality given above we get(
λ− ε

K

)
∈ Ā

This contradicts to the assumption on λ. Thus λu(t) − ϑ(t)≥ 0 in (α, β) and
vanishes at least once in it. This shows that all zeros of λu(t) − ϑ(t) are double
zeros in (α, β). The greatest of all such double zeros will serve the purpose of t0
with required properties. This completes the proof. �

Remark. In the above lemma λ > 0 if and only if u, ϑ have same sign and λ > 0
otherwise.

Lemma 2.2 ([11]). Equation (1.2) is of Class I.

Lemma 2.3. If (2.1) is oscillatory, then any solution of (2.1) which vanishes at
least once is oscillatory.

Proof. From Lemma 2.2, it follows that (2.1) is of class I. Now the proof follows
from [11, Theorem 3.4]. �

Lemma 2.4. If u1 , u2 and u3 are solutions of (1.2) satisfying the initial conditions

u1(t0) = 1, u1
′(t0) = 0, u1

′′(t0) = 0,

u2(t0) = 0, u2
′(t0) = 1, u2

′′(t0) = 0,

u3(t0) = 0, u3
′(t0) = 0, u3

′′(t0) = 1

then

yp(t) =
∫ t

t0

1
W (s)

∣∣∣∣∣∣
u1(t) u2(t) u3(t)
u1(s) u2(s) u3(s)
u1
′(s) u2

′(s) u3
′(s)

∣∣∣∣∣∣ f(s)ds
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is a solution of (1.1). where W (s) is the Wronskian

W (s) =

∣∣∣∣∣∣
u1(s) u2(s) u3(s)
u1
′(s) u2

′(s) u3
′(s)

u1
′′(s) u2

′′(s) u3
′′(s)

∣∣∣∣∣∣ .

Further yp(t) satisfies yp(t0) = 0, yp
′(t0) = 0, yp

′′(t0) = 0 and yp
′′′(t0) = f(t0)

Proof. Expanding

yp(t) = u1(t)
∫ t

t0

1
W (s)

∣∣∣∣u2(s) u3(s)
u2
′(s) u3

′(s)

∣∣∣∣ f(s)ds

− u2(t)
∫ t

t0

1
W (s)

∣∣∣∣u1(s) u3(s)
u1
′(s) u3

′(s)

∣∣∣∣ f(s)ds

+ u3(t)
∫ t

t0

1
W (s)

∣∣∣∣u1(s) u2(s)
u1
′(s) u3

′(s)

∣∣∣∣ f(s)ds .

Differentiating yp(t) we obtain

y′p(t) =
∫ t

t0

1
W (s)

∣∣∣∣∣∣
u1
′(t) u2

′(t) u3
′(t)

u1(s) u2(s) u3(s)
u1
′(s) u2

′(s) u3
′(s)

∣∣∣∣∣∣ f(s)ds

+
1

W (t)

∣∣∣∣∣∣
u1(t) u2(t) u3(t)
u1(t) u2(t) u3(t)
u1
′(t) u2

′(t) u3
′(t)

∣∣∣∣∣∣ f(t) .

The second term of the above being equal to zero and proceeding similarly,

y′′p (t) =
∫ t

t0

1
W (s)

∣∣∣∣∣∣
u1
′′(t) u2

′′(t) u3
′′
(t)

u1(s) u2(s) u3(s)
u1
′(s) u2

′(s) u3
′(s)

∣∣∣∣∣∣ f(s)ds

and

y′′′p (t) =
∫ t

t0

1
W (s)

∣∣∣∣∣∣
u1
′′′(t) u2

′′′(t) u3
′′′

(t)
u1(s) u2(s) u3(s)
u1
′(s) u2

′(s) u3
′(s)

∣∣∣∣∣∣ f(s)ds + f(t) .

Since ui(t), i = 1, 2, 3 are solutions of (1.2), replacing

ui
′′′(t) = −a(t)ui

′′(t)− b(t)ui
′(t)− c(t)ui(t)

for i = 1, 2, 3 in yp
′′′(t) we obtain

yp
′′′(t) = −a(t)yp

′′(t)− b(t)yp
′(t)− c(t)yp(t) + f(t)

and yp(t) satisfies yp(t0) = y′p(t0) = y′′p (t0) = 0 and y′′′p (t0) = f(t0). This completes
the proof . �

Lemma 2.5. Suppose that 2b(t) − a′(t)≤0 , 2b(t) − a′(t) − c′(t) < 0 and f ′(t)≤0
for t ≥ t0. Then any solutions of (1.1) do not admit two consecutive double zeros
in [t0,∞).

Proof. If possible let y(t) have consecutive double zeros at α and β. Then either
y(t) > 0 for α < t < β, or y(t) < 0 for α < t < β. In the former case, multiplying
(1.1) by y′(t) and integrating the resultant from α to β we obtain

0 > −
∫ β

α

(
y′′(t)

)2

dt +
∫ β

α

(
2b(t)− a′(t)− c′(t))

)(
y′(t)

)2

2
dt = −

∫ β

α

f ′(t)y(t)dt > 0
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which is a contradiction. In the latter case, y(α) = y(β) = 0 implies that there
exists t0 ∈ (α, β) such that y′(t0) = 0 and y′(t) > 0 in (t0, β). Similarly, there exists
point t2 ∈ (t0, β) such that y′′(t2) = 0 and y′′(t) < 0 in (t2, β). Integrating (1.1)
from t2 to β and using the fact that y(t) < 0, y′(t) > 0 and y′′(t) < 0 in (t2, β) we
get

0 = y′′(β)− y′′(t2) =
∫ β

t2

[
f(t)− a(t)y′′(t)− b(t)y′(t)− c(t)

]
dt > 0

which is again a contradiction. This completes the proof. �

Lemma 2.6. If the hypotheses of lemma 2.5 hold, then (1.1) does not admit a
solution with a double zero followed by two single zeros.

Proof. If possible, let y(t) be a solution of (1.1) having a double zero at α3 followed
by single zeros at α1 and α2. That is,

y(α1) = y(α2) = 0, y(α3) = y′(α3) = 0,

where t0 < α1 < α2 < α3. Consider the solution x(t) of (1.2) with initial conditions

x(α3) = x′(α3) = 0, x′′(α3) = 1

By lemma 2.2, x(t) > 0 for t0 < t < α3. From Lemma 2.1, there exists a constant
λ 6= 0 such that

λx(t)− y(t)

has a double zero at some point t1 ∈ (α1, α2) and is of constant sign in (t1, α2).
Thus, y(t)− λx(t) = −(λx(t)− y(t)) is a solution of (1.1) with consecutive double
zeros at t1 and α3 . This is a contradiction to lemma 2.5. This completes the
proof. �

Theorem 2.7. Suppose the hypothesis of lemma 2.5 hold. If (1.2) is oscillatory
then (1.1) is oscillatory.

Proof. If possible, suppose that (1.1) is non oscillatory. Let x(t) be an oscillatory
solution of (1.2) and y(t) be a non oscillatory solution of (1.1). So, there exists
t0 > 0 such that either

y(t) > 0 for t ≥ t0 (2.4)

or
y(t) < 0 for t ≥ t0 (2.5)

Suppose that (2.4) holds (the proof for (2.5) follows similarly). Let α, β, (t0 < α <
β) be the consecutive zeros of x(t) such that x(t) > 0 for t ∈ (α, β). From lemma
2.1, it follows that there exist a µ > 0 such that

µy(t)− x(t) (2.6)

has a double zero at some point t1 ∈ (α, β). Putting t = t1 in (2.6) we obtain

µ =
x(t1)
y(t1)

> 0

Setting λ1 = 1/µ, it follows that

w(t) = y(t)− λ1x(t) (2.7)
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has a double zero at t1. By assumption all solutions of (1.1) are non oscillatory and
so w(t) is non oscillatory. Let t2 ≥ t1 such that w(t) > 0, t ≥ t2 because otherwise,
w(t) < 0, t ≥ t2 gives

0 < y(t) < λ1x(t)
a contradiction to the fact that x(t) is oscillatory. Now, let α1 and β1 (t2 < α1 < β1)
be two consecutive zeros of x(t) and x(t) > 0 for t ∈ (α1, β1). By lemma 2.1 and
proceeding in the lines of (2.6) to (2.7), there exists λ2 > 0 such that y(t)− λ2x(t)
has a double zero at some point t3 ∈ (α1, β1). That is

y(t3)− λ2x(t3) = 0,

y′(t3)− λ2x
′(t3) = 0

(2.8)

Again w(t) > 0 for t ≥ t2 implies that

w(t3) = y(t3)− λ1x(t3) > 0 (2.9)

From (2.8) and (2.9) it follows that λ2 > λ1. This in turn implies that

y(t1)− λ2x(t1) < 0 (2.10)

Since y(t) − λ2x(t) is continuous in (α, β) and positive for t = α and t = β, from
(2.10) it follows that y(t)−λ2x(t) has at least two zeros in (α, β). This contradicts
Lemma 2.6 that (1.1) admits a solution y(t) − λ2x(t) having a double zero at t3
followed by two single zeros. This completes the proof. �

The theorem stated below follows from [16].

Theorem 2.8. If (1.2) is non oscillatory, then (1.1) is non oscillatory.

3. Proof of (B)⇔(C)

We state below a result from Erbe [6], for its use in the sequel.

Lemma 3.1 ([6, Lemma 2.2]). If b(t)≤0, c(t) > 0 and x(t) is a non oscillatory
solution of (1.2) with x(t) ≥ 0 or x(t)≤0 eventually, then there exists d > 0 such
that either

x(t)x′(t) < 0 for t ≥ d (3.1)
or

x(t)x′(t) > 0 and x(t) > 0, for t ≥ d (3.2)
Furthermore, if (3.1) holds, then for t ≥ d,

x(t)x′(t)x′′(t) 6= 0, sgn x(t) = sgnx′′(t) 6= sgnx′(t) (3.3)

and
lim

t→∞
x′(t) = lim

t→∞
x′′(t) = 0, lim

t→∞
x(t) = k 6= ±∞.

Lemma 3.2 ([6, Lemma 2.3]). Let b(t)≤0, c(t) ≥ 0. A necessary and sufficient
condition for (1.2) to be oscillatory is that for any nontrivial non oscillatory solution
(3.1) and (3.3) hold.

Theorem 3.3. Equation (1.2) is oscillatory if and only if all non oscillatory solu-
tions of

z′′ + 3zz′ + a(t)z′ + a(t)z3 + b(t)z2 + c(t)z = 0 (3.4)
are eventually negative.
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Proof. Suppose that (1.2) admits an oscillatory solution. If possible, let z(t) be a
non oscillatory solution of (3.4) which is eventually positive. Set

ϑ(t) = exp
{∫ t

t0

z(s)ds
}
. (3.5)

Obviously ϑ(t) > 0, t > t0 and ϑ(t) is monotonically increasing in (t0,∞). Further

ϑ′(t) = z(t)ϑ(t), (3.6)

ϑ′′(t) = z(t)ϑ′(t) + z′(t)v(t) = z2(t)ϑ(t) + z′(t)ϑ(t), (3.7)

ϑ′′′(t) = z2(t)ϑ′(t) + 2z(t)z′(t)ϑ(t) + z′′(t)ϑ(t) + z′(t)ϑ′(t)

= z3(t)ϑ′(t) + 2z(t)z′(t)ϑ(t) + z′′(t)ϑ(t) + z(t)z′(t)ϑ(t).
(3.8)

Using (3.5)–(3.8) we obtain

ϑ′′′(t) + a(t)ϑ′′(t) + b(t)ϑ′(t) + c(t)ϑ(t)

= ϑ(t){z′′ + 3zz′ + a(t)z′ + z3 + a(t)z2 + b(t)z + c(t)} = 0

This shows that ϑ(t) is a solution of (1.2) which do not satisfy (3.1), a contradiction
to Lemma 3.2. This proves the sufficient part of the theorem.

Conversely, suppose that all non oscillatory solutions of (3.4) are eventually
negative. If possible, let all solutions of (1.2) be non oscillatory. By Lemma 3.2
there exists at least one solution x(t) of (1.2) which satisfy (3.2). Without loss of
generality assume that x(t) > 0 and x′(t) > 0 for t ≥ d > 0. Setting

z(t) =
x′(t)
x(t)

, t ≥ d

it is easy to verify that z(t) is a solution of (3.4) which is eventually positive, a
contradiction to our assumption. This completes the proof. �

In the following, sufficient conditions are established in terms of the coefficients
a, b and c ensuring oscillation of (1.2).

Theorem 3.4. Suppose that a(t) ≥ 0, b(t)≤0, c(t) ≥ 0 and a′(t)≤0. If∫ ∞

t0

{2a3(t)
27

− a(t)b(t)
3

+ c(t)− 2
3
√

3

(a2(t)
3

− b(t)
)3/2}

dt = ∞ (3.9)

then (1.2) admits oscillatory solutions.

The proof of the above theorem follows from [17].

Theorem 3.5. Suppose that a(t) ≥ 0, a(t) + b(t) + 1 ≤ 0, c(t) ≥ 0. Further, if

2
(
a(t) + 3

)3

27
−

(
a(t) + 3

)(
a(t) + b(t) + 1

)
3

+ c(t)− 2
3
√

3

[(
a(t) + 3

)2

3
−

(
a(t) + b(t) + 1

)]3/2

> 0

(3.10)

for t ≥ t0, t0 > 0 then (1.2) is oscillatory.
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Proof. For the sake of contradiction, suppose that all solutions of (1.2) are non
oscillatory. By Lemma 3.2, there exists a solution x(t) of (1.2) satisfying (3.2). Set

ez =
x′(t)
x(t)

(3.11)

Differentiating successively, it may be shown that

x′′(t)
x(t)

= ez + e2z (3.12)

and
x′′′(t)
x(t)

= e3z + 3e2z + ez (3.13)

Dividing(1.2) throughout by x(t) and using (3.11), (3.12) and (3.13) in the resulting
equation we obtain

F (ez, t) = e3z +
(
3 + a(t)

)
e2z +

(
a(t) + b(t) + 1

)
ez + c(t) = 0 (3.14)

It may be shown that the minimum of F (ez, t) attains at

ez =
1
3

[
− a(t)− 3 +

√(
a(t) + 3

)2 − 3
(
1 + a(t) + b(t)

)]
and its minimum value is

min
z

F (ez, t) =
2A3(t)

27
− A(t)B(t)

3
+ c(t)− 2

3
√

3

(A2(t)
3

−B(t)
)3/2

(3.15)

where A(t) = a(t) + 3 and B(t) = a(t) + b(t) + 1. Combining (3.14) and (3.15) we
have the inequality

2A3(t)
27

− A(t)B(t)
3

+ c(t)− 2
3
√

3

(A2(t)
3

−B(t)
)3/2

≤ 0.

This contradicts assumption (3.10). This completes the proof. �

Theorem 3.6. Suppose that A(t) ≥ 0, B(t) ≤ 0, and C(t) ≥ 0 with∫ ∞

t0

1
t2n

{2A3(t)
27

− A(t)B(t)
3

+ C(t)− 2
3
√

3

(A2(t)
3

−B(t)
)3/2}

dt = ∞,

where

A(t) = tna(t)− 3n

2
tn−1,

B(t) = (n2 + 3n)t2n−2 + t2n
(
a′(t) + b(t)

)
− na(t)t2n−1,

C(t) = t3nc(t)

for t ≥ t0, t0 > 0 then (1.2) is oscillatory.

Proof. If possible, suppose that all solutions of (1.2) are non oscillatory. By Lemma
3.2, there exists a solution x(t) of (1.2) satisfying (3.2) for t ≥ t0. Now, set

z = tn
x′(t)
x(t)

.
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Clearly, z(t) > 0 and satisfies

z′′ +
(
a(t)− 2n

t

)
z′ +

3
tn

zz′

= − 1
t2n

[
z3 +

(
tna(t)− 3ntn−1

)
z2

+
(
n(n + 1)t2n−2 + t2nb(t)− na(t)t2n−1

)
z + t3nc(t)

] (3.16)

Integrating (3.16) from t0 to t and rearranging terms we have

z′(t)− z′(t0) +
(
a(t)− 2n

t

)
z(t)−

(
a(t0)−

2n

t0

)
z(t0)−

∫ t

t0

(
a′(s) +

2n

s2

)
zds

+
3
tn

z2(t)
2

− 3z2(t0)
2tn0

−
∫ t

t0

(
− 3nz2

2sn+1

)
ds

=
∫ t

t0

− 1
s2n

[
z3 +

(
sna(s)− 3nsn−1

)
z2

+
(
n(n + 1)s2n−2 + s2nb(s)− na(s)s2n−1

)
z + s3nc(s)

]
ds

Simplifying it further, we obtain

z′(t)− z′(t0) +
(
a(t)− 2n

t

)
z(t)−

(
a(t0)−

2n

t0

)
z(t0) +

3
tn

[z2(t)
2

]
−

[3z2(t0)
2tn0

]
= −

∫ t

t0

1
t2n

[
z3 + A(t)z2 + B(t)z + C(t)

]
dt,

(3.17)
where

A(t) = tna(t)− 3ntn−1

2
,

B(t) = (n2 + 3n)t2n−2 + t2n
(
a′(t) + b(t)

)
− na(t)t2n−1,

C(t) = t3nc(t).

Moreover, the minimum of

F (z, t) = z3 + A(t)z2 + B(t)z + C(t)

for z > 0 is attained at

z(t) =
1
3

(
−A(t) +

√
A2 − 3B

)
and the minimum is given by

minF (z, t) =
2A3

27
− AB

3
+ C − 2

3
√

3

(A2

3
−B

)3/2

. (3.18)

Substituting (3.18) in (3.17), then taking limit as t → ∞ we see that z′(t) → −∞
as t →∞. This further implies that z(t) → −∞ as t →∞, a contradiction to our
assumption. This completes the Proof. �
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