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REGULARITY FOR 3D NAVIER-STOKES EQUATIONS IN
TERMS OF TWO COMPONENTS OF THE VORTICITY

SADEK GALA

Abstract. We establish regularity conditions for the 3D Navier-Stokes equa-
tion via two components of the vorticity vector. It is known that if a Leray-

Hopf weak solution u satisfies

ω̃ ∈ L2/(2−r)(0, T ; L3/r(R3)) with 0 < r < 1,

where ω̃ form the two components of the vorticity, ω = curl u, then u becomes

the classical solution on (0, T ] (see [5]). We prove the regularity of Leray-Hopf

weak solution u under each of the following two (weaker) conditions:

ω̃ ∈ L2/(2−r)(0, T ;Ṁ2,3/r(R3)) for 0 < r < 1,

∇ũ ∈ L2/(2−r)(0, T ;Ṁ2,3/r(R3)) for 0 ≤ r < 1,

where Ṁ2,3/r(R3) is the Morrey-Campanato space. Since L3/r(R3) is a proper

subspace of Ṁ2,3/r(R3), our regularity criterion improves the results in Chae-

Choe [5].

1. Introduction

We consider the Navier-Stokes equations, in R3,

∂tu + (u · ∇)u−∆u +∇p = 0, (x, t) ∈ R3 × (0, T ),

div u = 0, (x, t) ∈ R3 × (0, T ),

u(x, 0) = u0(x), x ∈ R3,

(1.1)

where u = u(x, t) is the velocity field, p = p(x, t) is the scalar pressure and u0(x)
with div u0 = 0 in the sense of distribution is the initial velocity field. For simplicity,
we assume that the external force has a scalar potential and is included in the
pressure gradient.

In their well known articles, Leray [15] and Hopf [10] independently constructed
a weak solution u of (1.1) for arbitrary u0 ∈ L2(R3) with div u0 = 0. The solution is
called the Leray-Hopf weak solution. Regularity of such Leray-Hopf weak solutions
is one of the most significant open problems in mathematical fluid mechanics. Here
we mean by the weak solution a function u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1(R3))
satisfying (1.1) in sense of distributions.
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A weak solution of the Navier-Stokes equation that belongs to L∞(0, T ;H1(R3))∩
L2(0, T ;H2(R3)) is called a strong solution. Introducing the class Lα(0, T ;Lq(R3)),
it is shown that if a Leray-Hopf weak solution u belongs to Lα((0, T );Lq(R3)) with
the exponents α and q satisfying 2

α + 3
q ≤ 1, 2 ≤ α < ∞, 3 < q ≤ ∞, then

u(x, t) ∈ C∞(R3 × (0, T )) [20, 18, 19, 8, 21, 22, 9], while the limit case α = ∞,
q = 3 was covered much later Escauriaza, Seregin and Sverak in [7]. See also [12]
for recent improvements of the criteria, using the negative order Triebel-Lizorkin
spaces.

On the other hand, Beirão da Veiga [1] obtained a sufficient condition for regu-
larity using the vorticity rather than velocity. His result says that if the vorticity
ω =curl u of a weak solution u belongs to the space Lα(0, T ;Lq(R3)) with 2

α + 3
q ≤ 2

and 1 ≤ α < ∞, then u becomes the strong solution on (0, T ]. Later, Chae-Choe
[5] obtained an improved regularity criterion of [1] imposing condition on only two
components of the vorticity, namely if

ω̃ = (ω1, ω2, 0) ∈ Lα(0, T ;Lq(R3)) with
2
α

+
3
q
≤ 2, 1 ≤ α < ∞, (1.2)

then the weak solution becomes smooth.
The purpose of this article is to prove the result of [5] in the other cases, proving

that if ω̃ ∈ L2/(2−r)(0, T ;Ṁ2,3/r(R3)) with 0 < r < 1, then the weak solution be-
comes smooth. Here Ṁ2,3/r(R3) is the Morrey-Campanato space, which is strictly
bigger than L3/r(R3) (see the next section for the related embedding relations). We
remark that in the limiting case r = 0, Kozono-Yatsu [13] previously weakened the
condition ω̃ ∈ L1(0, T ;L∞(R3)) of [5] into ω̃ ∈ L1(0, T ; Ḃ0

∞,∞(R3)), where Ḃ0
∞,∞

is the Besov space.

2. Preliminaries and the main theorems

Now, we recall the definition and some properties of the space that we are going
to use. These spaces play an important role in studying the regularity of solutions
to partial differential equations (see e.g. [11, 23]).

Definition 2.1. For 1 < p ≤ q ≤ +∞, the Morrey-Campanato space Ṁp,q(R3) is
defined as

Ṁp,q(R3)

=
{
f ∈ Lp

loc(R
3) : ‖f‖Ṁp,q

= sup
x∈R3

sup
R>0

R3/q−3/p‖f(y)1B(x,R)(y)‖Lp(dy) < ∞
}

It is easy to check that

‖f(λ·)‖Ṁp,q
=

1
λ3/q

‖f‖Ṁp,q
, λ > 0,

Ṁp,∞(R3) = L∞(R3) for 1 ≤ p ≤ ∞.

Additionally, for 2 ≤ p ≤ 3/r and 0 ≤ r < 3/2 we have the following embedding
relations:

L3/r(R3) ↪→ L3/r,∞(R3) ↪→ Ṁp,3/r(R3),

where Lp,∞ denotes the weak Lp−space. The second relation

L3/r,∞(R3) ↪→ Ṁp, 3
r
(R3)
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is shown as follows.

‖f‖Ṁp,3/r
≤ sup

E
|E|

r
3−

1
p

( ∫
E

|f(y)|pdy
)1/p

(f ∈ L3/r,∞(R3))

=
(

sup
E
|E|

pr
3 −1

∫
E

|f(y)|pdy
)1/p

∼=
(

sup
R>0

R|{x ∈ R3 : |f(y)|p > R}|pr/3
)1/p

= sup
R>0

R|{x ∈ Rp : |f(y)| > R}|r/3

∼= ‖f‖L3/r,∞ .

Remark 2.2. For the case q = 3/2 in (1.2), we can show that there exists an
absolute constant δ such that if the weak solution u of (1.1) on (0, T ) with energy
inequality satisfies

sup
0<t<T

‖ω̃(t)‖L3/2,∞ ≤ δ,

then u is actually regular (see [13, p. 60], [3]). As another type of criterion,
Neustupa-Novotny-Penel [17] considered suitable weak solution u = (u1, u2, u3)
introduced by Caffarelli-Kohn-Nirenberg [4] and showed regularity of u under the
hypothesis that u3 ∈ Lα(0, T ;Lq(R3)) with 2

α + 3
q = 1

2 (see [6]). The corresponding
result for u to the above case was obtained by Berselli [2] who proved regularity
under the assumption that sup0<t<T ‖ũ(t)‖L3,∞ is sufficiently small, where ũ =
(u1, u2, 0).

We need the following lemma which is essentially due to Lemarié -Rieusset [14].

Lemma 2.3. For 0 ≤ r < 3/2, the space Żr(R3) is defined as the space of f(x) ∈
L2

loc(R3) such that
‖f‖Żr

= sup
‖g‖Ḃr

2,1
≤1

‖fg‖L2 < ∞.

Then f ∈ Ṁ2,3/r(R3) if and only if f ∈ Żr(R3) with equivalence of norms.

Since L3/r(R3) Ṁ2,3/r(R3), the above regularity criterion is an improvement
on Chae-Choe’ s result and hence our regularity criterion covers the recent result
given by Chae-Choe [5]. Our result on (1.1) reads as follows.

Theorem 2.4. Let u0 ∈ L2(R3) with ∇.u0 = 0 and ω0 =curl u0 ∈ L2(R3). If
the first two components of the vorticity ω̃ = ω1e1 + ω2e2 of the Leray-Hopf weak
solution u, satisfies ω̃ ∈ L2/(2−r)(0, T,Ṁ2,3/r(R3)) with 0 < r < 1, then u becomes
the classical solution on (0, T ].

Remark 2.5. As an immediate consequence of the above theorem, we find that if
the classical solution of the Navier-Stokes equations blow-up at time T , then

‖ω̃‖L2/(2−r)(0,T,Ṁ2,3/r(R3)) = ∞,

where ω̃ is any two component vector of ω.

Our second theorem concerns the regularity criterion in terms of gradients of the
components of velocity.
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Theorem 2.6. Let ũ = u1e1 + u2e2 be the first two components of a Leray-Hopf
weak solution of the Navier-Stokes equation corresponding to u0 ∈ H1(R3) with
div u0 = 0. Suppose that ∇ũ ∈ L2/(2−r)(0, T,Ṁ2,3/r(R3)) with 0 ≤ r < 1, then u
becomes the classical solution on (0, T ].

3. Proof of Theorem 2.4

Now we are in a position to prove our main result.

Proof. Taking the curl on (1.1), we obtain

∂tω −∆ω + (u · ∇)ω − (ω · ∇)u = 0. (3.1)

Multiplying (3.1) by ω in L2(R3) and integrating by parts, we obtain

1
2

d

dt
‖ω(t, ·)‖2L2 + ‖∇ω(t, ·)‖2L2 = 〈ω · ∇u, ω〉. (3.2)

Here we have used the identity

〈u · ∇ω, ω〉 = 0.

Using the Biot-Savart law, u is written in terms of ω:

u(x, t) = − 1
4π

∫
R3

(x− y)× ω(x, t)
|x− y|3

dy.

Substituting this into the right hand side of (3.2), we obtain

〈ω · ∇u, ω〉 =
3
4π

∫
R3

∫
R3

y

|y|
· ω(x, t)

{ y

|y|4
× ω(x + y, t) · ω(x, t)

}
dy dx.

We decompose ω for the vorticities in {·} as follows

ω = ω̃ + ω′, ω̃ = ω1e1 + ω2e2, ω′ = ω3e3.

Since ω′ = (0, 0, ω3), there holds

3
4π

∫
R3

∫
R3

y

|y|
· ω(x, t)

{ y

|y|4
× ω′(x + y, t) · ω′(x, t)

}
dy dx = 0

for all 0 < t < T . Then, it follows

〈ω · ∇u, ω〉 =
3
4π

∫
R3

∫
R3

y

|y|
· ω(x, t){ y

|y|4
× ω̃(x + y, t) · ω′(x, t)} dy dx

+
3
4π

∫
R3

∫
R3

y

|y|
· ω(x, t){ y

|y|4
× ω̃(x + y, t) · ω̃(x, t)} dy dx

+
3
4π

∫
R3

∫
R3

y

|y|
· ω(x, t){ y

|y|4
× ω′(x + y, t) · ω̃(x, t)} dy dx,

(3.3)

where all the integrations with respect to y are in the sense of principal value. Using
the following interpolation inequality [16]:

‖w‖Ḃr
2,1
≤ C‖w‖1−r

L2 ‖∇w‖r
L2 , r ∈ (0, 1)
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it is easy to see that by Lemma 2.3

|〈ω · ∇u, ω〉|

≤ C

∫
R3
|ω(x, t)||P (ω̃)||ω′(x, t)|dx

+ C

∫
R3
|ω(x, t)||P (ω̃)||ω̃(x, t)|dx

+ C

∫
R3
|ω(x, t)||P (ω′)||ω̃(x, t)|dx

≤ C

∫
R3
|ω|2|P (ω̃)|dx + C

∫
R3
|ω||P (ω′)||ω̃|dx

≤ C‖ω‖L2‖ω · P (ω̃)‖L2 + C‖ω̃ · P (ω′)‖L2‖ω‖L2

≤ C‖ω‖L2‖ω‖Ḃr
2,1
‖P (ω̃)‖Ṁ2,3/r

+ C‖ω‖L2‖P (ω′)‖Ḃr
2,1
‖ω̃‖Ṁ2,3/r

≤ C‖ω̃‖Ṁ2,3/r
‖ω‖L2‖ω‖Ḃr

2,1
+ C‖ω‖L2‖ω̃‖Ṁ2,3/r

‖ω′‖Ḃr
2,1

≤ C‖ω̃‖Ṁ2,3/r
‖ω‖2−r

L2 ‖∇ω‖r
L2

where P (.) denotes the singular integral operator defined by the integrals with
respect to y in (3.3).

By Young’ s inequality, we find

|〈ω · ∇u, ω〉| ≤ C‖ω̃‖2/(2−r)

Ṁ2,3/r
‖ω‖2L2 +

1
2
‖∇ω‖2L2 . (3.4)

Substituting (3.4) in (3.2), we have

d

dt
‖ω(·, t)‖2L2 + ‖∇ω(·, t)‖2L2 ≤ C‖ω̃‖

2
2−r

Ṁ2,3/r
‖ω‖2L2 . (3.5)

By Gronwall’ s inequality we have that

‖ω(·, t)‖L2 ≤ ‖ω(0, ·)‖L2 exp
(
C

∫ T

0

‖ω̃(·, τ)‖2/(2−r)

Ṁ2, 3
r

dτ
)
. (3.6)

This implies
ω ∈ L∞([0, T );L2(R3)) ∩ L2([0, T );H1(R3))

provided that ω̃ satisfies the condition ω̃ ∈ L
2

2−r (0, T ;Ṁ2,3/r(R3)). This proves
Theorem 2.4. �

4. Proof of Theorem 2.6

Now we are in a position to prove our second result.

Proof. We set ũ = (u1, u2, 0). Then, taking the first two components of the vorticity
equation (3.1), we obtain

∂tω̃ −∆ω̃ + (u · ∇)ω̃ − (ω · ∇)ũ = 0.

Multiplying (3.1) by ω̃ in L2(R3) and integrating by parts, we obtain

1
2

d

dt
‖ω̃(t, ·)‖2L2 + ‖∇ω̃(t, ·)‖2L2 = 〈ω · ∇ũ, ω̃〉. (4.1)



6 S. GALA EJDE-2010/153

We first consider the case 0 < r < 1. Using the Hölder inequality and Lemma 2.3,
we estimate

|〈ω · ∇ũ, ω̃〉| = |〈(ω̃ + ω′) · ∇ũ, ω̃〉| ≤ ‖ω̃‖L2‖ω̃ · ∇ũ‖L2

≤ C‖∇ũ‖Ṁ2,3/r
‖ω̃‖L2‖ω̃‖Ḃr

2,1

≤ C‖∇ũ‖Ṁ2,3/r
‖ω̃‖L2‖ω̃‖1−r

L2 ‖∇ω̃‖r
L2

= C(‖∇ũ‖2/(2−r)

Ṁ2,3/r
‖ω̃‖2L2)

2−r
2 ‖∇ω̃‖r

L2

≤ C‖∇ũ‖2/(2−r)

Ṁ2,3/r
‖ω̃‖2L2 +

C

2
‖∇ω̃‖2L2 ,

(4.2)

where we used
〈ω′ · ∇ũ, ω̃〉 = 0.

Estimates (4.2) combined with (4.1), yield
1
2

d

dt
‖ω̃(t, ·)‖2L2 + ‖∇ω̃(t, ·)‖2L2 ≤ C‖∇ũ‖2/(2−r)

Ṁ2,3/r
‖ω̃‖2L2 .

By Gronwall’ s inequality we have

‖ω̃(t, ·)‖L2 ≤ ‖ω̃(0, ·)‖L2 exp
(
C

∫ T

0

‖∇ũ(·, τ)‖2/(2−r)
·
M2,3/r

dτ
)
.

Next we consider the case r = 0. In this case we estimate

|〈ω · ∇ũ, ω̃〉| ≤ ‖ω̃‖L2‖ω̃ · ∇ũ‖L2 ≤ ‖ω̃‖2L2‖∇ũ‖L∞ . (4.3)

This estimate combined with (4.1), yield
1
2

d

dt
‖ω̃(t, ·)‖2L2 + ‖∇ω̃(t, ·)‖2L2 ≤ C‖∇ũ‖L∞‖ω̃‖2L2 .

By Gronwall’ s inequality we have

‖ω̃(t, ·)‖L2 ≤ ‖ω̃(0, ·)‖L2 exp
(
C

∫ T

0

‖∇ũ‖L∞dτ
)
.

This completes the proof of Theorem 2.6. �
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