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EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR A
HIGHER-ORDER NONLINEAR NEUTRAL DIFFERENCE
EQUATION

ZHENYU GUO, MIN LIU

ABSTRACT. This article concerns the solvability of the higher-order nonlinear
neutral delay difference equation

A(akn ce. A(G211A(alnA(-73n + bnxn—d)))) + ij'nfj (xnfrjn) = dn,
j=1

where n > ng > 0, d,k, j, s are positive integers, f; : R — R and zf;(z) > 0
for z # 0. Sufficient conditions for the existence of non-oscillatory solutions
are established by using Krasnoselskii fixed point theorem. Five theorems are
stated according to the range of the sequence {by}.

1. INTRODUCTION AND PRELIMINARIES

Interest in the solvability of difference equations has increased lately, as inferred
from the number of related publications; see for example the references in this article
and their references. Authors have examined various types difference equations, as
follows:

AlanAzy) + Py =0, n >0, in [14], (1.1)

AlanAzy) = ¢nny1, AlanAzy,) = ¢nf(Tpy1), m >0, in [1], (1.2)
A (2 + DTrm) + Prn_k — quTn_y =0, n>ng, in [6], (1.3)
A%(xy +pTp_i) + f(n,2,) =0, n>1, in [I0], (1.4)

A*(xy —prn—r) =Y _Gifi(Tn0,), n>ng, in [, (1.5)
i=1
A(anA(mn + bxn—T)) + .f(na Tn—diyrsTn—daps -+ axn—dkn) = Cnp,
n>ng, in[§], (1.6)
A™(xpy, + Tp—k) + PnZn—r =0,n > ng, in [15], (1.7)
A™(xp + enp—k) + Pnf(@n_r) =0, n>mng, in [3 4 12 [I3], (1.8)
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u
A" (xp + Tp—k) + prlfs(a:n_,ns) =gn, n>ng, in [16], (1.9)
s=1
A™(xp + k) + PnTn—r — gnTn—; =0, n >mng, in [I7]. (1.10)

Motivated by the above publications, we investigate the higher-order nonlinear
neutral difference equation

A(akn . AfaznAlar Az, + bnxn,d)))) + ijnfj(xn,””) = (n, (1.11)
j=1

where n > ng > 0, d,k,j,s are positive integers, {ain}n>n, (0 = 1,2,...,k),
{bn}rsnes {Pjntnsne (1 < j < s) and {gn}n>n, are sequences of real numbers,
rin€Z(1<j<smny<n), fj:R—-Randazfj(z) >0forz#0(j=1,2,...,9).
Clearly, difference equations f are special cases of 7 for which we

use Krasnoselskii fixed point theorem to obtain non-oscillatory solutions.

Lemma 1.1 (Krasnoselskii Fixed Point Theorem). Let Q2 be a bounded closed con-
vex subset of a Banach space X and T1,Ts : S — X satisfy Tix + Toy € Q for
each z,y € Q. If Ty is a contraction mapping and Ty is a completely continuous
mapping, then the equation Tix + Tox = x has at least one solution in €.

As usual, the forward difference A is defined as Az, = x,4+1 — z,, and for a
positive integer m the higher-order difference is defined as

A"z, = A(Amflxn), Az, = z,,.

In this article, R = (—o0,+0o0), N is the set of positive integers, Z is the sets
of all integers, @ = inf{n — 7, : 1 < j < s,ng < n}, f = min{ny — d,a},
lim,_oo(n — 7rjp) = 400, 1 < j < s, l5° denotes the set of real-valued bounded
sequences ¥ = {Zp}n>p. It is well known that [3° is a Banach space under the
supremum norm |[|z|| = sup,,> g |Zn|-

For N > M > 0, let

A(M,N) = {x ={Tn}n>p €157 M <2, <N,n > ﬁ}
Obviously, A(M, N) is a bounded closed and convex subset of [3°. Put

b=Ilimsupb, and b= liminfb,.
n—oo n—oo
Definition 1.2 ([5]). A set © of sequences in [ is uniformly Cauchy (or equi-
Cauchy) if for every € > 0, there exists an integer Ny such that

|£U7; — (Ej| < g,
whenever i, j > Ny for any x = xj, in €.

Lemma 1.3 (Discrete Arzela-Ascoli’s theorem [B]). A bounded, uniformly Cauchy
subset €2 of 157 is relatively compact.

By a solution of 7 we mean a sequence {,}n,>g with a positive integer
No > ng + d + || such that is satisfied for all n > Ny. As is customary, a
solution of is said to be oscillatory about zero, or simply oscillatory, if the
terms x,, of the sequence {z,},>g are neither eventually all positive nor eventually
all negative. Otherwise, the solution is called non-oscillatory.
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2. EXISTENCE OF NON-OSCILLATORY SOLUTIONS

In this section, we will give five sufficient conditions of the existence of non-
oscillatory solutions of (1.11)).

Theorem 2.1. If there exist constants M and N with N > M > 0 and such that

N-M
|bn] <b < SN eventually, (2.1)

Zmax{| dpjel g 1 <i<k1<j < s} < oo, (2.2)

tno

then (1.11) has a non-oscillatory solution in A(M, N).

Proof. Choose L € (M + bN,N — bN). By (2.1) and ., an integer Ny >
ng + d + |a| can be chosen such that

N —
b, < b < o 7= No, (2.3)
and
F +
Z Z Z Z |2 ]+ o < min{L — bN — M, N — bN — L},
=Ng ta=t1 th=tr_1 t=tx ’Hi:l Qit;
(2.4)

where F' = maxpy<z<n{fj(z) : 1 < j < s}. Define two mappings 71,715 :
A(M,N) — X by

(Ty) = {L = bnn—q, m 2 No, (2.5)
(Ty) Ny s B <n < Ny,
(=) >
(T} = § o2y, Ty, DO > N, (2.
(Tox) Ny s B <n < Ny,

for all x € A(M,N).
(i) Note that Thz + Toy € A(M,N) for all x,y € A(M,N). In fact, for every
x,y € A(M,N) and n > Ny, by @, we have

(Thx + Toy)n > L — DN — Z Z Z Z |Z —1 Dt i (Y- r7f)*Qt|

t1=ntao=ty tr=tr_1 t=ty |H2 1
F
sion- 3 3 3 S kanil
=Np ta=t1 tr=tr_1 t=tx |Hi:1

and

(Thx + Toy)n, < L+ DN + Z Z Z ZF|ZJ 1th|+‘CIt

—Ngto=t1  tp=tp_1 t=tg ‘Hi:1 it

< N.
That is, (Thx + Tay)(A(M,N)) C A(M, N).
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(ii) W show that T) is a contraction mapping on A(M,N). For any z,y €
A(M,N) and n > Ny, it is easy to derive that
[(Tva)n — (Tay)a| < Iballzn—a — yn—al < bllz —yl,

which implies
[Tz — T1y|| < bllz - yll
N M

(M, N).
(iil) We show that T5 is completely continuous. First, we show 75 that is contin-
uous. Let z(*) = {x&u)} € A(M, N) be a sequence such that ™ =z, as u — oco.

Since A(M, N) is closed, x = {z,,} € A(M, N). Then, for n > N,

’TQJZ%U)—TQ.ITL’S i i io: i ’Z] 1thHfJ r]t)_fj(xtfrjt”.
t it

1=Np t2=t1 tp=tr—1 t=tk | Hi:l

Since
| e[ £ ) = fileer,,) I (€ xﬁ“Lﬂn 1 (@emry)])
| Hf:l a | HZ 1

< 2F‘ 22:1 pjt|
k
| [Ticy aiti’

and |f; (xt m) fi(@i—r;,)| = 0asu—ooforj=1,2,...,s, it follows from (2.2)
and the Lebesgue dominated convergence theorem that lim, .o || T2z —Thz| = 0,
which means that 75 is continuous.

Next, we show that To A(M, N) is relatively compact. By (2.2), for any € > 0,
take N7 > Ny large enough,

F t t
pIPIE zzmwwg. 2

=Nj to=t1  tp=tp_1 t=tg | Hi:l Qit;
Then, for any x = {z,} € A(M,N) and ny,n2 > Ny, (2.7)) ensures that

Toay, — Tottn,| < Z Z Z Z | 2052 1103th Yior,,) — Gl

ti=nqto=t1  tp=tp_1 t=tj ‘Hz 1 @it
’Zj 1 Pt 5 (Y—ry) — Qt|

+

t;@ tzz—:tl tkEt; wzt:k |Hz 1 Qit;
cy vy y Aol
ti=Nj to=t;  tp=tp_q t=t |Hi—1 it

F| 325 pit| + lat]

_l’_

ZNl tQZtl tk; 1 tztk | Hi:l Qit;

<S4 c_

9 Ty~ F¢

which implies Tob A(M, N) begin uniformly Cauchy. Therefore, by Lemma the
set T A(M, N) is relatively compact. By Lemma there exists © = {z,} €
A(M, N) such that Thx + Tox = z, which is a bounded non-oscillatory solution to
(1.11). This completes the proof. O
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Theorem 2.2. If (2.2)) holds,
bn > 0 eventually, 0 <b

IA

b< (2.8)

and there exist constants M and N with N > “=M > 0 then (1.11) has a non-

oscillatory solution in A(M,N).

0‘\‘\0“

Proof. Choose L € (M + 1H’N N + M By (2:2) and (2.), an integer Ny >
no + d + |a| can be chosen buch that

1+0
< by <2, V0> Ny (2.9)

NI

and

Z Z Z ZF|ZJ 1PJtI:LQt

=Np ta=t1 te=tp_1 t=ts | Hi:l

(2.10)

gmin{L M—l——H)NN L+ ;’M}

where F' = maxp<z<n{fj(z) : 1 < j S s}. Then define 71,7 : A(M,N) — X
as . ) and (| . The rest proof is similar to that of Theorem and it is
omitted. ([

Theorem 2.3. If (2.2) holds,
b, <0 eventually, —1<b<b<0, (2.11)

and there exist constants M and N with N > fIEM > 0, then (1.11) has a non-
oscillatory solution in A(M,N).

Proof. Choose L € (QT*'EM, 1%FQN) By (2.2)) and (2.11)), an integer Ny > ng+d+ |«
can be chosen such that

bl <l vnz N, (2.12)
and
Z Z Z ZF|Z] 1P|+ lae]
=Noto=t1  tp=ty_1t=tg |Hi:1 (2.13)
<min{L- = 24by 1—+bN L},

where F' = maxyr<<n{fj(z): 1 § Jj<s} Then define 71,75 : A(M,N) — X by
(2.5) and (2.6]). The rest proof is similar to that of Theorem and is omitted. [

Theorem 2.4. If (2.2)) holds,
by > 1 eventually, 1<b, andb < b*> < +o0, (2.14)

. . b(52—b)
and there exist constants M and N with N > e b)M > 0, then (L.11) has a

non-oscillatory solution in A(M,N).
Proof. Take € € (0,b — 1) sufficiently small satisfying
l<b—e<bte<(b—e)? (2.15)
and
(b+e)b—e)—(b+e)* )N > ((b+e)*(b—c) — (b—e)*) M. (2.16)
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Choose L € ((b+¢)M + % EJ“’:N (b—e)N+ 2 EM) By (2.2) and (2.15)), an integer
No > ng+d+ |a| can be chosen such that

b—e<b,<b+e, Vb>Ny (2.17)

and

Z Z Z ZF|Z 1pyt|+|Qt

=No to=t1  tp=tp_1t=ty |Hi:1 (2.18)
b—e b—e
< min{ = L—(b—e)M—N,= b—e)N — Ly,
_mm{bJr€ (b—e) btz (b—e¢) }

where F' = maxy<q<n{fj(z) : 1 < j < s}. Define two mappings 741,75 :
A(M,N) — X by

L Tni4d n > N,
(Tya), = { brva — Buga? 7= 700 (2.19)
(Thx) Ny, B <n < Ny,
—1)k oo %)
(anr)d Ztlzn th;l ( )
oo o0 ;: pjtfj Tt—riy)—4qt

Tox)n = Ztk:tk—l Zt:tk : H’?Zla,-tv] , nzNo, (2:20)

(TZx)Noa ﬂ S n < NOa

for all z € A(M,N). The rest proof is similar to that in Theorem and is
omitted. g

Theorem 2.5. If (2.2) holds,
b, < —1 eventually, —oo<b, b< —1 (2.21)

and there exist constants M and N with N > i:M > 0, then ) has a non-
oscillatory solution in A(M,N).

Proof. Take € € (0,—(1 + b)) sufficiently small satisfying
b—e<bte<—1 (2.22)

and
(1+B+6)N<(1+b—e)M (2.23)

Choose L € ((1+b+¢€)N,(1+b—e€M). By (2.2) and (2.:22), an integer Ny >
ng + d + |a| can be chosen such that

b—e<b,<b+e VYn>N, (2.24)

and

Do S S

=Np ta=ty te=tr_1 t=Lg |Hz=1

(2.25)

b+e b+e
M —

b— e) b—e

Where F = maxy<y<n{fj(x) : 1 < j < s}. Then define T7,T5 : A(M,N) — X

as and - The rest proof is similar to that in Theorem and is

omltted [l

gmin{(5+e+ L,L*(1+B+€)N},
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Remark 2.6. Theorems extend the results in Cheng [6, Theorem 1], Liu,
Xu and Kang [8, Theorems 2.3-2.7], Zhou and Huang [I6, Theorems 1-5] and cor-

res

ponding theorems in [3], 4, 9], 10} 1T}, 12} 13 14} [15].
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