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HETEROCLINIC SOLUTIONS TO AN ASYMPTOTICALLY
AUTONOMOUS SECOND-ORDER EQUATION

GREGORY 8. SPRADLIN

ABSTRACT. We study the differential equation Z(t) = a(¢)V’(z(t)), where V is
a double-well potential with minima at z = +1 and a(t) — 1 > 0 as |t| — oo.
It is proven that under certain additional assumptions on a, there exists a
heteroclinic solution z to the differential equation with z(¢t) — —1 as t — —co
and z(t) — 1 as t — oco. The assumptions allow ! — a(t) to change sign for
arbitrarily large values of |t|, and do not restrict the decay rate of |l — a(t)| as
[t] — oo.

1. INTRODUCTION

Consider the autonomous second-order differential equation

2(t) = 1V'(z(t)), (1.1)

z(t) - —last— —oo, x(t)—1ast— oo. (1.2)

where [ > 0, V € C%(R,[0,00)), V(~=1) = V(1) =0, and V > 0 on (—1,1). The
presence of [ seems superfluous at this point; however, we will use it later. It is
easy to show that — has a solution: multiply both sides of by x(t)
and integrate, and conclude that 3&(t)? — IV (z(t)) is constant. Assuming that
V(x) < (14 x)? for some ¢ > 0 in a neighborhood of —1 and 1 respectively, then
setting the constant equal to zero, we find that (L.1)-(L.2) has a solution, which
solves the first-order equation #(t) = 1/2IV(x(t)). That solution is unique if we
impose the condition 2(0) = 0. From now on, we will refer to the unique solution
of (L.I)-(1.2) with z(0) =0 as w.

The function w can also be characterized as the unique (modulo translation)
minimizer of the functional

Fi(u) = /OO 1u(t)2 — IV (u(t))dt (1.3)

oo 2
over the affine space

W={ucWLR):u+1€W"((~00,0]), u—1€ Wh2([0,00))}.  (1.4)
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An interesting problem is to replace [ by a nonconstant, positive coefficient function
a(t) and find conditions on a under which

(t) = a(t)V'(z(t)) (1.5)

with (1.2)) has solutions. We must assume something: note that if a is continuous
and increasing, then if z solves (L.I)-(1.2), then 1i(t)? — a(t)V (z(t)) — 0 as [t| —
oo, but

L0 — 0V (1) = #(0) (1) — o))V (2(1))(0) — al)V (2 (1)

This is impossible.

There are many results concerning equations like in which the analogue of
a(t) is periodic, and homoclinic, heteroclinic, and multitransition solutions of the
equations are found. See [6], [I0]. There seems to be fewer results for the case

(A1) a(t) =1 >0as |t| >
In [2, Chapter 2, Thm. 2.2], a solution is found for when 0 < a(t) < lforallt € R. In
[5] (Section 5, Example 1) a solution is found when the coefficient a(t) is definitively
increasing with respect to |t|. In [8], a solution is found in the case | < a(t) < L
and L is suitably bounded from above. This result is a specific case of the result
proven in this paper and is described more precisely later. In [9], a solution is found
when a(t) is increasing on [tg, c0) and decreasing on (—oo, tg] for some ¢y > 0 and
[ — a(t) decays to zero slowly enough as |t| — co. In this paper, we find conditions
on a which allow [ — a(t) to change sign for arbitrarily large |t| and do not require
any assumptions on the monotonicity of a or the decay rate of I — a(t) as |[t| — oo.
In more related work, in [7] heteroclinic orbits to a nonautonomous differential
equation are found that connect stationary points of different energy levels. In [4],
heteroclinic solutions connecting nonconsecutive equilibria of a triple-well potential
are found for a fourth-degree ordinary differential equation.

Let V satisfy

(V1) V € C%*(R,R);

(V2) V(z) >0 for all z € R;

(V3) V(=1) =V(1) = 0;

(V4) V> 0on (—1,1);

(V5) V(=1) >0, V(1) > 0
Let

(o =min{z:z>-1,V'(z) =0}, & =max{z:z<1,V'(z)=0} (1.7)
Note that £ and &, are well-defined by (V3)-(V5). Define

y:mm(/j‘ V) de, ; @ dz) >0, (1.8)

Let a : R — R be a measurable function satisfying (A1) and
(A2) 0<l<a(t) <L=1+4w/l/ [1,/V(z)dz for all t € R

We will prove the following result.

Theorem 1.1. Let V and a satisfy (V1)-(V5), (A1)-(A2). Then (L.5), (1.2) has a
solution taking values in (—1,1).
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Note: if V' is even and V' > 0 on (—1,0), then L = [ + 2/ in (A2). If [ =,
we obtain the result of [§]. Due to a dearth of counterexamples, it is not known
whether the upper bound on a in (A2) is really necessary.

This paper is organized as follows: Section 2 lays out the variational methods
used in the proof and an outline of the proof. Section 3 contains the proofs of
some subordinate propositions and lemmas, with the most involved proposition
concerning the convergence of Palais-Smale sequences of the functional associated
with . Section 4 wraps up the proof of Theorem

2. VARIATIONAL METHOD AND OUTLINE OF PROOF

Define the functional F : W,22(R) — [0, o0] by

loc
Fz) = [ h %x’(t)2+a(t)V(x(t))dt. (2.1)

By (V1)-(V3), F(z) < oo for allz € W. F : W — R™ is Fréchet differentiable with

F'(z)u = / T a0 + V' (@(t)u(t) dt (2.2)

for all z € W, u € WH2(R). Critical points of F : W — RT are solutions of (L5)),
. We will show via a minimax argument that F' has at least one critical point.
Define
B = F(w) >0, (2.3)
where Fj is as in . A Palais-Smale sequence for F is a sequence (z,) C W
with F(z,,) convergent and || F'(x,)| — 0 as n — oo, where ||F’(z)|| is defined by
the operator norm

IF ()| = sup{F'(2)u . € W(R), [l gy = 1. (24)
We will use the usual norm on W12(R),
© 5 A\1/2
[ (/ i) +ut)?dr) (2.5)

The W12(R)-norm will be denoted simply by || - || for the rest of this article. We
will prove the following proposition.

Proposition 2.1. Let (z,) C W with F'(z,) — 0 and
F(zn,) — be[0,B)U(B,B+2v/2l). (2.6)

Then, there exists T € W solving (L.5), (1.2]) and a subsequence of (x,,) (also called
() with ||z, —Z|] — 0 as n — oo.

It is interesting that the conclusion of Proposition fails precisely when b =
B. To verify this, define the translation operator 7 by T,u(t) = u(t — a) for any
u: R — R and a,t € R. Then the Palais-Smale sequence (z,) = (T,w) satisfies
F(z,) — B and F'(z,) — 0 as n — oo, but x,, — —1 pointwise.

We use a minimax argument similar to that in [§]. Define

I = {y € CR,W) : [Irw — y(B)]| = 0 as |t] — o0} (2.7)

and

¢ = inf sup F(y(t)). (2.8)
V€T ter
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Clearly ¢ > B. We will show in Section 4 that ¢ < B+2v+/2l. There are two cases to
consider: ¢ = B and ¢ > B. If ¢ > B, then a standard deformation argument shows
that there exists a Palais-Smale sequence (z,,) with F(z,) — ¢ and F'(z,) — 0 as
n — oo. Applying Proposition there exists a solution Z of 7 and a
subsequence of (z,) (also denoted (x,)) with ||z, — Z| — 0 as n — co. If ¢ = B,
then for every n € N, there exists 7, € I' with sup,cr F'(7n(t)) < B+ 1/n. Choose
t, € R with 7, (t,)(0) = 0 and let x,, = ,,(t5). Since (F(z,)) is bounded, we will
show there exists a subsequence (also called (z,)) and = € Wéf(R) such that (z,,)
converges to x locally uniformly and weakly in W12([-T,T]) for all T > 0. We
will show in Section 4 that in fact x € W and F(z) < B. If z is a critical point of
F', then Theorem is proven. Otherwise, let W(y) denote the gradient of F at y
for all y € W; that is, for all y € W and ¢ € WH2(R),

W), @lwra@ = F'(y)e, (2.9)
where (-, -) is the standard inner product on Wh2(R),
(Fohwac = [ Fa0) + Fg(o)at (2:10)

Let 1 denote the solution of the gradient vector flow induced by the initial value
problem:

s, u) = ~Wln(s, w); m(0,u) = . (211)

We will show in Section 4 that 7 is well-defined on [0, 00) x W.
Recall that we have x € W with F(z) < B and F'(z) # 0. Since F' is nonneg-
ative, there exists a sequence (s,) C Rt with F'(n(s,,z)) — 0 as n — oo. By

Proposition there exists Z satisfying (1.5]), (1.2).
3. PALAIS-SMALE SEQUENCES

In this section, we prove Proposition 2.1 and some subsidiary lemmas and propo-
sitions leading up to it. Although the full strength of Proposition is not neces-
sary to prove Theorem the strong convergence of Palais-Smale sequences that
it implies is interesting and may be useful for other problems. From now on we
assume that

V(r) >0 forall [z|>1, and limp,_.V(z)= oco. (3.1)
We may make this assumption because the solution we will find to (|1.5)) takes values
in (—1,1).
Lemma 3.1. Ifx € VV&)S(R) with F(x) < oo, then x(t) — —1 or z(t) — 1 as
t — —oo, and z(t) — 1 or x(t) — —1 ast — oco. In fact, z+1 € W2((—00,0]) or
r—1€Wh2((—=0,0]), and z +1 € W12([0,00)) or z — 1 € W12([0, 0)).

Proof. Suppose the lemma is false. Then there exist = € Wlf)cz (R) with F(x) < oo,
d > 0 and a sequence (t,) with [t,| — oo as n — o0
Zn(t) € (o0, —1=06)U(=1+0,1—0)U(1+9,00). (3.2)
Let
d=inf{V(z):x € (—00,—1-9/2)U(=1+§/2,1-6/2)U(1+5/2,00)} > 0. (3.3)

Assume without loss of generality that ¢,, — oo, and taking a subsequence if nec-
essary, that t,11 > t, + 1 for all n. If z(t) € (—o0,—1 —§/2) U (-1 +6/2,1 —
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§/2) U (1 +6/2,00) for all t € [t,t, + 1], then ft ntHy (z(t))dt > §. Otherwise,
there exists t* € [tn, tny1] With |z(t,) — ac(t*)| > 5/2 and by the Cauchy-Schwarz
inequality,

5125 etn) ~ 2() < [ "l
L i D (3.4)
< Vi / war) < ( / B de)

tn+1 t*
/ a(t)2 dt 2/ (t)? dt > 6% /4. (3.5)
Either way, ' '
tn+1
| 30+ V) dt > min(s /s, a), (3.6)
and ’

bl oo
Z/ Lt + V(@) dt > 3 min(82/8,dl) =00, (3.7)
n=1
which is a contradiction. So x(t) — —1 or z(t) — 1 as t — oo. Similarly, x(t) — —1
or z(t) — 1 as t — —o0.
By (V5), there exists € > 0 with V(z) > e(z +1)2 for all z € (=1 —¢,—1 +¢)
and V(z) > e(x—1)? forall z € (1 —¢,1+¢). Soif 2(t) — 1 as t — oo, there exists
T > 0 such that

F(x
/ (x(t) — 1) dt</ V(x /edt<—/ ) dt < <l)<oo(3.8)
T €
and x — 1 € WH2(]0,00)). Similar arguments apply to the cases z(t) — —1 as
t— o0, z(t) > last — —oo, and z(t) —» —1 as t — —o0. O

Next we show that Palais-Smale sequences are bounded in Wlif(R)

Lemma 3.2. Let A,T > 0. There exists B > 0 such that if = € W.*(R) with
F(Z‘) < A, then ||$HW12 ([-T,7]) < B.

Proof. Clearly f 2dt < 24, so it suffices to find an upper bound on |z| over
[-T,T). Let C >0 such that V(z) > C for all |z| > A/2T. Since fiT V(x(t))de <
A, there exists t* € [T, T] with V(¢*) < A/2T and |z(t*)| < C. For any s € [T, T,

S

|z(s)] < |=(£%)] + | ; (1) dt|

< J2(t) + Vs — 7] / Caepa] " (3.9)
< C +V2T -V2A.
O
For 2 C R, define
1.,
Fate) = [ 5802 + a0V (o) dt. (310)

Then we have the following lemma.
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Lemma 3.3. If xg,71 € (—1,1), to < t1, and x € W12([tg, t1]) with x(ty) = xo
and x(t1) = x1, then

1
Fity () > \/2]/ VV(z)dz|. (3.11)
o
Proof. Let w; denote the unique solution in W of the differential equation
(t) =1V'(z(t)) (3.12)
satisfying w;(0) = 0. Then w; minimizes the functional
<1
Fy(u) = / 5u(t)2 + 1V (u(t)) dt (3.13)

over W. By the argument following (1.2)),

w(t) = 1/ 2LV (wi(t)). (3.14)

Let wg,z1 € (—1,1),tg < t1, and € WH3([tg, t1]) with z(tg) = ¢ and z(t;) =
1. Assume zg < 1. Now

t1 1 t1 1
/ S0 + 1V (a(t)) dt > / S(0)? + 1V (wn(r)) d: (3.15)
to tO
otherwise, we could replace wL|[w;1(x0)’wf1(z1)] by |f,,¢,) to obtain @ € W with
F(®) < Fy(w), contradicting the optimality of w;. @ is defined by

@(t)

wi(t), t < w " (20);
=< 2(t —w; H(wo) + to), w, (o) <t < wp H(wo) + b1 — to;

wi(t+ (WM (z1) —w M) — (t —t0)), ¢ > w (o) + tr — Lo
Now by (B.14)-(3.15),
Fiyya (@) > / L) = / PRONCIGOT / N V@) dt. (3.7)

to to

(3.16)

For the case xyp > x1, define zg, the reversal of x on [tg,?1], by xr(t) = x(to +
t;1 —t). Then xg(ty) = z1 and xr(t1) = xo so by the first case,

Fiyyp,1() > /t 1 %jj(t)Q + 1V (z(t)) dt = /t 1 %x'R(t)Q + 1V (zg(t))dt

Zo Ty (318)
> / V2LV (zg(t))dt = ]/ V2LV (2(t)) dt|.
O
Recall that £_ and &4 from (|1.7), and assume from now on that
Vi)=V(-14+(-1—2 forall zx € [-1— (£- + 1), —1],
(z) =V( ( ) [ ( ), —1] (3.10)

Ve)=V({1-(x—-1)) forallze[l,1+(1-E&4)]

Again, we may assume this because our solution of (1.5)), (1.2) will take values in
(=1,1). To prove Proposition we will use the following result.



EJDE-2010/137 HETEROCLINIC SOLUTIONS 7

Proposition 3.4. If (x,,) C W with F'(z,) — 0,

1
F(zn,) = b< 2B+ \/22/ VV(z)de, (3.20)

—1
and x, — T € W locally uniformly and weakly in WY2([=T,T)) for all T > 0 as

n — oo, then T solves (1.5)) and ||z, — Z|| — 0 as n — oo.

Proof. Let (z,) and T be as in the Proposition statement. To prove Z solves (|1.5)),
let ¢ € Cg°. Then

0= lim F'()p = lm [ an(003(0) + V'(an(t)p(t) dt
N o (3.21)
- / ()Pt + V(@ ()p(t) dt = F'(2),

and Z is a weak solution of (L.5). Next we show that for any T > 0, |z, —

Z|lwr2(—7r)) — 0 as n — oo. Let T > 0. Since x,, — Z uniformly on [T, T],
fTT(xn(t) — Z(t))?dt — 0 as n — oo. We must therefore show that fTT(xn(t) —
Z(t))2dt — 0 as n — oo. Since i, — T weakly in L*([-T,T]),

T
lim sup/ (d(t) — 2(1))* dt

n— o0 -T

= lim sup /T i (t) — 2/T i, ()2 (t) dt + /T z(t)? dt (3.22)

n—oo J_T -T -T

T
= lim sup/ i (t)? — Z2(t)2 dt,

n— o0 -T

and it suffices to prove lim, fTT in(t)? — ()2 dt = 0. Define (u,) C WH%(R)

0 t<-T-1
(xn(-T)—z(-T7))t+T+1) -T-1<t<-T

Un(t) = ¢z, (¢) — T(t) -T<t<T (3.23)
(n(T)—2(T)(—t+T+1) T<t<T+1
0 t>T+1

Clearly, (uy) is bounded in W12(R). Since u,, — 0 uniformly on [-7 — 1,7 + 1],

0= lim F'(xp)u, + F (Z)u,

= nli_{r;o(ffmUn)W112([—T—1,T+1]) + (T, Un) w2 (=T —1,741)
T T41 (3.24)
- / a()V (@ (1) (t) dt / a()V (2 () un () dt

—-T-1 —-T—-1

= nli_{lolc(xmUn)W112([7T71,T+1]) + (2, un ) w2 (= 7—1,741])-
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Since Hun||W1,2([_T_1)_T]) — 0 and ||un||W1,2([T’T+1]) —0asn— oo,

0= lim (2, up)wr2(—7,1) + (%, un)wr2(-1,1))

T
= lim . G (8) (@0 (1) — 2()) + 20 (1) (2n(t) — T(1))
+2(t)(@n(t) — 2(t) + Z(t) (zn(t) — 2(1)) dt (3.25)
= lim ! P2(t) —z(t)? + x,(t)? — z(t) dt
T
= lim 2 (t) — z(t)* dt.
n—oo | 1

Therefore, ||z, — Z||lw12(—7,r7) — 0 as n — oo.
Suppose ||z, — Z|| # 0 as n — oo. Then there exist 6 > 0 and a sequence (7},)
with 7T,, — oo and

2 — Zl&\ (1, 1) > 407 (3.26)

for all n. Along a subsequence, either
|0 = ZlF12(coo—r) =202 08 |20 = Z[fp12(7, 00y = 267 (3.27)
Let us assume the former; the latter case is similar. Since 1+ 7 € W12((—o00,0]),

|2n 4+ Lllwr2((—o0,—13)) =0 (3.28)

for large n. There are two cases to consider:

Case I For all € > 0, there exists M > 0 such that |1 + z,(t)| < € for all n and
t<—-M.

Case II: There exists d € (0,1) and a sequence (t,) C R with ¢, — —oo and
|1+ 2z, (t,)| > d for all n.

Case I: let £* € (—1,&_) and ¢ € (0,1) such that
V'(x)x > (1 + z)? (3.29)

forallz € [-1—(£*+1),&*]. This is possible by (V3)-(V5), (3.19), and the definition
of £&_. Let M > 0 be large enough so that

cd?

14+ 2,(t)] <min (1 +&, —— 3.30
for all n € N, t < —M. Define (u,) C W2(R) by
Uun(t) = 1+ 2z (M)A -M—t) —-M<t<-M+1 (3.31)
0 t>-M+1

We will show (u,,) is uniformly bounded in W12(R). Let K > 0 so

[V'(z)| < K and (z+1)? < KV(z) (3.32)
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for all x € [-1—(£*+1),&*]. This is possible by (V1)-(V5),(3.19), and the definition
of £_. For large n,

l|un||* = /_ ()2 4+ (14 2,()%dt + (1 + 2, (—M))* + %(1 + 2, (= M))

K

M
<) [ EanV o)

+(1+z(—M))* + %(1 +Z(—M))+1

<2+ ?)F(xn) + (1 +z(=M))* + %(1 +z(—=M))+1

<2+ ?)(zb) + (1 +z(=M))? + %(1 +z(=M)) + 1.

(3.33)
Since F'(z,) — 0, F'(xy)u, — 0 as n — oco. But for large n,

F'(zp)un,

—M+1

-M
— [ a0+ Vi@ m®)at [ s (M) 0 d

—00 —M

o[ - a
M

-M
> [t et (o) de (3.34)
—M+1 ) 1/2 1
— +xn(fM)|(/7M bt dt) "~ Lt (M)
> |1+ a e (oo, — 11+ 2a(=M)|(v/2F (25) + 1)
> 0% — (14 2V0)[1 + zp(—M)| >

by (3.30). This is impossible.
Case II: by the arguments of Lemma [3.3]

Pz V[ 11 V(@) do (3.35)

for all z € W, including Z. Let d and (t,) be as in Case I. Let M > 0 be large
enough so that |1 4+ Z(t)| < d/2 for all t < —M, and

1 1
Floaron(@) > \/ﬂ/ V(@) do — %(2B+ \/ﬂ/ V@) dr—b).  (3.36)
1 -1
Define a,, < 8, < —M by
Bn=max{t < —M:|1+z,t) =d}, o, =min{t:|1+z,()|=d} (3.37)

Since z,, — & locally uniformly and |1+ Z(t)| < d/2 <1 forallt < —M, 8, — —o0
as n — oo. Define v, = 7_g, ,. By Fatou’s Lemma, the weak lower semicontinuity
of [%_@(t)*dt, and Lemma there exists v € W12(R) with F(v) < oo and
vy, — ¥ locally uniformly and weakly in W12([-T,T]) for all T > 0. By the
arguments of , F/(v) = 0. By the definition of §,, 9(t) < —1+d < 0 for

1
§C(52
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all t > 0. Therefore, by the arguments of Lemma [3.1] applied to Fj instead of F,
v(t) — —1 as t — oo. By the arguments following (1.2), v(t) = —/2IV (v(t)) for all

t € R. Let wg denote the reversal of w: wg(t) = w(—t) for all ¢t. Clearly o = Th\wpr

for some A € R. By the arguments of (3.22))-(3.25)),

zn — Ta+g.wrlWr2((8, -7, +11) — 0 (3.38)

as n — oo for all T > 0. This implies 3,, — a,, — 00 as n — oo. For all n and all
t < an, Tn(t) < —1+d/2 < 0. Therefore, arguments similar to those above show
that there exists Ay € R with

[Zn — Tas+anwllWwre((an T an+1)) — 0 (3.39)
for all T > 0 as n — oco. For Q C R, define
1
Fig(z) = / 5jc(t)z + 1V (2(t)) dt (3.40)
Q

Still assuming that M is large enough so that (3.36]) holds, assume also that M is
large enough that

By aan(mawr) > B — %0(23 + \/27/ VV (x)dx —b),
! (3.41)

1 1
Fianan(raw) > B - 158+ 2L [ Vi@ de )
—1

Then for large n, (3.36]), (3.38)-(3.41), o, — —o0, B, — —o0, and a(t) — I as
|t| — oo imply

F(zn) > Fla, —Man+m) (@) + Fig, —m.6,+01(Tn) + Fl-prm (Tn)

> (B— %(23+ J?z/l SV (@) dz — )
+(B- %(284— ﬁ/l V'V (x)dz —b)
1 1
+ (@[1 V(@) do — %(23+ @[1 V@) de—b)  (3.42)
- %(2B+ \/ﬂ/l VV (z)dz —b)
—1
_ 9B+ \/ﬁ/l V(@) dz — %(28+ \/ﬂ/l V(@) dz —b)

=b" >b.
This is impossible. Proposition is proven. (I

Proof of Proposition[2.1 There are two cases: b < B and b > B. The case b < B
is easier. Let (z,) C W with F(z,) — b < B and F'(z,) — 0 as n — co. By
Lemma (z,,) converges locally uniformly and weakly in W12([-T,T)) for all
T > 0 to some function = € Wlif (R). By Fatou’s Lemma and the weak lower
semicontinuity of [*_#(¢)?dt, F(z) < co. By Proposition it suffices to show
z € W. Suppose & ¢ W. Then by Lemma [3.1] Z(t) — 1 as t — —oo or Z(t) — —1



EJDE-2010/137 HETEROCLINIC SOLUTIONS 11

as t — 0o. Suppose Z(t) — —1 as t — oo (the proof for Z(t) — 1 as t — —oo is
similar). Define

wTl(1—e) 1

B. = / &P (t) + 1V (w(t)) dt (3.43)
w~(—=14¢€)

for € > 0. Let € > 0 be small enough that

(l - e)Bg >b. (3.44)

Let T > 0 be large enough so that a > [ — € on [T, 00) and Z(T) < —1 + €. Let
n be large enough that z,(T) < —1+e€ Let T < a < 8 with z,(a) = —1 + ¢,
Zn(B) =1 — e. By arguments similar to those of Lemma

B
F(z,) > Fla,g) (zn) = / %;’yn(t)Q + a(t)V(z,(t))dt

5
Z/Q %i‘n(t)2+(l—€)v(x”(t))dt (3.45)

e P
zll /a%j:n(t)Q—&-lV(xn(t))dt

I—
> — ‘B.=bt > b
This is a contradiction.

Now suppose b € (B, B+ 2v+/1l). As before, along a subsequence, (x,,) converges
locally uniformly and weakly in W12([~T,T]) for all T > 0 to a function z €
Wlif(]R) with F(Z) < b. We must show T € W; then applying Proposition
proves Theorem Suppose Z(t) /1 as t — oo (the proof for z(t) 4~ —1 as t —
—oc is similar). By Lemmal[3.1] Z(t) — —1 as t — co. Let ¢, = max{t : z,,(t) = 0}.
Then ¢, — o0 as n — co. By the arguments following (3.37) and the arguments of

ED-E2).

chn — Ttnw||W1’2([tn—M7tn+M]) — 0 (346)
asn — oo for all M > 0. Let —1 < e <§; < &_ with
51 1
\/27/ V@) e > /2~ 2 (B -+ 20/~ ). (3.47)
Let ¢ € (0,1) with
V'(x)(1+x) > cV(x) (3.48)
for all x € [—1,&;]. Let K > 0 be large enough that
[V'(z)| < K (3.49)
for all z € [-1,1]. Let M > 0 be large enough that
1
Fy-mm(w) > B — 6(B+2V\/ﬂ—b)7 (3.50)
c(b— B)

14+ w(—M) < min( 1+e). (3.51)

16(K +2vb)’
By (3.46]) and the fact that a(t) — [ as t — oo,

1
F[tn—M,tn-‘rM] (l’n) < B + 5(6 - B) (352)
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for large n, so

1
F(foo,tnfM] (ﬂﬁn) + F[thrM,oo)(mn) > g(b - B)- (3-53)

Assume F(_qo ¢, —ar) > (b—DB)/6 (the case Fjy, 4 ar,00) > (b—B)/6 is similar). There
are two possible cases: along a subsequence,
Case I: |1+ z,(ap)| > 1+& for oy, <t — M,
Case IT: |1+ x,(t)| <1+ & forall t <t, — M.
For Case I, assume 1 + 2, () > 1+ & (the case 1+ z,(ay) < —(1 4+ &) is

similar due to (3.19))). For large n, by Lemma (3.47), (3.51), (3.46), (3.50),
(A1), and t,, — oo,

F(xn) >-F( 00, ](xn)"_F[an tn— M](xn)"_}?‘[tn M,t, +M](xn)
>21/\/i—*8—|—21/\/7 B—*B+2V\/7 (354)
:B+2y@—g(8+2u@—b)zb+>b.

This is impossible.
For Case II, define (u,) C WH2(R) by

1+ z,(t) t<t,—M
un(t) = ¢ M+ zp(tn — M)ty —M+1—-1t) t,—M<t<t,—M+1 (3.55)
0 t>t, — M+1.

The sequence (uy,) is uniformly bounded in wh 2 ,asin - So F'(xy)u, — 0.
But for large n,

F'(x,)u,

tn—M
= / i ()2 + a(t)V' (2, (1)) (1 + z,(t)) dt

- tn—M+1
— (L+zn(tn —M))/t » i (t) dt
M4l
(1t 2ty — M) / V(0 (8)) (b — M + 1 — 1) dt
tn—M
tn—M
> / i, (1) 4 ca(t)V (za(t)) dt (3.56)

tp—M+1

- |1+xn(tnfM)\(/t .

> c/tn M %m(tp +a(t)V (2, (1) dt — (K +2V)|1 + 2, (t, — M)

CF( oo tn—nn)(@n) — (K +2VD)|1 + 2, (t, — M)
1

_ 5 12
i (1) dt) — K1+ 2 (t — M)

(b—B)—l—12c(b—B)=1—120(b—B)>0

C?.‘

by (3.51). This is impossible. Case II is proven. Proposition is proven. ([
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4. COMPLETION OF PROOF

In this section we tie up some loose ends from Section 2. It was asserted that
¢ < B+2vy/2L, where c is from (2.8). Define 7y € I' by 70(t) = 7¢(w). We will show
sup,er F(wo(t)) < B. Since F(yo(t)) — B as [t| — oo, and F(vy(t)) is continuous
in ¢, it suffices to prove that F(yo(t)) < B+ 2v4/2l for all t € R. We will prove this
for t = 0; the proof is similar for other ¢. After , it is proven that

_ ) e
Viw(t) = 7l Vi(w(t)) (4.1)
for all ¢. Since a(t) — [ as |t| — oo, and w(t) € (—1,1) for all ¢, (A2) gives us
Floo(0) = Fw) = [~ 3000 + a0V (w0 di
< /OO %w(t)“‘ LV (w(t) dt
o ) . (4.2)
:/ iw(t)QJer(w(t))dtJr(L—l)/ V(w(t)) dt
_ 4v\/Tl y
_B+f \/7dx/ \F £V (w(t))dt = B+ 2v1/2L.

We must prove that the gradient vector flow from is well-defined on R™ x W.
Since F is C2, it suffices to show that for all A > 0, there exists B > 0 such that
if € W with F(z) < A, |F'(2)| < B: By (V5), it is possible to extend V from
[1— (¢ +1),1+ (1 —&4)] (see (3.19)) to R such that there exists K > 0 with
V'(z)? < KV (x) for all real z. Let x € W with F(z) < A and u € WH2(R) with
||u||W1,2(R) = 1. Then

F'(z)u = /OO (t)a(t) + a(t)V'(x(t))u(t) dt

— 00

< (/:)o i(t)? dt)l/g(/fo u(t)? dt)l/2

oo oo
oo

+L(/Z V’(x(t))th)1/2(/oo it i) (4.3)
<\ﬁ+L / KV )dt> -

<V2A+ LMK/L(/ a(t)V (z(t)) dt)1/2
<V2A + LK AL

Here is the “standard deformation argument” alluded to after : suppose ¢ > B,
and suppose there does not exist a Palais-Smale sequence (x,,) C W with F(z,) — ¢
and F’'(x,) — 0. Then there exist €,d > 0 such that |F'(zy)|| > 6 for all z € W
with F(z) € [c —€,c+€]. Let v € T' with sup,cp F(7(t)) < c+e Let T >0
be large enough so that F(y(t)) < ¢ (> B) for |[t| > T. Let ¢ € C(R,]0,1])
with ¢ = 0 on (—oo,—T —1JU [T 4+ 1,00) and ¢ = 1 on [-T,T]. Define v, € T
by v2(t) = 77(2“0(t)6,’y(t)), where 7 is the gradient vector flow from (2.11). Since
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L E(n(s,u)) = —||F'(n(s,u)||? for all u € W, s € RF, F(v2(t)) < c for all t € R.
F(v2(t)) — B as [t| — 00, so sup,cg F(72(t)) < ¢, contradicting the definition of c.

In the ¢ = B case after (2.8), we have (z,,) C W with F(z,) — b < Basn — o
and z,,(0) = 0 for all n. Since F(x,) is bounded, there exists z € Wéf (R) and a
subsequence of (z,,) (also denoted (z,)) such that x,, — Z locally uniformly and
weakly in W2([=T,T]) for all T > 0. As before, F'(Z) < b < B. We must prove
z € W. Suppose otherwise. By Lemma[3.1} Z(t) — 1 or —1 as t — oo and Z(t) — 1
or —1 as t — —oo. Suppose Z(t) — —1 as ¢ — oo (the proof for Z(t) — 1 as
t — —oo is similar). Let B be as in and let € > 0 be small enough that

l_
TGBE > B— Fi_y.1(%)/2 (4.4)

Let T > 1 be large enough so a > 1 — € on [t,00) and Z(T) < —1 + €. Then, as in

(3.45)), for large n,

F(zn) > Fi_11)(%n) + Fir,00) (7)) > Fi—1,1)(Z)/2 + ZTGBG > B. (4.5)
This is impossible.
The final step in the proof is to show that a solution of in W takes values
n (—1,1). Suppose z € W and solves (L1)). If z(t) > 1 for some real ¢, then let
tmax € R with z(tmax) = maxier (t). Z(tmax) < 0, but V(z(tmax)) > 0. This
is impossible. Similarly, z(¢) < 1 for all real t. Now suppose z(t*) = 1. Then x
satisfies the Cauchy problem (L.1)), z(¢t*) = 1, @(t*) = 0, so by (V1), z = 1. This is
a contradiction. Similarly, (t) > —1 for all real t.
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