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IMPULSIVE BOUNDARY-VALUE PROBLEMS FOR
FIRST-ORDER INTEGRO-DIFFERENTIAL EQUATIONS

XIAOJING WANG, CHUANZHI BAI

Abstract. This article concerns boundary-value problems of first-order non-
linear impulsive integro-differential equations:

y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0,

∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

y(0) + λ

Z c

0
y(s)ds = −y(c), λ ≤ 0,

where J0 = [0, c] \ {t1, t2, . . . , tp}, f ∈ C(J × R × R × R, R), Ik ∈ C(R, R),
a ∈ C(R, R) and a(t) ≤ 0 for t ∈ [0, c]. Sufficient conditions for the existence
of coupled extreme quasi-solutions are established by using the method of lower
and upper solutions and monotone iterative technique. Wang and Zhang [18]
studied the existence of extremal solutions for a particular case of this problem,
but their solution is incorrect.

1. Introduction

In recent years, many authors have paid attention to the research of differential
equations with impulsive boundary conditions, because of their potential applica-
tions; see for example [4, 6, 9, 12, 13, 15, 17]. First-order and second-order impulsive
differential equations with anti-periodic boundary conditions have also drawn much
attention; see [1, 2, 3, 5, 7, 8, 14, 16, 19].

Recently, Wang and Zhang [18] studied the existence of extremal solutions of
the following nonlinear anti-periodic boundary value problem of first-order integro-
differential equation with impulse at fixed points

y′(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0,

∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

y(0) = −y(T ),
(1.1)

where J = [0, T ], J0 = J \ {t1, t2, . . . , tp}, 0 < t1 < t2 < · · · < tp < T , f ∈
C(J × R × R × R,R), Ik ∈ C(R,R), ∆y(tk) = y(t+k ) − y(t−k ) denotes the jump of
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y(t) at t = tk; y(t+k ) and y(t−k ) represent the right and left limits of y(t) at t = tk,
respectively.

(Ty)(t) =
∫ t

0

k(t, s)y(s)ds, (Sy)(t) =
∫ T

0

h(t, s)y(s)ds,

k ∈ C(D,R+), D = {(t, s) ∈ J × J : t ≥ s}, h ∈ C(J × J,R+). Unfortunately, their
extremal solutions y∗(t), y∗(t) are wrong. In fact, by [18, Theorem 3.1] we obtain

y′∗(t) = f(t, y∗(t), (Ty∗)(t), (Sy∗)(t)), t ∈ J0,

∆y∗(tk) = Ik(y∗(tk)), k = 1, 2, . . . , p,

y∗(0) = −y∗(T ),

and

y∗′(t) = f(t, y∗(t), (Ty∗)(t), (Sy∗)(t)), t ∈ J0,

∆y∗(tk) = Ik(y∗(tk)), k = 1, 2, . . . , p,

y∗(0) = −y∗(T ),

which implies that y∗(t), y∗(t) are not solutions of (1.1). So the conclusions of [18]
are reconsidered here, for a more general equation.

In this paper, we investigate the following integral boundary value problem for
first-order integro-differential equation with impulses at fixed points

y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0,

∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

y(0) + λ

∫ c

0

y(s)ds = −y(c), λ ≤ 0,

(1.2)

where J = [0, c], J0 = J \ {t1, t2, . . . , tp}, 0 < t1 < t2 < · · · < tp < c, f ∈
C(J × R× R× R,R), Ik ∈ C(R,R), a ∈ C(R,R) and a(t) ≤ 0 for t ∈ J .

(Ty)(t) =
∫ t

0

k(t, s)y(s)ds, (Sy)(t) =
∫ c

0

h(t, s)y(s)ds,

k ∈ C(D,R+), D = {(t, s) ∈ J × J : t ≥ s}, h ∈ C(J × J,R+).

Remark 1.1. If a(t) ≡ 0 and λ ≡ 0, then (1.2) reduces to (1.1).

We will give the concept of coupled quasi-solutions of BVP (1.2) in next sec-
tion. It is well known that the monotone iterative technique offers an approach for
obtaining approximate solutions of nonlinear differential equations, for details, see
[10, 11] and the references therein. The aim of this paper is to investigate the ex-
istence of coupled quasi-solutions of (1.2) by using the method of upper and lower
solutions combined with a monotone iterative technique. Our result correct and
generalize the main result of [18].

2. Preliminaries

In this section, we present some definitions needed for introducing the concept
of quasi-solutions for (1.2). Let

PC(J) = {y : J → R : y is continuous at t ∈ J0;

y(0+), y(T−), y(t+k ), y(t−k ) exist and y(t−k ) = y(tk), k = 1, . . . , p},
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PC1(J) = {y ∈ PC(J) : y is continuously differentiable for t ∈ J0;

y′(0+), y′(T−), y′(t+k ), y′(t−k ) exist, k = 1, . . . , p},

The sets PC(J) and PC1(J) are Banach spaces with the norms

‖y‖PC(J) = sup{|y(t)| : t ∈ J}, ‖y‖PC1(J) = ‖y‖PC(J) + ‖y′‖PC(J).

Definition 2.1. Functions α0, β0 ∈ PC1(J) are said to be coupled lower-upper
quasi-solutions to the problem (1.2) if

α′0(t) + a(t)α0(t) ≤ f(t, α0(t), (Tα0)(t), (Sα0)(t)), t ∈ J0,

∆α0(tk) ≤ Ik(α0(tk)), k = 1, 2, . . . , p,

α0(0) + λ

∫ c

0

α0(s)ds ≤ −β0(c), λ ≤ 0,

β′0(t) + a(t)β0(t) ≥ f(t, β0(t), (Tβ0)(t), (Sβ0)(t)), t ∈ J0,

∆β0(tk) ≥ Ik(β0(tk)), k = 1, 2, . . . , p,

β0(0) + λ

∫ c

0

β0(s)ds ≥ −α0(c), λ ≤ 0.

(2.1)

Note that if α0(c) = β0(c), then the above definition reduces to the notion of
lower and upper solutions of (1.2).

Definition 2.2. Functions v, w ∈ PC1(J) are said to be coupled quasi-solutions
to (1.2) if

v′(t) + a(t)v(t) = f(t, v(t), (Tv)(t), (Sv)(t)), t ∈ J0,

∆v(tk) = Ik(v(tk)), k = 1, 2, . . . , p,

v(0) + λ

∫ c

0

v(s)ds = −w(c), λ ≤ 0,

w′(t) + a(t)w(t) = f(t, w(t), (Tw)(t), (Sw)(t)), t ∈ J0,

∆w(tk) = Ik(w(tk)), k = 1, 2, . . . , p,

w(0) + λ

∫ c

0

w(s)ds = −v(c), λ ≤ 0.

(2.2)

Let α0, β0 ∈ PC1(J) and α0(t) ≤ β0(t) for t ∈ J0. In what follows we define the
segment

[α0, β0] = {u ∈ PC1(J) : α0(t) ≤ u(t) ≤ β0(t), t ∈ J}.

Definition 2.3. Let u, v be coupled quasi-solutions of (1.2) such as u(t) ≤ v(t)
for t ∈ J0. Assume that α0, β0 ∈ PC1(J) and α0(t) ≤ β0(t) for t ∈ J0. Coupled
quasi-solutions u, v of (1.2) are called coupled minimal-maximal quasi-solutions in
segment [α0, β0] if α0(t) ≤ u(t), v(t) ≤ β0(t) for t ∈ J0 and for any U, V coupled
quasi-solutions of (1.2), such as α0(t) ≤ U(t), V (t) ≤ β0(t) for t ∈ J0 we have
u(t) ≤ U(t) and V (t) ≤ v(t), t ∈ J0.

For convenience, we assume the following conditions are satisfied
(H1) Functions α0(t), β0(t) are coupled lower-upper quasi-solutions of (1.2) such

that α0(t) ≤ β0(t) for t ∈ J0.
(H2) There exist M > 0, N,N1 ≥ 0 such that

f(t, x1, y1, z1)− f(t, x2, y2, z2) ≥ −M(x1 − x2)−N(y1 − y2)−N1(z1 − z2),
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for α0 ≤ x2 ≤ x1 ≤ β0, Tα0 ≤ y2 ≤ y1 ≤ Tβ0, Sα0 ≤ z2 ≤ z1 ≤ Sβ0,
t ∈ J .

(H3) There exist 0 ≤ Lk < 1, k = 1, 2, . . . , p, satisfy

Ik(x)− Ik(y) ≥ −Lk(x− y),

for α0 ≤ y ≤ x ≤ β0, t ∈ J .

Now we consider the problem

y′(t) +My(t) +N(Ty)(t) +N1(Sy)(t) = σ(t), t ∈ J0,

∆y(tk) = −Lky(tk) + bk, k = 1, 2, . . . , p,

y(0) = b,

(2.3)

where M > 0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p.

Lemma 2.4. If y ∈ PC1(J), M > 0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p, and

k̄ + h̄+
p∑

i=1

Li < 1, (2.4)

where

k̄ =


k0cM

−1(1− e−Mc), if M > 1,
k0cM

−1(1−Me−Mc), if 0 < M ≤ 1,
1
2k0c

2, if M = 0.

h̄ =

{
h0cM

−1(1− e−Mc), if M > 0,
h0c

2, if M = 0,

where k0 = max0≤s≤t≤c k(t, s) and h0 = max0≤t,s≤c h(t, s). Then (2.3) has a
unique solution.

Proof. If y ∈ PC1(J) is a solution of (2.3), then, by integrating, we obtain

y(t) = be−Mt +
∫ t

0

e−M(t−s)[σ(s)−N(Ty)(s)−N1(Sy)(s)]ds

+
∑

0<ti<t

e−M(t−ti)(−Liy(ti) + bi).
(2.5)

Conversely, if y(t) ∈ PC(J) is solution of the above-mentioned integral equation
(2.5), then it is easy to check that y′(t) = −My(t)−N(Ty)(t)−N1(Sy)(t) + σ(t),
t 6= tk, ∆y(tk) = −Lky(tk)+ bk, k = 1, 2, . . . , p, and y(0) = b. So (2.3) is equivalent
to the integral equation (2.5). Now, we define operator B : PC(J) → PC(J) as

(By)(t) = be−Mt +
∫ t

0

e−M(t−s)[σ(s)−N(Ty)(s)−N1(Sy)(s)]ds

+
∑

0<ti<t

e−M(t−ti)(−Liy(ti) + bi).
(2.6)

For each u, v ∈ PC(J), we have
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|(Bu)(t)− (Bv)(t)| ≤N
∣∣∣ ∫ t

0

e−M(t−s)(Tu− Tv)(s)ds
∣∣∣

+N1

∣∣∣ ∫ t

0

e−M(t−s)(Su− Sv)(s)ds
∣∣∣

+
∑

0<ti<t

Li|e−M(t−ti)(u(ti)− v(ti))|.

(2.7)

We easily check that∣∣ ∫ t

0

e−M(t−s)(Tu− Tv)(s)ds
∣∣

≤


k0tM

−1(1− e−Mt)‖u− v‖PC , if M > 1,
k0tM

−1(1−Me−Mt)‖u− v‖PC , if 0 < M ≤ 1,
k0

1
2 t

2‖u− v‖PC , if M = 0,

(2.8)

and∣∣ ∫ t

0

e−M(t−s)(Su− Sv)(s)ds
∣∣ ≤ {

h0cM
−1(1− e−Mt)‖u− v‖PC , if M > 0,

h0ct‖u− v‖PC , if M = 0.
(2.9)

Substituting (2.8) and (2.9) into (2.7), we obtain

‖Bu−Bv‖PC ≤ (k̄ + h̄+
p∑

i=1

Li)‖u− v‖PC .

This indicates that B is a contraction mapping (by (2.4)). Then there is one unique
y ∈ PC(J) such that By = y, that is, (2.3) has a unique solution. �

Lemma 2.5 ([18]). Assume that y ∈ PC1(J) satisfies

y′(t) +My(t) +N(Ty)(t) +N1(Sy)(t) ≤ 0, t ∈ J0,

∆y(tk) ≤ −Lky(tk), k = 1, 2, . . . , p,

y(0) ≤ 0,
(2.10)

where M > 0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p, and∫ c

0

q(s)ds ≤
p∏

j=1

(1− L̄j) (2.11)

with L̄k = max{Lk, 0}, k = 1, 2, . . . , p,

q(t) = N

∫ t

0

k(t, s)eM(t−s)
∏

s<tk<c

(1−Lk)ds+N1

∫ c

0

h(t, s)eM(t−s)
∏

s<tk<c

(1−Lk)ds,

then y ≤ 0.

3. Main result

Theorem 3.1. If (H1),(H2),(H3) are satisfied, and, in addition, if there exist M >
0, N,N1 ≥ 0, Lk < 1, k = 1, 2, . . . , p, such that (2.4) and (2.11) hold, then (1.2)
has, in segment [α0, β0] the coupled minimal-maximal quasi-solutions.
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Proof. For convenience, let (Kφ)(t) = N(Tφ)(t) + N1(Sφ)(t). We now construct
two sequences {αn(t)} and {βn(t)} that satisfy the following problems

α′i(t) + a(t)αi−1(t) +Mαi(t) + (Kαi)(t)

= f(t, αi−1(t), (Tαi−1)(t), (Sαi−1)(t)) +Mαi−1(t) + (Kαi−1)(t), t ∈ J0,

∆αi(tk) = Ik(αi−1(tk))− Lk(αi(tk)− αi−1(tk)), k = 1, 2, . . . , p,

αi(0) + λ

∫ c

0

αi−1(s)ds = −βi−1(c),

(3.1)

and
β′i(t) + a(t)βi−1(t) +Mβi(t) + (Kβi)(t)

= f(t, βi−1(t), (Tβi−1)(t), (Sβi−1)(t)) +Mβi−1(t) + (Kβi−1)(t), t ∈ J0,

∆βi(tk) = Ik(βi−1(tk))− Lk(βi(tk)− βi−1(tk)), k = 1, 2, . . . , p,

βi(0) + λ

∫ c

0

βi−1(s)ds = −αi−1(c).

(3.2)

For each φ, ψ ∈ [α0, β0], we consider the equation

y′(t) +My(t) + (Ky)(t)

= f(t, φ(t), (Tφ)(t), (Sφ)(t))− a(t)φ(t) +Mφ(t) + (Kφ)(t), t ∈ J0,

∆y(tk) = Ik(φ(tk))− Lk(y(tk)− φ(tk)), k = 1, 2, . . . , p,

y(0) + λ

∫ c

0

φ(s)ds = −ψ(c).

(3.3)

By condition (2.4) and Lemma 2.4, we know that (3.3) has a unique solution
y(t) ∈ PC1(J). Define the operator A : PC1(J)×PC1(J) → PC1(J) as A(φ, ψ) =
y. Let αn(t) = A(αn−1, βn−1)(t) and βn(t) = A(βn−1, αn−1)(t), n = 1, 2, . . . , we
will prove that {αn}, {βn} have the following properties.

(i) αi−1 ≤ αi, βi ≤ βi−1;
(ii) αi ≤ βi, i = 1, 2, ....

Firstly, we prove that α0 ≤ α1. Set p(t) = α0(t)− α1(t), it follows that

p′(t) +Mp(t) +N(Tp)(t) +N1(Sp)(t) = p′(t) +Mp(t) + (Kp)(t) ≤ 0,

∆p(tk) ≤ −Lkp(tk), k = 1, 2, . . . , p,

p(0) ≤ 0.
(3.4)

Then by condition (2.11) and Lemma 2.5, we get p(t) ≤ 0, which implies that
α0(t) ≤ α1(t), for all t ∈ J0. In a similar way, it can be proved that β1(t) ≤ β0(t),
for all t ∈ J0. Now we prove that α1(t) ≤ β1(t), for all t ∈ J0. In fact, setting
p(t) = α1(t)− β1(t) and using assumption, we obtain

p′(t) +Mp(t) +N(Tp)(t) +N1(Sp)(t)

= α′1(t)− β′1(t) +M(α1(t)− β1(t)) +N(Tα1(t)− Tβ1(t)) +N1(Sα1(t)− Sβ1(t))

= f(t, α0(t), (Tα0)(t), (Sα0)(t))− a(t)α0(t) +Mα0(t) +N(Tα0)(t) +N1(Sα0)(t)

− f(t, β0(t), (Tβ0)(t), (Sβ0)(t)) + a(t)β0(t)−Mβ0(t)−N(Tβ0)(t)−N1(Sβ0)(t)

≤ a(t)(β0(t)− α0(t)) ≤ 0, t ∈ J0,

and

∆p(tk) = −Lkp(tk) + Ik(α0(tk))− Ik(β0(tk)) + Lkα0(tk)− Lkβ0(tk) ≤ −Lkp(tk),
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p(0) = α1(0)− β1(0) = λ

∫ c

0

(β0(s)− α0(s))ds+ α0(c)− β0(c) ≤ 0.

Again by Lemma 2.5, we obtain p(t) ≤ 0, that is, α1(t) ≤ β1(t) for all t ∈ J0. Thus
we have α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t) for all t ∈ J0. Continuing this process, by
induction, one can obtain monotone sequence {αn(t)} and {βn(t)} such that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ · · · ≤ βn(t) ≤ . . . β1(t) ≤ β0(t), t ∈ J0,

where each αi(t), βi(t) ∈ PC1(J) satisfies (3.1) and (3.2). As the sequences {αn},
{βn} are uniformly bounded and equi-continuous, by employing the standard argu-
ments Ascoli-Arzela criterion [12], we conclude that the sequences {αn} and {βn}
converge uniformly on J0 with

lim
n→∞

αn(t) = y∗(t), lim
n→∞

βn(t) = y∗(t).

Obviously, y∗(t), y∗(t) are coupled lower-upper quasi-solutions of (1.2). Now we
have to prove that (y∗, y∗) are coupled minimal-maximal quasi-solutions of problem
(1.2) in segment [α0, β0]. Let x, z be coupled quasi-solutions of (1.2) such that

αn(t) ≤ x(t), z(t) ≤ βn(t), t ∈ J0

for some n ∈ N. Put q(t) = αn+1(t)−x(t), for t ∈ J0. Form definition of αn+1 and
properties of quasi-solution x(t), we obtain

q′(t) +Mq(t) +N(Tq)(t) +N1(Sq)(t)

= f
(
t, αn(t), (Tαn)(t), (Sαn)(t)

)
− a(t)αn(t) +Mαn(t) +N(Tαn)(t)

+N1(Sαn)(t)− f
(
t, x(t), (Tx)(t), (Sx)(t)

)
+ a(t)x(t)−Mx(t)

−N(Tx)(t)−N1(Sx)(t)

≤ a(t)(x(t)− αn(t)) ≤ 0, t ∈ J0,

and

∆q(tk) = −Lkq(tk) + Ik(αn(tk))− Ik(x(tk)) + Lkαn(tk)− Lkx(tk) ≤ −Lkq(tk),

q(0) = αn+1(0)− x(0) = λ

∫ c

0

(x(s)− αn(s))ds+ z(c)− βn(c) ≤ 0.

By Lemma 2.5, we have q(t) ≤ 0 for all t ∈ J0, that is αn+1(t) ≤ x(t). Similarly,
we can prove that z(t) ≤ βn+1(t) for all t ∈ J0.

By induction, we obtain

αm(t) ≤ x(t), z(t) ≤ βm(t), t ∈ J0, for m ∈ N.

If m→∞, it yields

y∗(t) ≤ x(t), z(t) ≤ y∗(t), t ∈ J0.

It shows that (y∗, y∗) are coupled minimal-maximal quasi-solutions of problem (1.2)
in segment [α0, β0]. �
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Example 3.2. Consider the problem

y′(t)− t

4
(1− e−t)y(t) = −y(t)− 1

8

∫ t

0

te−(t−s)y(s)ds− 5
6

∫ 1

0

y(s)ds,

t ∈ [0, t1) ∪ (t1, 1],

∆y(t1) = −1
9
y(t1), t1 =

1
3

y(0)− 1
6

∫ 1

0

y(s)ds = −y(1).

(3.5)

where a(t) = − t
4 (1 − e−t) ≤ 0, I1(x) = − 1

9x, L1 = 1
9 and λ = − 1

6 < 0. Let
f(t, x, y, z) = −Mx − Ny − N1z, M = 1, N = 3

8 , N1 = 5
6 , J = [0, 1], c = 1,

k(t, s) = t
3e
−(t−s), h(t, s) = 1, then for t ∈ J , xi, yi, zi ∈ R, i = 1, 2, x1 ≥ x2,

y1 ≥ y2, z1 ≥ z2,

f(t, x1, y1, z1)− f(t, x2, y2, z2) = −(x1 − x2)−
3
8
(y1 − y2)−

5
6
(z1 − z2).

Thus the condition (H2) holds. It is easy to see that k0 = 1
3 , h0 = 1, k̄ = 1

3 h̄ =
1
3 (1− e−1) and

h̄+ k̄ + L1 = 0.9359 < 1.

Hence the condition (2.4) holds. Moreover, we have∫ 1

0

q(s)ds ≤
∫ 1

0

(3
8

∫ t

0

t

3
e−(t−s)e(t−s)(1− L1)ds+

5
6

∫ 1

0

e(t−s)(1− L1)ds
)
dt

=
∫ 1

0

( t2
18

+
20
27

(1− e−1)et
)
dt

=
1
54

+
20
27

(e+ e−1 − 2) = 0.8231 < 0.8889 = 1− L1,

which implies that the condition (2.11) holds. Let

α0(t) = −5
4
, β0(t) = 2− t, t ∈ [0, 1].

Then α0(t) and β0(t) are coupled lower-upper quasi-solutions of problem (??). In
fact,

α′0(t) + a(t)α0(t) =
5
16
t(1− e−t) ≤ 2 +

5
32
t(1− e−t)

<
5
4

+
5
32

∫ t

0

te−(t−s)ds+
25
24

∫ 1

0

ds

= f(t, α0(t), (Tα0)(t), (Sα0)(t)),

∆α0(1/3) = 0 <
5
36

= −L1α0(1/3)

α0(0)− 1
6

∫ 1

0

α0(s)ds = −25
24

< −1 = −β0(1),
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and

β′0(t) + a(t)β0(t) = −1− 1
4
t(1− e−t)(2− t)

≥ −1− 1
4
(1− e−1)

> −27
12

+
3
8
e−1

≥ t− 2− 1
8
t(3− t) +

3
8
te−t − 15

12

= t− 2− 1
8

∫ t

0

te−(t−s)(2− s)ds− 5
6

∫ 1

0

(2− s)ds

= f(t, β0(t), (Tβ0)(t), (Sβ0)(t)),

∆β0(1/3) = 0 > − 5
27

= −L1β0(1/3)

β0(0)− 1
6

∫ 1

0

β0(s)ds =
7
4
>

5
4

= −α0(1).

Obviously, α0(t) ≤ β0(t). Thus, all the conditions of Theorem 3.1 are satisfied,
so problem (3.5) has the coupled minimal-maximal quasi-solutions in the segment
[α0(t), β0(t)].
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