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ENTIRE SOLUTIONS FOR A CLASS OF p-LAPLACE
EQUATIONS IN R?

ZHENG ZHOU

ABSTRACT. We study the entire solutions of the p-Laplace equation
— div(|VulP"*Vu) + a(z,y) W (u(z,y)) =0, (z,y) € R?

where a(z,y) is a periodic in z and y, positive function. Here W : R — R is
a two well potential. Via variational methods, we show that there is layered
solution which is heteroclinic in « and periodic in y direction.

1. INTRODUCTION

In this paper we consider the p-Laplacian Allen-Cahn equation
—div(|Vul"2Vu) + a(z, y) W' (u(z,y)) =0, (z,y) € R
lirin u(z,y) = £o uniformly w.r.t. y € R.

where we assume 2 < p < oo and

(H1) a(w,y) is Holder continuous on R?, positive and
(i) a(z+1,1) = a(z,y) = alz,y + ).
(i) a(z,y) = a(z, —y).
(H2) W € C’Q( ) satisfies
(i) 0=W(£o) < W(s) for any s € R\ {£o}, and W(s) = O(|s Fo|P) as
s — *+o;
(ii) there exists Ry > o such that W (s) > W(Ry) for any |s| > Ro.

_p1|

For example, here we may take W () 0% — t2|P. This is similar with case

p = 2, where the typical examples of W are given by W (t) = % Hle(t— 2;)?, where
zi,1=1,2,...k < oo are zeros of W (t). The case p = 2 can be viewed as stationary
Allen-Cahn equation introduced in 1979 by Allen and Cahn. We recall that the
Allen-Cahn equation is a model for phase transitions in binary metallic alloys which
corresponds to taking a constant function a and the double well potential W (t). The
function u in these models is considered as an order parameter describing pointwise
the state of the material. The global minima of W represent energetically favorite
pure phases and different values of u depict mixed configurations.
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In 1978, De Giorgi [I1] formulated the following question. Assume N > 1 and
consider a solution u € C?(RY) of the scalar Ginzburg-Laudau equation:

Au = u(u® - 1) (1.2)
satisfying |u(z)| < 1, 2% > 0 for every « = (2/,zy) € RV and  lim  u(z/,zy) =
N rnN—+oo

+1. Then the level sets of u(z) must be hyperplanes; i.e., there exists g € C%(R)
such that u(z) = g(az’ — z,,) for some fixed a € RV~!. This conjecture was first
proved for N = 2 by Ghoussoub and Gui in [I3] and for N = 3 by Ambrosio and
Cabré in [5]. For 4 < N < 8 and assuming an additional limiting condition on u,
the conjecture has been proved by Savin in [25] .

Alessio, Jeanjean and Montecchiari [2] studied the equation —Au+a(z)W'(u) =
0 and obtained the existence of layered solutions based on the crucial condition that
there is some discrete structure of the solutions to the corresponding ODE.

In [3], when a(x,y) > 0 is periodic in 2 and y, the authors got the existence
of infinite multibump type solutions, where a(z,y) = a(x, —y) takes an important
role [3](see also [3l 20] 211 22] 23], 24]).

Inherited from the above results, I wonder under what condition p-Laplace type
equation would have two dimensional layered solutions periodical in y. Adapt-
ing the renormalized variational introduced in [2 [B] (see also [21, 22]) to the p-
Laplace case, we prove

Theorem 1.1. Assume (H1)-(H2). Then there exists entire solution for (1.1)),
which behaves heteroclinic in x and periodic in y direction.

2. THE PERIODIC PROBLEM

To prove Theorem we first consider the equation
—div(|Vul"?Vu) + a(z, y) W' (u(z,y)) =0, (z,y) € R
u(z,y) = u(z,y+1) (2.1)
lim wu(x,y) =40 uniformly w.r.t. y € R.
r—Fo0
The main feature of this problem is that it has mixed boundary conditions, requiring
the solution to be periodic in the y variable and of the heteroclinic type in the x

variable.
Letting Sp = R x [0, 1], we look for minima of the Euler-Lagrange functional

I(u) = /S %Ivu(az,wl” + a(a, )W (u(z, y)) d dy

on the class

I = {u€ Wk (S0) : |[ule, ) F oll pr(o1) — 0. & — oo}

where [u(z1,) — u(z2, W01y = Ji [uz1,5) — u(zz, y)lPdy. Setting
I'y={uel:u(z,0)=u(z,1)for a.e. x € R}
cp = ilgfI and K, ={uel,:I(u)=cp}
P
Then we use the reversibility assumption (H1)-(ii) to show that the minima ¢ on
I’ equals minima ¢, on I';, and so solutions of (2.1

Note the assumptions on a and W are sufficient to prove that I is lower semicon-
tinuous with respect to the weak convergence in VVlicp (So); i.e., if u, — u weakly
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in Wéf(Q) for any € relatively compact in Sp, then I(u) < liminf, o I(up).
Moreover we have

Lemma 2.1. If (u,) C W,5P(Sy) is such that u, — u weakly in W,-P(Sy) and
I(uy) — I(u), then I(u) <liminf, . u, and

/ a(x,y)W(uy,) de dy — a(x,y)W(u)dzx dy
So So

/ [Vu,|? dmdy—>/ [Vul|P de dy
So SO

Proof. Since u, — u weakly in W,27(Sp), IVullLe(sey < liminf, oo Vg | ze(sy)
by the lower semicontinuous of the norm. By compact embedding theorem, we

have u, — win L} (Sp), using pointwise convergence and Fatou lemma, we have

Js, alz, y)W (u) drdy < liminf, .o [o a(z,y)W (u,) dz dy, then

/ a(z,y)W(u) drdy < lim sup/ a(z,y)W(uy,) de dy
S(] SO

n—oo

n—oo

1
= lim sup {I(un) —/ I;|Vun\p dx dy
So

n—oo

1
=1I(u) — liminf/ —|Vuy|P dx dy
Sg p
< / alw, y)W (u) dz dy.
So

Thus, [q a(z,y)W(u,)dedy — [q a(z,y)W(u)dz dy, and since I(u,) — I(u), we
have fSo |V, |P dedy — fSo [Vul|P dz dy. O

By Fubini’s Theorem, if u € VVli’f(S’o), then u(z,-) € WbHP(0,1), and for all
r1,T9 € R, we have

1 1 T2
/ lu(z1,y) — ulza, y)Pdy = / | / Deu(z, y)dalPdy
0 0 Xy

1 T2
<lor—aal ™ [ [ osu(o e de dy
0 ]
< pI(u)|zy — 2o|P 1t

If I(u) < +o0, the function x — u(x,-) is Holder continuous from a dense subset
of R with values in L”(0,1) and so it can be extended to a continuous function on
R. Thus, any function u € Wli’f(So) N {I < 400} defines a continuous trajectory
in L?(0,1) verifying

A(u(er, ), ulzs, )P = / (1, ) — u(za, ) Pdy

< pI(u)|zy — xg\p_l,Vxl,xQ cR.

(2.2)



4 Z. ZHOU EJDE-2010/15

Lemma 2.2. For all r > 0, there exists u, > 0, such that if u € VVli’Cp(So) satisfies
min [[u(z, ) £ ollwir,1) > 7 for a.e. v € (v1,22), then

/:2 {/01 %‘VU‘P—Fa(x,y)W(u(x)y))dy da

U1

1 p—1 (2.3)

> Wd(u(m,.),U(xz, P+ . /tr P (29 — 1)
> ppd(u(z, ), u(xe, -))

Proof. We define the functional

IWM%)%=A Q@Wuﬁmp+@w«m%y»@

on W1P(0,1), where a¢ = ming: a(x,y) > 0. To prove the lemma, we first to claim
that:

For any r > 0, there exists p, > 0, such that if q( ) € WbP(0,1) is such that
min [|¢(y) £ ollwir) > 7, thenF(g(y)) > B2 Namely, if g,(-) € W'P(0,1)
and F(q,) — 0, then min ||g, + ol|w1r,1) — O.

Assume by contradiction that if F'(g,) — 0 and min ||g, + 0| p(0,1) > €0 > 0.
Then there exists a sequence (yL) C [0,1] such that min |g,(yl) £ o| > 9. Since

fol aW (g, )dy — 0 there exists a sequence (y2) C [0,1] such that |g,(y2) £ o| < 5.
Then

€0
5 < |Qn(y721) - Qn(yrlz)|

2

Yn
g/ i (£) |

YL

2 11-12 b » 1/p
<l —ul | [ o]

(F(an)"? — 0.

D=

<p
It is a contradiction.

Since min ||g, + 0| z=,1) — 0 as F(g,) — 0, then fol |Gn(y)|Pdy — 0, and it
follows that |lg, — o||w1r,1) — 0 as F(gn) — 0.

Observe that if (z1,72) C R and u € W P(Sp) are such that F(u(z,-)) >

=1, » 7T for a.e. x € (x1,22), by Holder’s and Yung’s inequalities we have

/mg [/1 —|Vul|? + a(z, y) W (u(z, y))dy} dx

/ / |0, u|palydyc+/g51 / —[0yul? + aW (u) dy dx
/ / 10, u|pda:dy+/ Flu(z, ))dz

1
,Wd(u(m, ), u(xz,-))? +7M 7T (23— 11)

2> M?'d(u(mlv ')a U(JTQ, ))
The proof is complete. O
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As a direct consequence of Lemma [2.2] we have the following result.

Lemma 2.3. Ifu € WI})’p(So) N{I < +oo}, then d(u(z,), £0) — 0 as z — +oo.

C

Proof. Note that since

p

W(u(z,y)) — 0 as |z| — +o00. Then by Lemma liminf, 4o d(u(z,-),0) =
0. Next we show that limsupwﬂ+ood(u(x,-),a) = 0 by contradiction. We as-
sume that there exists r € (0,0/4) such that limsup, ., d(u(z,-),0) > 2r,
by there exists infinite intervals (p;,s;),4 € N such that d(u(pi7~),a) =,
ﬁz(si,-),a) =2r and r < d(u(m,-),a) < 2r for € U;(p;, 8i), ¢ € N by Lemma
this implies I(u) = 400, it’s a contradiction. Similarly, we can prove that
limg oo d(u(z, ), —0) = 0. O

I(u) = /S 1|Vu|p + a(z,y)W (u(z,y)) dr dy < +oo,

Now we consider the functional on the class

r={uce VVﬁ)’p(So) : I(u) < 400, d(u(z,-),+0) — 0 as x — Fo0}

Let
c:irllfl and K={uel:I(u)=c} (2.4)

We will show that K is not empty, and we start noting that the trajectory in I'
with action close to the minima has some concentration properties.
For any & > 0, we set

1
A = =07 + ) - W(s). 2.5
5= maxa(z, y) e (s) (2.5)

Lemma 2.4. There exists g € (0,0/2) such that for any 6 € (0,0q) there exists
ps >0 and ls > 0, for which, if u € T and I(u) < ¢+ As, then
(i) min [|u(z,-) £ ollwieo,1) =0 for a.e. x € (s,p) then p —s <ls.
(i) if llu(o—.) + olwroon) < 0, then d(u(o—..).~0) < py for any v < a_,
and if [u(z+,7) — ollwre oy < 6, then d(u(, ), @) < ps for any o > zs.

Proof. By Lemma as in this case, there exists pus > 0 such that

p rl 1
/ / ];|Vu|p +a(x,y)W(u)dedy > us(p — s).
s 0

Since I(u) < ¢+ As there exists I < +oo such that p — s < Is.
To prove (ii), we first do some preparation, fi,, > pp%l/\(;, ps = max{d,rs} +
3(5;1 )%A5. Let 0y € (0,0/2) be such that ps < o/2 for all § € (0,d0). Let
s
d€(0,00), ueT,I(u) <+4ocand z_ € R be such that ||u(z_,-) +ollwir,1) < 0.
Define

-1 ife<a_ -1,
u_(zy)=qz—2_+(x—z_+Vu(z_,y) ifz_—-1<ax_,
u(z,y) ifr>ax_.

and note that u_ € I'and I(u_) > ¢, then |lu_+0o|lw1.r(0,1) = |[z—2_+1|-[|u(z_, )+
ollwir1y) <0 when z_ —1 <z < z_. Recall that ||g||r=(0.1) < pYP|lqllwiro1)
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for any ¢ € W'P(0,1), then |[u_ + o|z=(0,1) < p"/Pllu— + ollwrro,1) < p'/P6, by
definition (2.5)) of A\s, we have

T _ 11
[ SV e W dside < s

——1

Since

Iu—) = I(u) _/_1/0 %|Vu‘p+a($,y)W(u) dy da
T_ 1 1 ,
+/,—1/0 ;|Vu,| +a(z,y)W(u_) dy dx

/I_ / 1|Vu|p +a(z,y)W(u) dy de < 2)5. (2.6)

Now, assume by contradiction that there exists z1 < _ such that d(u(xy,-), —0) >
pg, by ([2.2) there exists xa € (x1,z_) such that d(u(z,-),—0) > max{§,rs} for
(z1,22) and d(u(21,-), u(z1,)) > ps — max{d,rs}. By Lemma[2.2] we have

/ / = |Vul? + a(x,y)W (u) dy do > (%)%l(p(; —max{d,rs}) > 3\s

which contradicts (2.6). Thus d(u(z,-), —0) < ps for any < x_. Analogously, we
can prove if [lu(zy,-) — ollwir(o,1) <9, then d(u(z,-),0) < ps as x> x4. O

we obtain

To exploit the compactness of I on I', we set the function X : VVlif (So) —
R U {400} given by

X(u) =sup{z : d(u(z,-),0)} > /2.
Setting x(s) = min |s £ o|, by(Hj), there exist 0 < wy < wy such that
w1 xP(s) < W(s) < waxP(s) when x(s) < /2. (2.7)
Now, we can get the compactness of the minimizing sequence of I in I'.

Lemma 2.5. If (u,) C T is such that I(uy,) — ¢ and X (u,) — Xo € R, then there
exists ug € K such that, along a sequence, u, — ug weakly in WP(Sy).

Proof. We now show that (u,) is bounded in W,-?(Sp), i.e., (u,) is bounded in

LY (So), (Vu,) is bounded in L, (Sp). Since I(u,) — cand fSo |Vup|P dedy <
pI(uy), we have that (Vu,) is bounded in L} (Sp). If we can prove that wu,(z,-)
is bounded in L?(0, 1) for a.e. € R, then (uy,) is bounded in L} (Sp).

Let B, = {qg € L”(0,1)/|q||Lr(0,1) < 7}, we assume by contradiction that for any
R > 20, there exists T € R such that u(Z,-) ¢ Br for v € TN{I(u) <c+A},A >0,
such that |[u(Z,-)|zr0,1) > R, then d(u(z,-),0) > |lu(Z,-)||Lr0,1) = llollr@0,1) >
R—o. Since d(u(z, ), +0) — 0 as & — +o00, by continuity there exists 21 > T such
that d(u(z1,-),0) < o/2 and d(u(z,),0) > 0/2 for © € (Z,21). Using Lemma 2.2,
we get
c+ A= I(u) > pgjpd(u(, ), u(Z, ) > pos2(R—30/2).

which is a contradiction for R large enough We conclude that (u,) is bounded in
Wli)’f(SO) thus there exists ug € VV1 P(Sp) such that up to a sequence, u, — ug
weakly in Wloc (So). We shall prove that ug € TI'; ie., d(uo(z,-),£0) — 0 as
x — Foo. First we claim that:
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For any small € > 0, there exists A(e) € (0, A5) and I(e) > l5 such
that if w e T'N{I(u) < c+ A(e)} then

1
/ / W (u(z,y))dyde < e. (2.8)
lo—X (u)|2i(e) JO

Indeed, let 6 < & be such that 3\s < awie where a = mingz a(z,y). Given any
u € I'n{l(u) < c+ As}, by Lemma there exists z— € (X(u) — l5, X (u))
and x4 € (X(u), X(u) +ls) such that ||[u(z_,-) + o)|lwrr,1) <0 and |Ju(zy,-) —
allwir,1) < 6. We define the function

—0 ife<xz_ —1,
olx—z_ )+ (x—z_+Du(zr_,y) ife_—-1<z_,

w(z,y) = S ulz,y) ifoe_ <z<axg,
(x4 —z+ Dulzs,y) +ole—zy) fzy <z<azy+1,
o ife>acy+1

which belongs to I', and I(@) > ¢,

1
1

/ /*|Vu|p+a(x,y)W(u)dyda:

|lz—X (u)|>15 JO P

< T2 () + I (u)
= I(u) — I(a) + I;~_ (@) + I3+ ()
< 3Xs
then ([2.8]) follows setting I(¢) = I3 and A(e) = As.
From ([2.8) it is easy to see that u(z,y) — o as © — +00. Combining (2.8) and
(2.7) we obtain

1 1
/ /wlluw,y)*alpdxdyé/ /W(U(x,y))dydz’ée;
|z—X (u)|>1(e) O lz—X (u)|>1(e) JO

ie., d(u(x, ), 0) — 0 as * — 4o00. Analogously, we can get that d(u(az, ), —U) —0
as x — —oo, it follows that ug € I'. O

As a consequence, we get the following existence result.

Proposition 2.6. K # () and any u € K satisfies u € CH%(R?) is a solution of
—div(|VulP~2Vu) + a(z,y)W' (u(z,y)) = 0 on Sy with dyu(x,0) = dyu(x,1) = 0
for all x € R, and ||u||p=(So) < Ry. Finally, u(z,y) — +o as © — oo uniformly
iny € 0,1].

Proof. By Lemma [2.5} the set K is not empty. By (Ha), [[ul|ze(s,) < Ro. Indeed,
@ = max{—Rp, min{ Ry, u}} is a fortiori minimizer. Let n € C5°(Sy) and 7 € R,
then u + 71 € T and since u € K, I(u + 1) is a C! function of 7 with a local
minima at 7 = 0. Therefore,

I'(wn= [ |VulP"2VuVn+aW (u)ndrdy =0
So
for all such 7, namely u is a weak solution of the equation — div(|Vu|P~2Vu) +
a(z,y) W' (u(z,y)) = 0 on Sp. Standard regularity arguments show that u €
C12(Sp) for some a € (0,1) and satisfies the Neumann boundary condition (see
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[I4][I7)[27]). Since [Jul| o (s,) < Ro, there exists C' > 0 such that [|ullc1.e(sy) < C,
which guarantees that u satisfies the boundary conditions. Indeed, assume by con-
tradiction that u does not verify u(z,y) — —o as x — —oo uniformly with respect
to y € [0,1]. Then there exists ¢ > 0 and a sequence (z,,¥y,) € So with x,, — —o0
and |u(xp,yn) + o] > 26 for all n € N. The CH“ estimate of u implies that there
exists p > 0 such that |u(z,y) + o| > 6 for V(z,y) € By(@n,yn),n € N. Along a
subsequence x,, — —00, ¥, — Yo € [0,1], |u(x,y)+0o| > 6 for (z,y) € B,/2(xn, yo),
which contradicts with the fact that d(u(zx,-),—0) — 0 as * — —oo since u € T
The other case is similar. 0

We shall explore the reversibility condition of (H1)-(ii), and we will prove that
the minimizer on I' is in fact a solution of (2.1)).

Lemma 2.7. ¢, = c.

Proof. Since I', C I', ¢, > c. Assume by contradiction that c, > ¢, then there
exists u € I" such that I(u) < ¢,. Writing

I(u) = /R [/01/2 ;1)|Vu|p + aW(u)dy} dx —1—/]R [/11 1|Vu|p + aW(u)dy} dx

/2P
=1 +1

it follows that min{l, I} < %” Suppose for example I; < ¢,/2, define
(2.7) u(x,y) ifreRand 0<y <1,
v x? = .
Y u(z, 1 —y) 1fm€Rand%§y§l.

Then v € T',,, by condition (H1)-(ii), I(v) = 2I; < ¢p, this is a contradiction. O

We shall prove that any u € IC is periodic in y.
Lemma 2.8. If u € K then u(x,0) = u(z,1) for all z € R.

Proof. Suppose u € K and v as above, then v(z,y) = u(x,y) for y € [0,1/2]. By
(Hq)-(ii), I(u) = c¢=¢p = I(v), so v € K. Then u and v are solutions of

—div(|Vul[P2Vu) 4+ aW' (u(z,y)) =0, on Sy,

(2.9)

Oyu(z,0) = Jyu(x,1) =0 for all z € R.
Since u = v for y € [0,1/2], by the principle of unique continuation (see [§]), we
have u = v in R x [0,1]. i.e. u(z,0) = u(z,1). O

Remark 2.9. It is an open problem for the principle for p-harmonic functions in
case n > 3 and p # 2. When p = oo, the principle of unique continuation does not
hold.

Proof of Theorem[I.1. We now extend u periodically in y direction to the entire
space R?, and write it as U(x,y). As a consequence of the above lemmas and
proposition U(z,y) is an entire solution of , which is heteroclinic in z and
1-periodic in y direction. (I
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