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UNIQUENESS FOR N-TH ORDER DIFFERENTIAL SYSTEMS
WITH STRONG SINGULARITIES

YIFEI PAN, MEI WANG

Abstract. Using a Lipschitz type condition, we obtain the uniqueness of
solutions for a system of n-th order nonlinear ordinary differential equations
where the coefficients are allowed to have singularities.

1. Introduction and main results

Lipschitz condition was a key part in proving classical results on the existence
and uniqueness of ordinary differential equations, as extensively surveyed and sum-
marized in [1]. In this paper, we use a Lipschitz type condition to obtain the
uniqueness of solutions of n-th order nonlinear ordinary differential systems where
the coefficients are allowed to have singularities.

Our results are in the spirit of the Carathéodory theorem on the existence of
ordinary differential equations [5, Chapter 2], which gives a Lipschitz condition
in first order differential equations. The conditions in this paper are in terms of
absolute continuity, thus the uniqueness result is on solutions in weaker or more
general sense. For first order differential equations, Nagumo’s Theorem [8] and
its generalizations [2, 3] give precise coefficients and sharp order for an isolated
singularity in the Lipschitz condition. A natural generalization of the classical
Carathéodory condition is to higher order linear and nonlinear differential systems
(e.g. [4, 6]). Our results are on higher order differential equations with coefficients
of singularities under integrability conditions.

The main results are stated below. The proofs are provided in the next sec-
tion. In the last section, we provide two applicable forms of the main theorem as
corollaries, and we give an example to illustrate the sharpness of the singularity
order allowed in the main condition of the Lipschitz type in an n order differential
equation.

Let L1(a, b) denote the set of real Lebesgue integrable functions on the interval
(a, b), ‖·‖ the Euclidean norm in Rd, and Ck(a, b) the set of d-dimensional functions
with k-th continuously differentiable components on (a, b).

The following theorem is on the uniqueness of solutions of differential systems.
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Theorem 1.1. Consider the system of differential equations of y : (a, b) → Rd,

y(n) = f(x, y, y′, . . . , y(n−1)), x ∈ (a, b), a < 0 < b,

y(0) = a0

y′(0) = a1

. . .

y(n−1)(0) = an−1

(1.1)

where f : (a, b)× Rnd → Rd satisfies the Lipschitz type condition

‖f(x, s0, . . . , sn−1)− f(x, r0, . . . , rn−1)‖ ≤
n−1∑
k=0

λk(x)
‖sk − rk‖
|x|n−k−1

, a. e. x ∈ (a, b)

(1.2)
for λk(x) ≥ 0, λk ∈ L1(a, b) and (s0, . . . , sn−1), (r0, . . . , rn−1) in a domain in
Rnd containing (a0, . . . , an−1). If u, v ∈ Cn−1(a, b) are solutions of (1.1) and
u(n−1), v(n−1) are absolutely continuous with respect to the Lebesgue measure on
(a, b), then

v(x) ≡ u(x) for x ∈ (a, b).

The following theorem gives the condition for a function that satisfies a differ-
ential inequality to be identically zero, which can be considered as an n-th order
Gronwall [7] uniqueness theorem.

Theorem 1.2. Let y : (a, b) → Rd, y ∈ Cn−1(a, b) and y(n−1) absolute continuous
with respect to the Lebesgue measure on (a, b), a < 0 < b. If

y(0) = y(1)(0) = · · · = y(n−1)(0) = ~0

and

‖y(n)(x)‖ ≤
n−1∑
k=0

λk(x)
‖y(k)(x)‖
|x|n−k−1

a. e. x ∈ (a, b) (1.3)

with λk ∈ L1(a, b), λk ≥ 0, for k = 0, 1, . . . , n− 1, then y(x) ≡ ~0 for all x ∈ (a, b).

2. Proofs of the main results

The absolute continuity assumption in the theorems is needed in applying the
Fundamental Theorem of Calculus to prove the following lemma.

Lemma 2.1. Assume φ : (a, b) → Rd, φ ∈ Cn−1(a, b), φ(n−1) absolutely continuous
on (a, b) for a < 0 < b. If

φ(k)(0) = ~0 ∈ Rd, k = 0, 1, . . . , n− 1,

then for any λ(x) ∈ L1(a, b), λ(x) ≥ 0 and k = 0, 1, . . . , n− 1,∫ x

0

λ(t)
‖φ(k)(t)‖
|t|n−k−1

dt ≤
∫ x

0

λ(t)dt

∫ x

0

‖φ(n)(t)‖dt, ∀x ∈ (a, b). (2.1)

Proof. By the absolute continuity assumption of φ(n−1), the Fundamental Theorem
of Calculus grants the form

φ(k)(x) =
∫ x

0

∫ tn−k−1

0

. . .

∫ t1

0

φ(n)(t)dt dt1 . . . dtn−k−1, x ∈ [0, b)
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for k = 0, 1, . . . , n− 1. Define

g(x) =
∫ x

0

∫ tn−1

0

. . .

∫ t1

0

‖φ(n)(t)‖dt dt1 . . . dtn−1, x ∈ [0, b).

Then g ∈ Cn−1[0, b), g(n) = ‖φ(n)‖ a. e. in (a, b) and for k = 0, 1, . . . , n− 1,

g(k)(x) =
∫ x

0

∫ tn−k−1

0

. . .

∫ t1

0

‖φ(n)(t)‖dt dt1 . . . dtn−k−1 ↗ w. r. t. x ∈ (0, b)

g(k)(0) = 0.

By Taylor’s formula, for any t ∈ (0, b) and k = 0, . . . , n− 2,

g(k)(t) = g(k)(0) + g(k+1)(c)(t− 0) c ∈ (0, t)

≤ g(k+1)(t) t ≤ g(k+2)(t) t2 ≤ . . .

≤ g(n−1)(t) tn−k−1

By ‖φ(k)(x)‖ ≤ g(k)(x) and the monotonicity of g(k) on [0, b),∫ x

0

λ(t)
‖φ(k)(t)‖
tn−k−1

dt ≤
∫ x

0

λ(t)
g(k)(t)
tn−k−1

dt x ∈ [0, b), k = 0, 1, . . . , n− 1

≤
∫ x

0

λ(t)g(n−1)(t)dt ≤ g(n−1)(x)
∫ x

0

λ(t)dt

=
∫ x

0

g(n)(t)dt

∫ x

0

λ(t)dt =
∫ x

0

‖φ(n)(t)‖dt

∫ x

0

λ(t)dt.

Thus the result holds for x ∈ [0, b). For x ∈ (a, 0], consider x∗ = −x and define

φ∗(x∗) = φ(−x∗), g∗(x∗) =
∫ x∗

0

∫ tn−1

0

. . .

∫ t1

0

‖φ∗(n)(t)‖dt dt1 . . . dtn−1,

where x∗ ∈ [0,−a). Repeating the above derivation for x ∈ [0, b) leads to∫ x∗

0

λ(−t)
‖φ∗(k)(t)‖
tn−k−1

dt ≤
∫ x∗

0

‖φ∗(n)(t)‖dt

∫ x∗

0

λ(−t)dt, ∀x∗ ∈ [0,−a).

Subsisting t by −t in the integrands and replacing x∗ by x = −x∗ ∈ (a, 0],∫ 0

x

λ(t)
‖φ(k)(t)‖
|t|n−k−1

dt ≤
∫ 0

x

‖φ(n)(t)‖dt

∫ 0

x

λ(t)dt, ∀x ∈ (a, 0].

Therefore, (2.1) holds for all x ∈ (a, b). This completes the proof. �

The above lemma is used in the proof of Theorem 1.1 below.

Proof of Theorem 1.1. Let φ(x) = u(x) − v(x), x ∈ (a, b). Then φ satisfies the
conditions in Lemma 2.1: φ ∈ Cn−1(a, b), φ(n−1) is absolutely continuous on (a, b),
and φ(k)(0) = ~0 for k = 0, 1, . . . , n− 1. By the Lipschitz property (1.2),

‖φ(n)(t)‖ = ‖f(t, u(t), u′(t), . . . , u(n−1)(t))− f(t, v(t), v′(t), . . . , v(n−1)(t))‖

≤
n−1∑
k=0

λk(t)
‖u(k)(t)− v(k)(t)‖

tn−k−1
=

n−1∑
k=0

λk(t)
‖φ(k)(t)‖
tn−k−1

.
(2.2)
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We assume f is well defined so that for solutions u, v on (a, b), (u, u′, . . . , u(n−1)),
(v, v′, . . . , v(n−1)) are in the domain for which (1.2) holds. For any ε ∈ (0, b), define

A(ε) =
∫ ε

0

( n−1∑
k=0

λk(t)
‖φ(k)(t)‖
tn−k−1

)
dt

Applying inequalities (2.1) within the sum and then using (1.2), we have

A(ε) =
n−1∑
k=0

∫ ε

0

λk(t)
‖φ(k)(t)‖
tn−k−1

dt

≤
n−1∑
k=0

∫ ε

0

λk(t)dt

∫ ε

0

‖φ(n)(t)‖dt

≤
n−1∑
k=0

∫ ε

0

λk(t)dt

∫ ε

0

( n−1∑
k=0

λk(t)
‖φ(k)(t)‖
tn−k−1

)
dt

=
( ∫ ε

0

n−1∑
k=0

λk(t)dt
)
A(ε).

If A(ε) 6= 0, then ∫ ε

0

n−1∑
k=0

λk(t)dt ≥ 1.

However, λk ∈ L1(a, b) means∫ ε

0

n−1∑
k=0

λk(t)dt → 0 as ε → 0.

This contradiction implies that there exists ε ∈ (0, b) such that A(ε̃) = 0, ∀ε̃ ≤ ε.
Integrating (2.2) on both sides,∫ ε

0

‖φ(n)(t)‖dt ≤
∫ ε

0

( n−1∑
k=0

λk(t)
‖φ(k)(t)‖
tn−k−1

)
dt = A(ε) = 0

Hence

‖φ(n)(t)‖ = 0 a. e. t ∈ (0, ε) =⇒ φ(n)(t) = ~0 a. e. t ∈ (0, ε).

Recall φ(n−1)(0) = u(n−1)(0)− v(n−1)(0) = ~0. Thus

φ(n−1)(ε) =
∫ ε

0

φ(n)(t)dt = ~0 =⇒ φ(n−1)(t) = ~0 a. e. t ∈ (0, ε).

Repeating the argument results in

φ(t) = u(t)− v(t) = ~0 a. e. t ∈ (0, ε).

Since u, v ∈ Cn−1(a, b) and u(0) = v(0), we obtain

φ(t) = u(t)− v(t) ≡ ~0, ∀t ∈ [0, ε).

Let ε′ = max{ε : φ(t) = ~0, ∀t ∈ (0, ε)}. If ε′ < b, then φ(t) = ~0 for t ∈ (0, ε′] by the
continuity of u and v. Then applying the above derivation to functions u(x − ε′),
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v(x − ε′) on the interval [ε′, b) would yield u(t) − v(t) = ~0 for t ∈ (ε′, ε′ + ε′′) for
some ε′′ > 0, which contradicts the definition of ε′. Therefore we must have

u(t)− v(t) = ~0, ∀t ∈ [0, b).

To obtain the results on (a, 0], replacing u(x), v(x), x ∈ (a, b) by u∗(x) = u(−x),
v∗(x) = v(−x), x ∈ (−b,−a) to obtain

u∗(t)− v∗(t) = ~0 ∀t ∈ [0,−a).

Combining the results we arrived at

u(t)− v(t) = ~0 ∀t ∈ (a, b).

This concludes the proof for Theorem 1.1. �

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1.

Proof of Theorem 1.2. Notice that y satisfies the assumptions in Lemma 2.1. Define

B(ε) =
∫ ε

0

( n−1∑
k=0

λk(t)
‖y(k)(t)‖
tn−k−1

)
dt

for any ε ∈ (0, b). Applying (2.1) in Lemma 2.1 and then (1.3),

B(ε) =
n−1∑
k=0

∫ ε

0

λk(t)
‖y(k)(t)‖
tn−k−1

dt ≤
n−1∑
k=0

∫ ε

0

λk(t)dt

∫ ε

0

‖y(n)(t)‖dt

≤
n−1∑
k=0

∫ ε

0

λk(t)dt

∫ ε

0

( n−1∑
k=0

λk(t)
‖y(k)(t)‖
tn−k−1

)
dt

=
( ∫ ε

0

n−1∑
k=0

λk(t)dt
)
B(ε).

B(ε) 6= 0 would imply ∫ ε

0

n−1∑
k=0

λk(t)dt ≥ 1.

On the other hand, λk ∈ L1(a, b) implies∫ ε

0

n−1∑
k=0

λk(t)dt → 0 as ε → 0.

Thus there must exist ε ∈ (0, b) such that B(ε̃) = 0,∀ε̃ ≤ ε. Integrating (1.3) on
both sides, ∫ ε

0

‖y(n)(t)‖dt ≤
∫ ε

0

( n−1∑
k=0

λk(t)
‖y(k)(t)‖
tn−k−1

)
dt = B(ε) = 0

which leads to

‖y(n)(t)‖ = 0 a. e. t ∈ (0, ε) =⇒ y(n)(t) = ~0 a. e. t ∈ (0, ε).

Consequently,

y(n−1)(ε) =
∫ ε

0

y(n)(t)dt = ~0 =⇒ y(n−1)(t) = ~0 a. e. t ∈ (0, ε).
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This argument leads to
y(t) = ~0 a. e. t ∈ (0, ε).

where “a. e.” can be removed by the continuity of y. The interval (0, ε) on which
y ≡ ~0 can be extended to (0, b) and (a, 0) using arguments analogous to the ones
used in the proof of Theorem 1.1. This concludes the proof of Theorem 1.2. �

3. Corollaries and an example

In Corollary 3.1 below, we give an explicit form of the L1 functions in the Lip-
schitz condition (1.2) in Theorem 1.1 in terms of the Jacobians, under stronger
differentiability conditions on the function f in the differential system (1.1) in The-
orem 1.1. Recall that

f(x, s0, s1, . . . , sn−1) : (a, b)× Rd × · · · × Rd → Rd

where f = (f1, . . . , fd) ∈ Rd, sk = (sk1, . . . , skd) ∈ Rd, k = 0, . . . , n − 1. For each
x ∈ (a, b), denote the Jacobian

Jk = Jk(x) = det
(∂f(x, s0, . . . , sn−1)

∂sk

)
=

∣∣∣∣∣∣∣
∂f1
∂sk1

. . . ∂f1
∂skd

...
...

∂fd

∂sk1
. . . ∂fd

∂skd

∣∣∣∣∣∣∣ ,

for k = 0, 1, . . . , n− 1.

Corollary 3.1. If f(x, s0, . . . , sn−1) is differentiable on (s0, . . . , sn−1) ∈ Rnd, a.
e. x ∈ (a, b), and

Jk(x) xn−k−1 ∈ L1(a, b), k = 0, . . . , n− 1,

then there are λk(x) ∈ L1(a, b) such that the Lipschitz condition (1.2) holds in
Theorem 1.1.

Proof. By the differentiability of f and the mean value theorem,

f(x, s0, . . . , sn−1)− f(x, r0, . . . , rn−1) = Df(x, s′)(s0 − r0, . . . , sn−1 − rn−1),

a. e. x ∈ (a, b), where

Df(x, s′) =
(∂f(x, s0, . . . , sn−1)

∂s0
, . . . ,

∂f(x, s0, . . . , sn−1)
∂sn−1

)∣∣∣
(x,s′)

and (x, s′) = (x, s′0, . . . , s
′
n−1) ∈ (a, b)×Rnd is on the line connecting the two points

(x, s0, . . . , sn−1) and (x, r0, . . . , rn−1). By matrix multiplication,

f(x, s0, . . . , sn−1)− f(x, r0, . . . , rn−1) =
n−1∑
k=0

∂f(x, s0, . . . , sn−1)
∂sk

(x, s′) (sk − rk),

a. e. x ∈ (a, b). Taking the norm, we have

‖f(x, s0, . . . , sn−1)− f(x, r0, . . . , rn−1)‖ ≤
n−1∑
k=0

|Jk(x, s′k)| ‖sk − rk‖,

a. e. x ∈ (a, b). Therefore, the functions

λk(x) = Jk(x, s′) xn−k−1 ∈ L1(a, b), k = 0, 1, . . . , n− 1

satisfy the Lipschitz condition (1.2). �

When f in Theorem 1.1 is linear, the results can be stated as the corollary below.
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Corollary 3.2. Let a < 0 < b and y : (a, b) → Rd be a solution of

y(n) + an−1(x, y)y(n−1) + · · ·+ ao(x, y)y = 0, x ∈ (a, b),

where y(n−1) is absolutely continuous on (a, b), and the coefficient functions

|ak(x, y)| ≤ |λk(x)|
|x|n−k−1

, λk ∈ L1(a, b), k = 0, 1, . . . , n− 1.

If

y(0) = y(1)(0) = · · · = y(n−1)(0) = ~0,

then y ≡ ~0 on (a, b).

Theorem 1.1 is on uniqueness of n-th order differential systems where the nth
derivative of the solution only needs to exist almost everywhere, which is in the
spirit of the classical Carathéodory theorem on the existence of ordinary differential
equations. Theorem 1.1 for n = 1 can be stated as follows.

Consider the differential equation

y′ = f(x, y(x)), x ∈ (a, b), y(xo) = yo.

If f : (a, b)× Rd → Rd satisfies

‖f(x, y1)− f(x, y2)‖ ≤ λ(x)‖y1 − y2‖, a. e. x ∈ (a, b)

where λ ∈ L1(a, b), λ ≥ 0, then the solution of the differential equation is unique.

We conclude by an example to show the sharpness of the orders in (1.2) and
(1.3).

Example. For p ∈ (0, 1/2), let

y = e−1/|x|p , x ∈ (−1, 1), y(k)(0) = 0, k = 0, . . . , n− 1.

Then y and its derivatives are even functions. For x ∈ (0, 1), we have

y′ = p
y

xp+1

y′′ = p
y′

xp+1
− p(p + 1)

y

xp+2

y′′′ = p
y′′

xp+1
− 2p(p + 1)

y′

xp+2
+ p(p + 1)(p + 2)

y′

xp+3

The general form can be written as

y(m)(x) =
m−1∑
k=0

Cn
k

y(k)

|x|m−k+p
, x ∈ (−1, 1) \ {0}, m = 1, . . . , n. (3.1)
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where Cm
k are constants depending on n, k and p. Formula (3.1) can be verified by

induction. Taking derivative of (3.1) for x ∈ (0, 1),

y(m+1)(x) =
m−1∑
k=0

Cm
k

y(k+1)

xm−k+p
+

m−1∑
k=0

Cm
k (−m + k − p)

y(k)

xm−k+p+1
(k′ = k + 1)

=
m∑

k′=1

Cm
k′−1

y(k′)

xm+1−k′+p
+

m−1∑
k=0

Cm
k (−m + k − p)

y(k)

xm+1−k+p

=
m∑

k=0

Cm+1
k

y(k)

xm+1−k+p

where Cm+1
k are constants depending on n, k and p. Therefore (3.1) holds for all

m = 1, . . . , n. We may write the case of m = n as

|y(n)(x)| ≤
n−1∑
k=0

( Cn
k

|x|1−p

) y(k)(x)
|x|n−k−1+2p

=
n−1∑
k=0

λk(x)
y(k)(x)

|x|n−k−1+2p
, ∀x ∈ (−1, 1)\{0}

where λk ∈ L1(−1, 1) for p ∈ (0, 1/2). In (1.2) and (1.3), the order of singularity
corresponding to y(k) is n − k − 1. In this example, the corresponding order is
n− k− 1 + 2p, where p ∈ (0, 1/2) can be arbitrarily small. However it is enough to
make y 6≡ 0 on (−1, 1). Alternatively, we may write

|y(n)(x)| ≤
n−1∑
k=0

( Cn
k

|x|1+p

) y(k)(x)
|x|n−k−1

=
n−1∑
k=0

λ∗
k(x)

y(k)(x)
|x|n−k−1

, ∀x ∈ (−1, 1) \ {0}

Now the order of singularity corresponding to y(k) is n−k−1 as in (1.2) and (1.3),
however

λ∗
k(x) =

Cn
k

|x|1+p
∈ Lq(−1, 1), ∀q <

1
1 + p

, p ∈ (0, 1/2).

Thus we do not have y ≡ 0 as in the conclusions of the theorems.
We are interested in the uniqueness of solutions ordinary differential systems

when the coefficients are allowed to have singularities [9, 10]. In this paper, We
give a Lipschitz type condition for the uniqueness of weak solutions in the style of
the Carathéodory theorem for nonlinear nth order nonlinear ordinary differential
systems. We also give a unique continuation condition for functions satisfying an
nth order Gronwall differential inequality. We use an example to show the sharpness
of the order of singularity required in the conditions.
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