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ASYMPTOTIC BEHAVIOUR FOR A DIFFUSION EQUATION
GOVERNED BY NONLOCAL INTERACTIONS

ARMEL ANDAMI OVONO

Abstract. In this article, we study the asymptotic behaviour of a nonlocal

nonlinear parabolic equation governed by a parameter. After giving the exis-

tence of unique branch of solutions composed by stable solutions in stationary
case, we gives for the parabolic problem L∞ estimates of solution based on

using the Moser iterations and existence of global attractor. We finish our

study by the issue of asymptotic behaviour in some cases when t→∞.

1. Introduction

The non-local problems are important in studying the behavior of certain phys-
ical phenomena and population dynamics. A major difficulty in studying these
problems often lie in the absence of well-known properties as maximum principle,
regularity and properties of Lyapunov (see [5, 6]) and also the difficulty to char-
acterize and determine the stationary solutions associated thus making study the
asymptotic behavior of these solutions very difficult.

In this article, we study the solution to the nonlocal equation

ut − div(a(lr(u(t)))∇u) = f in R+ × Ω

u(x, t) = 0 on R+ × ∂Ω

u(., 0) = u0 in Ω.

(1.1)

In the above problem u0 and f are such that

u0 ∈ L2(Ω), f ∈ L2(0, T, L2(Ω)), (1.2)

with T an arbitrary positive number, a is a continuous function for which there
exist m,M such that

0 < m ≤ a(ε) ≤ M ∀ε ∈ R. (1.3)

The nonlocal functional lr(.)(x) : L2(Ω) → R, is defined by

u → lr(u(t))(x) =
∫

Ω∩B(x,r)

g(y)u(t, y)dy. (1.4)
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Here B(x, r) is the closed ball of Rn with radius r and g ∈ L2(Ω). It is sometimes
possible to consider g more generally, especially when one is interested in the study
of stationary solutions (see [3]).

From the physical point of view problem (1.1) gives many applications especially
where g = 1 in population dynamics. Indeed, in this situation u may represent a
population density and lr(u) the total mass of the subdomain Ω ∩ B(x, r) of Ω.
Hence (1.1) can describe the evolution of a population whose diffusion velocity
depends on the total mass of a subdomain of Ω. For more details of modelling we
refer the reader to [7]. This type of equations can be applied more generally to
other models including the study of propagation of mutant gene (see [11, 12, 13]).
A very recent study of this propagation was made by Bendahmane and Sepúlveda
[4] in which they analyze using a finite volume scheme adapted, the transmission
of this gene through 3 types of people: susceptible, infected and recovered.

From the mathematical point of view, when r = d where d is the diameter of Ω,
problem (1.1) has been studied in various forms [6, 8, 9, 15].

However, when 0 < r < d, several questions from the theory of bifurcations have
arisen concerning the structure of stationary solutions including the existence of
a principle of comparison of different solutions depending on the parameter r and
the existence of branches (local and global) of solutions. A large majority of these
issues has been resolved in [3]. It shows that when a is decreasing the existence of
a unique global branch of solutions and existence of branch of solutions that are
purely local. Some questions may then arise:

(i) The unique branch described in [3] it is composed of stable solutions?
(i) What about stability properties of the corresponding parabolic problem?

The plan for this work is the following. In section 2 we give some existence and
uniqueness results. Section 3 is devoted to stationary problem corresponding to
(1.1). In particular, we study in a radial case, a generalization of Chipot-Lovat
results about determination of the number of solutions. We also establish that the
unique global branch of solutions described in [3] is composed by stable solutions
(theorem 3.12). In section 4 firstly we address an L∞ estimate taking to account
Lp estimate based on Moser iterations. Secondly we prove existence of absorbing
set in H1

0 , which allows us to prove the existence of a global attractor associated
to (1.1) (see remark 4.5). Finally we obtain a result of stability properties of the
corresponding parabolic problem.

2. Existence and uniqueness results

In this section we show a result of existence. We set V = H1
0 (Ω) and V ′ its dual.

The norm in V is

‖u‖2
V =

∫
Ω

|∇u|2dx,

and the duality bracket of V ′ and V is 〈·, ·〉.

Theorem 2.1. Let T > 0, f ∈ L2(0, T, V ′) and u0 ∈ L2(Ω), we assume that a
is a continuous function and the assumption (1.3) checked then for every r fixed,
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r ∈ [0,diam(Ω)], there exists a function u such that

u ∈ L2(0, T, V ), ut ∈ L2(0, T, V ′)

u(0, .) = u0 in Ω
d

dt
(u, φ) +

∫
Ω

a(lr(u(t)))∇u∇φdx = 〈f, φ〉 in D′(0, T ) ∀φ ∈ H1
0 (Ω).

(2.1)

Moreover, if a is locally Lipschitz; i.e, for each c there exists γc such that

|a(ε)− a(ε′)| ≤ γc|ε− ε′| ∀ε, ε′ ∈ [−c, c], (2.2)

then the solution of (2.1) is unique.

Remark 2.2. Before to do the proof, we note that for r = 0, problem (2.1) is linear
and the proof follows a well-known result [10]. It is also valid when r = diam(Ω)
(see [7]). Therefore, we will focus in the case r ∈]0,diam(Ω)[.

Proof. For the proof of existence, we will use the Schauder fixed point theorem.
Let w ∈ L2(0, T, L2(Ω)). Then the mapping t 7→ lr(w(t)) is measurable. As a is
continuous then t 7→ a(lr(w(t))) is also continuous. The problem of finding solution
u = u(x, t) of

u ∈ L2(0, T, V ) ∩ C([0, T ], L2(Ω)) ut ∈ L2(0, T, V ′)

u(0, .) = u0

d

dt
(u, φ) +

∫
Ω

a(lr(w(t)))∇u∇φdx = 〈f, φ〉 in D′(0, T ) ∀φ ∈ H1
0 (Ω),

(2.3)

is linear, and admits a unique solution u = Fr(w) [10, 7]. Thus we show that the
application

w 7→ Fr(w) = u, (2.4)
admits a fixed point. Taking w = u in (2.3), using (1.3) and using the Cauchy-
Schwarz inequality, we have

1
2

d

dt
|u|22 + m‖u‖2

V ≤ |f |?‖u‖V , (2.5)

where ‖ · ‖V is the usual norm in V and |f |? is the dual norm of f . We take

|u|L2(0,T,V ) =
{∫ T

0

‖u‖2
V dt

} 1
2
.

Using Young’s inequality to the right-hand side of (2.5), it follows that
1
2

d

dt
|u|22 +

m

2
‖u‖2

V ≤ 1
2m

|f |2?. (2.6)

By integrating (2.6) on (0, t) for t ≤ T , we obtain

1
2
|u(t)|22 +

m

2

∫ t

0

‖u‖2
V dt ≤ 1

2
|u0|22 +

1
2m

∫ t

0

|f |2?. (2.7)

We deduce that there exists a constant C = C(m,u0, f) such that

|u|L2(0,T,V ) ≤ C (2.8)

Moreover
< ut, v〉+ 〈−div(a(lr(u(t)))∇u), v〉 = 〈f, v〉 ∀v ∈ V,

This gives us
|ut|? ≤ M‖u‖V + |f |?. (2.9)
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By squaring both sides and using the Young inequality, we have

|ut|2? ≤ 2M2‖u‖2
V + 2|f |2?. (2.10)

By integrating on (0, t) and assuming (2.8) we obtain

|ut|L2(0,T,V ′) ≤ C ′, (2.11)

with C ′ = C ′(m,M, f, u0), independent to w. It follows from (2.8) and (2.11) that

|ut|2L2(0,T,V ′) + |u|2L2(0,T,V ) ≤ R, (2.12)

with R = C2 + C ′2. From (2.8) and the Poincaré inequality it follows that

|u|L2(0,T,L2(Ω)) ≤ R′, (2.13)

By setting
R1 = max(R′, R), (2.14)

and associating (2.13) and (2.14), it follows that the application F maps the ball
B(0, R1) of L2(0, T, L2(Ω)) into itself. Moreover the balls of H1(0, T, V, V ′) are
relatively compact in L2(0, T, L2(Ω)) (see [10] for more details). (2.12) clearly
shows us that F (B(0, R1) is relatively compact in B(0, R1) with

B(0, R1) = {u ∈ L2(0, T, L2(Ω)) : |u|L2(0,T,L2(Ω)) ≤ R1}.

To apply the Schauder fixed point theorem, as announced, we just need to show
that F is continuous from B(0, R1) to itself. This is actually the case and completes
the proof of existence.

We will now discuss the uniqueness assuming of course that assumption (2.2)
be verified. Consider u1 and u2 two solutions (2.1), by subtracting one obtains in
D ′(0, T )

d

dt
(u1 − u2, v) +

∫
Ω

(a(lr(u1(t))∇u1(t)− a(lr(u2(t)))∇u2(t))∇φdx = 0 (2.15)

for all φ ∈ H1
0 (Ω). Since

a(lr(u1(t)))∇u1 − a(lr(u2(t)))∇u2(t)

= (a(lr(u1(t)))− a(lr(u2(t)))∇u1(t) + a(lr(u2(t)))∇(u1(t)− u2(t)),

we obtain
d

dt
(u1 − u2, v) +

∫
Ω

a(lr(u2(t)))∇(u1(t)− u2(t))∇φdx

= −
∫

Ω

(a(lr(u1(t)))− a(lr(u2(t)))∇u1∇φdx ∀φ ∈ H1
0 (Ω).

(2.16)

Moreover, u1, u2 ∈ C([0, T ], L2(Ω)) and there exist z > 0 such that lr(u1(t)) and
lr(u2(t)) are in [−z, z]. Taking v = u1−u2 in (2.16), by Cauchy-Schwarz inequality
and (2.2), ti follows that

1
2

d

dt
|u1 − u2|22 + m‖u1 − u2‖2

V ≤ γ|lr(u1(t))− lr(u2(t))|‖u1‖V ‖u1 − u2‖V . (2.17)

Also we have [3],

|lr(u(t)) ≤ C|B(x, r) ∩ Ω|1/(n∨3)|g|2|u(t)|2 ≤ |Ω|1/(n∨3)|g|2|u(t)|2, (2.18)
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where C a constant, |Ω| represents the measure of Ω and n∨3 the maximum between
the dimension n of Ω and 3. By using (2.18), (2.17) and the Young inequality

ab ≤ 1
2m

b2 +
m

2
a2.

We deduce
d

dt
|u1 − u2|22 + m‖u1 − u2‖2

V ≤ p(t)|u1 − u2|22, (2.19)

with

p(t) =
1
m

(γC|Ω|1/(n∨3)|g|2 ‖u1‖V )2 ∈ L1(0, T ),

which leads to
d

dt
|u1 − u2|22 ≤ p(t)|u1 − u2|22. (2.20)

Multiplying (2.20) by e−
R t
0 p(s)ds it follows that

e−
R t
0 p(s)ds d

dt
|u1 − u2|22 − p(t)e−

R t
0 p(s)ds|u1 − u2|22 ≤ 0. (2.21)

Hence
d

dt
{e−

R t
0 p(s)ds|u1 − u2|22} ≤ 0. (2.22)

This shows that t 7→ e−
R t
0 p(s)ds|u1 − u2|22 is non-increasing. Since for t = 0,

u1(0, .) = u2(0, .) = u0.

This function vanishes at 0 and nonnegative, we conclude that it is identically zero.
This concludes the proof. �

3. Stationary solutions

Consider the weak formulation to the stationary problem associated with (1.1),

−div(a(lr(u))∇u) = f in Ω

u ∈ H1
0 (Ω).

(3.1)

3.1. The case r = d. By taking φ the weak solution of the problem

−∆φ = f in Ω

φ ∈ H1
0 (Ω).

Due to a Chipot-Lovat [8] results we obtain the following result.

Theorem 3.1. Let a be a mapping from R into (0,∞). The problem (3.1) with
r = d has as many solutions as the problem, in R,

µa(µ) = ld(φ), (3.2)

with µ = ld(ud).

Remark 3.2. Theorem 3.1 allows us to see where a is increasing that the problem
(3.1) with r = d admits a unique solution and determine for a given a the exact
number of solutions (3.1). However it is difficult or impossible to adapt the proof
of the theorem 3.1 in the case 0 < r < d.
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3.2. The case 0 < r < d. As announced in the introduction we focus our study to
the case of radial solutions of (3.1) with r = d. We will assume Ω is the open ball
of Rn with radius d/2 centered at zero. We set

L2
rad(Ω) = {u ∈ L2(Ω) : ∃ũ ∈ L2(]0, d/2[) such that u(x) = ũ(‖x‖)},

and assume that
f ∈ L2

rad(Ω), g ∈ L2
rad(Ω),

a ∈ W 1,∞(R), inf
R

a > 0,

f ≥ 0 a.e in Ω, g ≥ 0 a.e. in Ω.

(3.3)

We start by giving in some sense in a linear case a result that will be used later to
explain the asymptotic behavior.

Proposition 3.3. Let A,B ∈ C(Ω) be positive radial functions such that A ≤ B
in Ω and also f, h ∈ L2(Ω) two positive radial functions. Let u ∈ H1

0 (Ω) the radial
solution to

−div(A(x)∇u) = f in Ω, (3.4)

−div(B(x)∇u) = h in Ω. (3.5)

Then f ≤ h a.e. in Ω.

Proof. We proved in [3] that if u is a the radial solution of (3.4) then for a.e. t in
[0, d/2],

ũ′(t) = − 1
Ã(t)

∫ t

0

(s

t

)n−1
f̃(s) ds. (3.6)

From (3.4), (3.5) and (3.6), we obtain

B̃(t)
Ã(t)

∫ t

0

(s

t

)n−1
f̃(s) ds =

∫ t

0

(s

t

)n−1
h̃(s) ds.

Since A ≤ B in Ω and f, h ≥ 0 with f 6≡ 0, h 6≡ 0 hence f ≤ g. �

In a nonlocal case, some results of existence of radial solutions and comparison
principle between ur, ud and u0 have been demonstrated in [3]. It is also proved
when for r ∈ [0, d] we set

Ir := [inf
Ω

lr(φ), sup
Ω

lr(φ)]. (3.7)

Here φ denotes the solution of
−∆φ = f in Ω

φ ∈ H1
0 (Ω).

(3.8)

By the inclusion or not of Ir at an interval of R we somehow generalize the theorem
3.1.

Lemma 3.4. Let r ∈ [0, d]. Assume that (3.3) holds and there exist 0 ≤ m1 ≤ m2

such that

a(m1) = max
[m1,m2]

a a(m2) = min
[m1,m2]

a, (3.9)

Ir ⊂ [m1a(m1),m2a(m2)]. (3.10)

Then (3.1) admits a radial solution u, and

m1 ≤ lr(u) ≤ m2 a.e. in Ω. (3.11)



EJDE-2010/134 ASYMPTOTIC BEHAVIOUR FOR A DIFFUSION EQUATION 7

For the proof of the above lemma, we refer the reader to [3]. Generalizing this
construction type of the diffusion coefficient a we obtain

Proposition 3.5. Let r ∈ [0, d]. Assume that (3.3) holds and there exist an odd
integer n1 and n1 + 1 positive real numbers {mi}i=0...n1 , with m0 = 0 and for all
i ∈ {0, . . . , n1 − 1} we have mi < mi+1. Moreover

a(mi) = max
[mi,mi+1]

a, a(mi+1) = min
[mi,mi+1]

a ∀i ∈ {0, 2, . . . , n1 − 3, n1 − 1}

Ir ⊂ ∩i=0,2,...,n1−3,n1−1[mia(mi),mi+1a(mi+1)]
(3.12)

Then (3.1) admits at least (n1 + 1)/2 radial solutions {ui}i∈{0,2,...,n1−1} such that

mi ≤ lr(ui) ≤ mi+1 ∀i ∈ {0, 2, . . . , n1 − 3, n1 − 1}.

Proof. By induction, we set

Pn1 = {If condition (3.12) is satisfied then (3.1) admits at least
n1 + 1

2
solutions.}

By using lemma 3.4 with m1 = 0 and m2 = m1, it is easy to prove that for n1 = 1,
Pn1 is true. For n1 > 1, This procedure can be repeated to prove that if Pn1−2

holds true then Pn1 holds too. �

Example 3.6. Let us see a function a satisfying proposition 3.5. For this, we
consider the case n1 = 3 and r ∈ (0, d]. Considering (3.3) and the strong maximum
principle we get min Ir > 0. Taking

m1 := 2
max Ir

a(0)
, a(m1) :=

a(0)
2

with a(0) > 0 and also a decreasing on [0,m1] then we prove the conditions of
lemma 3.4.

By repeating this process with m2 > m1 and setting

a(m2) :=
min Ir

m2
, m3 := 2

max Ir

a(m2)

with a(m3) := a(m2)
2 and also a is decreasing on [m2,m3]. This shows the existence

of such a.
In the representation of a in Figure 1, we have deliberately left, on solid line

parts of the curve satisfying the conditions of proposition 3.5, and dotted line one
without constraints.

Remark 3.7. As previously announced, proposition 3.5 generalizes a point of
view Theorem 3.1. However it does not accurately determine the exact number
of solutions of (3.1) and the bifurcation points of branch of solutions. We have
shown in [2] a way to solve this problem using the linearized problem, the principle
of comparisons obtained in [3] and the Krein-Rutman theorem.

3.3. Stable solutions of (3.1).

Definition 3.8. Given a domain Ω ⊂ Rn, a solution ur ∈ H1
0 (Ω) of (3.1) is stable

if for all φ ∈ H1
0 (Ω),

Gur
(φ) :=

∫
Ω

a(lr(ur))|∇φ|2 −
∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥ 0. (3.13)
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a(0)

a(m2 )

a(m1 )

a(m3 )

xm1 m2 m30

Figure 1. The case n1 = 3

Definition 3.9. Given u : [0, d] → H1
0 (Ω), the graph of u is called a (global) branch

of solutions if
(i) u ∈ C([0, d],H1

0 (Ω)),
(ii) u(r) is solution to (3.1) for all r in [0, d].

The function u is called a local branch if it is defined only on a subinterval of [0, d]
with positive measure.

Before concluding this section, we will focus on the case a non-increasing, to
prove the stability of the global branch of solutions. Assume for all r ∈ [0, d], ur is
a solution to (3.1) and

0 ≤ lr(ur)(x) ≤ µd for a.e. x ∈ Ω. (3.14)

Assume that there exists a solution µd to (3.2) such that

a(µd) = min
[0,µd]

a and a(0) = max
[0,µd]

a. (3.15)

Theorem 3.10 ([3]). Assume (3.3), (3.14), (3.15) and (3.2) holds. Assume in
addition that a ∈ W 1,∞(R) and for some positive constant ε, it holds that

C1|g|2|f |2|a′|∞,[−ε,µd+ε]
1

a(µd)2
< 1, (3.16)

where C1 is a constant dependent to Ω. Then
(i) For all r in [0, d], (3.1) possesses a unique radial solution ur in [u0, ud];
(ii) {(r, ur) : r ∈ [0, d]} is a branch of solutions without bifurcation point;
(iii) it is only global branch of solutions;
(iv) if in addition, a is non-increasing on [0, µd] then r 7→ ur is nondecreasing.

Remark 3.11. It is very difficult to obtain property (iv) for any a. However when
a is non-increasing provide us important information for studying the stability of
this branch of solutions.

Corollary 3.12. Let u1
d the smallest solution to (3.1). Assume (3.3) and (3.2)

holds true and there exists a solution µd to (3.2) satisfied (3.15). Assume in addition
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that a ∈ W 1,∞(R), u1
d satisfied (3.14) and for some positive constant ε, it holds that

C1|g|2|f |2|a′|∞,[−ε,µd+ε]
1

a(µd)2
< 1, (3.17)

where C1 is a constant dependent to Ω. Then {(r, ur) : r ∈ [0, d]} is the only global
branch of solutions starting to u1

d.

Proof. The fact that {(r, ur) : r ∈ [0, d]} is the only global branch of solutions
results from theorem 3.10. We will now show that this unique branch of solutions
is stable and start at r = d by u1

d. For this we consider without loss of generality
(3.1) admits two solutions u1

d and u2
d such that u1

d ≤ u2
d. We denote by µ1 and µ2

respectively solutions of (3.2) corresponding to u1
d and u2

d (see figure 2). It is easy
to see that µ1 and µ2 satisfied (3.15).

Assume {(r, ur) : r ∈ [0, d]} is the only global branch of solutions starting to u2
d.

Then we get C1|g|2|f |2|a′|∞,[−ε,µ2+ε]
1

a(µ2)2
< 1. In this case, using theorem 3.10 we

get (3.1) possesses a unique radial solution ur in [u0, u
2
d] and the mapping r 7→ ur

is nondecreasing. By continuity of this mapping, we can find a r0 ∈]0, d[ such that
ur0 = u1

d for a.e x ∈ Ω. This means that u1
d is a solution of (Pr0). This gives us a

contradiction and concludes the proof. �

We are now able to prove the following result.

Proposition 3.13. Under assumptions and notation of corollary 3.12, the global
branch of solutions described in theorem 3.10 is composed by stable solutions.

Proof. For all r ∈ [0, d], let ur be a solution belonging to the global branch of
solutions described in theorem 3.10. By using the linearized problem of (3.1), we
get for all φ ∈ H1

0 (Ω),∫
Ω

a(lr(ur))|∇φ|2 −
∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ

≥ inf
Ω

a(lr(ur))|∇φ|22 − C|g|2|a′|∞,[−ε,µ1+ε]|∇ur|2|∇φ|22.
(3.18)

Taking into account that |∇ur|2 ≤ C(Ω) |f |2
infΩ a(lr(ur)) where C(Ω) designed the

Poincaré Sobolev constant. We obtain∫
Ω

a(lr(ur))|∇φ|2 −
∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ

≥ |∇φ|22
(
inf
Ω

a(lr(ur))− C1|g|2|a′|∞,[−ε,µ1+ε]
|f |2

infΩ a(lr(ur))

)
.

(3.19)

Moreover by assumptions (3.14) and (3.15) we get a(µ1) ≤ infΩ a(lr(ur)). Thus
(3.17) becomes

C1|g|2|f |2|a′|∞,[−ε,µd+ε]
1

infΩ a(lr(ur))
2 < 1. (3.20)

We obtain ∫
Ω

a(lr(ur))|∇φ|2 −
∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥ 0.

This concluded the proof. �
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Figure 2. case of 2 solutions

r=0 r=d
r

u 0

u1

u 2

Global stable branch

Local branch

Figure 3. Branch of solutions

4. Parabolic problem

4.1. L∞ estimate. In what follows we obtain L∞ estimate of the solution (1.1)
from Lq estimate. The method we use is based on iterations Moser type, for more
details on the method see [14].

Theorem 4.1. Let n ≥ 3 and u a classical solution of (1.1) defined on [0, T ).
Assume that p > 1 and q > 1 such that 1

p + 1
q = 1. Suppose further that Uq =

supt<T |u(t)|q < ∞, f ∈ L∞(0,∞, Lq(Ω)). If p < n
n−2 then U∞ < ∞.

To prove this theorem we need the following result.

Lemma 4.2. Consider u a classical solution of (1.1) on [0, T ), r ≥ 1 and p > 1
such that 1

p+ 1
q = 1 with p < n

n−2 . We take Ũr = max{1, |u0|∞, Ur = supt<T |u(t)|r}
and let

σ(r) =
p(n + 2)

2[r(2p− pn + n) + np]
.
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Then there exists a constant C2 = C2(Ω,m) such that

Ũ2r ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]σ(r)rσ(r)Ũr.

Proof. Multiplying (1.1) by u2r−1 and then using the Hölder inequality yields

1
2r

d

dt

∫
Ω

u2rdx + m
2r − 1

r2

∫
Ω

|∇(ur)|2dx ≤ |f |q|u2r−1|p. (4.1)

As
|u2r−1|p = |ur|

2r−1
r

p 2r−1
r

, (4.2)

by taking w = ur in (4.1) and (4.2), we get easily

1
2r

d

dt
|w|22 + m

2r − 1
r2

|∇w|22 ≤ |f |q|w|ααp, (4.3)

with α = (2r − 1)/r. Let β be such that

1
αp

= β +
1− β

2?
, (4.4)

with 2? = 2n
n−2 . We claim that β ∈ (0, 1). In fact

β =
2nr − (n− 2)(2r − 1)p

(n + 2)(2r − 1)p
.

Since p < 2r
2r−1

n
n−2 , it follows that β > 0. Also (n+2)(2r−1)p > 2nr−(n−2)(2r−

1)p implies β < 1. This prove that β ∈ (0, 1). Using an interpolation inequality in
(4.3) and (4.4) (see [14]), we obtain

1
2r

d

dt
|w|22 + m

2r − 1
r2

|∇w|22 ≤ |f |q
(
|w|β1 |w|

1−β
2?

)α

. (4.5)

Applying Sobolev injections in (4.5), we have

1
2r

d

dt
|w|22 + m

2r − 1
r2

|∇w|22

≤
[
|f |q

(2r

m

)α(1−β)
2 |w|βα

1 C(1−β)α
][( m

2r

)α(1−β)
2 |∇w|(1−β)α

2

]
,

(4.6)

and
1
2r

d

dt
|w|22 + m

2r − 1
r2

|∇w|22

≤
[
|f |q

(2r

m

)α(1−β)
2 |w|βα

1 C(1−β)α
][( m

2r

)
|∇w|22

]α(1−β)
2

.

(4.7)

Since β ∈ (0, 1) and α
2 ∈ (0, 1) it is clear that α(1−β)

2 ∈ (0, 1). Applying Young’s
inequality to (4.7) with α(1−β)

2 + 1− α(1−β)
2 = 1. We obtain

1
2r

d

dt
|w|22 + m

2r − 1
r2

|∇w|22

≤ δ
[
|f |

1
δ
q

(2r

m

)α(1−β)
2δ |w|

βα
δ

1 C2/δ
]

+
α(1− β)

2

[( m

2r

)
|∇w|22

]
,

(4.8)

with δ = 1 − α(1−β)
2 . Joining the fact that α(1−β)

2 ∈ (0, 1) and δ < 1 to (4.8), we
deduce

1
2r

d

dt
|w|22 + m

3r − 2
2r2

|∇w|22 ≤ |f |1/δ
q

(2r

m

)α(1−β)
2δ |w|

βα
δ

1 C2/δ. (4.9)
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We set

2rσ(r)− 1 =
α(1− β)

2δ
and 2ρ(r) =

βα

δ
.

Then (4.9) becomes

1
2r

d

dt
|w|22 + m

3r − 2
2r2

|∇w|22 ≤ |f |1/δ
q

(2r

m

)2rσ(r)−1|w|2ρ(r)
1 C2/δ. (4.10)

Taking into account that 3r−2
r > 1, this gives us

d

dt
|w|22 + m|∇w|22 ≤ |f |1/δ

q

(2r

m

)2rσ(r)|w|2ρ(r)
1 mC2/δ. (4.11)

By a calculation we can verify that

ρ(r) =
2nr − (n− 2)(2r − 1)p

2r(p(n + 2) + n)− 2n(2r − 1)p
,

and that ρ(r) ∈ (0, 1).
Using the Poincaré Sobolev inequality and that ρ(r) < 1 in (4.11) yields

d

dt
|w|22 +

m

C1(Ω)
|w|22 ≤ |f |1/δ

q

(2r

m

)2rσ(r)|w|21mC2/δ, (4.12)

where C1(Ω) designed the Poincaré Sobolev constant. Noticing that

e
− m

C1(Ω) t d

dt

(
e

m
C1(Ω) t|w|22

)
=

d

dt
|w|22 +

m

C1(Ω)
|w|22

≤ |f |1/δ
q

(2r

m

)2rσ(r)|w|21mC2/δ.

(4.13)

and integrating (4.13) on [0, t) we obtain

|w(t)|22 ≤ |w(0)|22 + ‖f‖1/δ
L∞(0,∞,Lq(Ω))

(2r

m

)2rσ(r)
m C2/δ|w|21. (4.14)

Since

|w(0)|22 =
∫

Ω

w(0)2dx =
∫

Ω

u(0)2rdx ≤ |Ω||u(0)|2r
∞ ≤ |Ω|Ũ2r

r , (4.15)

(4.14) and (4.15) gives us

Ũ2r
2r ≤ |Ω|Ũ2r

r + ‖f‖1/δ
L∞(0,∞,Lq(Ω))

(2r

m

)2rσ(r)
mC2/δŨ2r

r . (4.16)

Whereas 1/δ > 1, 2rσ(r) > 0 and σ(r) = 1/(2rδ) it follows that

Ũ2r ≤ C
σ(r)
2 ‖f‖σ(r)

L∞(0,∞,Lq(Ω))r
σ(r)Ũr, (4.17)

with C2 = C2(Ω,m). This completes the proof of Lemma. �

Lemma 4.3. Let r > 1, n ≥ 3, p < n
n−2 and σ(r) = p(n+2)

2[r(2p−pn+n)+np] then we have

σ(2kr) ≤ θkσ(r) ∀k ∈ N,

with θ ∈ (0, 1).

Proof. Setting c1 = p(n+2)
2 , c2 = (2p − pn + n) and c3 = np yields σ(r) = c1

rc2+c3

with c1, c2, c3 ∈ R?
+. By taking θ = 1 − c2

2c2+c3
the proof of this lemma is deduced

by reasoning by induction. �

Returning now to the proof of the theorem.



EJDE-2010/134 ASYMPTOTIC BEHAVIOUR FOR A DIFFUSION EQUATION 13

Proof of Theorem 4.1. Using lemma 4.2 we have

Ũ2r ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]σ(r)rσ(r)Ũr.

By iterating this equation and taking r = h, r = 2h, r = 22h, etc, we obtain

Ũ2k+1h ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]λ12λ2hλ1 Ũh,

with

λ1 := σ(h) + σ(2h) + σ(22h) + · · ·+ σ(2k−1h) + σ(2kr),

λ2 := σ(2h) + 2σ(22h) + 3σ(23h) + · · ·+ (k − 1)σ(2k−1h) + kσ(2kr).

To complete the proof we just need to show that λ1, λ2 < +∞. Indeed by lemma
4.3

λ1 ≤
k∑

µ=0

αµσ(h) ≤
∞∑

µ=0

αµσ(h) =
σ(h)

(1− α)
< ∞.

Noting also that
σ(2kh) ≤ θk−1σ(2h) ∀k ∈ N?,

it follows that

λ2 ≤
k∑

µ=1

µαµ−1σ(2h) ≤
∞∑

µ=1

µαµ−1σ(2h) =
σ(2h)

(1− α)2
< ∞.

This completes the proof of the theorem. �

4.2. Uniform estimate in time. We prove an estimate for u in L∞(R+,H1
0 (Ω)).

Theorem 4.4. Assume that f ∈ L2(Ω), g ∈ H1(Ω), u0 ∈ H1
0 (Ω) and a ∈ W 1,∞(R)

with infR a > 0. Then a solution u of (1.1) is such that u ∈ L∞(R+,H1
0 (Ω)).

Proof. Taking a spectral basis related to the Laplace operator in the Galerkin
approximation (see [16]) we find that −∆u can be regarded as test function in
L2(0, T, L2(Ω)) for all T > 0. By multiplying (1.1) by −∆u(t) and integrating over
Ω,

(ut,−∆u) + (−div(a(lr(u))∇u),−∆u) = (f,−∆u), (4.18)
and

1
2

d

dt
‖u‖2

V + (−a(lr(u))∆u,−∆u) + (−a′(lr(u))∇lr(u).∇u,−∆u) = (f,−∆u).

(4.19)
Here (., .) is the usual scalar product on L2(Ω). Taking into account

|∇lr(u)|2 ≤ K ‖g‖H1(Ω)|∇u|2, (4.20)

where K is a constant depending of Ω. the above equality yields

|(−a′(lr(u))∇lr(u).∇u,−∆u)| ≤ K‖g‖H1(Ω)|a′|∞‖u‖2
V |∆u|2 (4.21)

Now from (4.21) and (4.19), we have

1
2

d

dt
‖u‖2

V + m|∆u|22 −K‖g‖H1(Ω)|a′|∞‖u‖2
V |∆u|2 ≤ |f |2|∆u|2. (4.22)

Using Young’s inequality ab ≤ 1
2ma2 + m

2 b2, we obtain

d

dt
‖u‖2

V ≤ 1
m
|f |22 +

1
m

(K ‖g‖H1(Ω))2‖a′‖2
∞‖u‖4. (4.23)
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To apply the uniform Gronwall lemma to (4.23), we start with a small estimate.
Recall that

d

dt
|u|22 + m‖u‖2

V ≤ 1
λ m

|f |22, (4.24)

where λ is the principal eigenvalue of the Laplacian operator with Dirichlet bound-
ary conditions.

By integrating on [t, t0) we have

|u(t + t0)|22 + m

∫ t+t0

t

‖u‖2
V ds ≤

∫ t+t0

t

1
λ m

|f |22 ds + |u(t)|22, (4.25)

and ∫ t+t0

t

‖u‖2
V ds ≤ t0

λ m2
|f |22 ds +

1
m
|u(t)|22. (4.26)

Let ρ0 > 0 such that |u(t)|22 ≤ ρ2
0. By setting

a1 =
1
m

c1(Ω)2|a′|2∞a3, a2 =
t0
m
|f |22, a3 =

t0λ

m2
|f |22 +

1
m

ρ2
0,

and using uniform Gronwall lemma to (4.23), we obtain

‖u(t + t0)‖V ≤ (
a3

t0
+ a2) exp(a1) ∀t ≥ 0, t0 > 0. (4.27)

Hence u ∈ L∞(t0,+∞,H1
0 (Ω)). Using (4.23) and the classical Gronwall lemma it is

easy to see that u ∈ L∞(0, t0,H
1
0 (Ω)). This completes the proof of the theorem. �

Remark 4.5. This theorem shows us the existence of absorbing set in H1
0 (Ω). By

considering S(t) the semigroup associated with the equation (1.1) defined by

S(t) : L2(Ω) → L2(Ω), u0 7→ u(t),

with u(t) a solution of (1.1). As a result of the theorem 4.4 and the compact
embedding of H1

0 (Ω) into L2(Ω) we deduce that the semigroup S(t) possesses a
global attractor. Indeed it is easy to show the existence of absorbing set in L2(Ω),
the main difficulty here is to show that S(t) is such that for all B ⊂ L2(Ω) bounded,
there exists t0 = t0(B) such that

∩t≥t0 ∪ S(t)B is relatively compact in L2(Ω). (4.28)

This property known and that S(t) is uniformly compact for t large can be proved
by using theorem 4.4 and the compact embedding of H1

0 (Ω) into L2(Ω).

4.3. Asymptotic behaviour. In this part we are interested in the asymptotic
behaviour of a weak solutions of (1.1). Our main interest here is radial solutions.
By radial solutions we mean ũ(|x|, t) = u(x, t). As in the stationary case Ω is a
open ball of Rn. Remember that

L2
rad(Ω) = {v ∈ L2(Ω) : ∃ṽ ∈ L2(]0, d/2[) such that v(x) = ṽ(‖x‖)}.

Not to confuse u0, the solution to (3.1) with r = 0, and the initial value of (1.1),
we will take u0 the initial value of (1.1).

Theorem 4.6. Assume that f, g ∈ L2
rad(Ω), a is a continuous function and the

assumption (1.3) checked then (1.1) admits a radial solution.

Proof. Let w ∈ L2(0, t, L2
rad(Ω)) it is clear that lr(w) is radial and also a(lr(w)).

Thus by (2.4) Fr maps L2(0, t, L2
rad(Ω)) into itself. The proof now follows by using

arguments similar to those used in theorem 2.1. �
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Assume now

f, g ≥ 0 in Ω, (4.29)

u0 ≤ u0 ≤ ud, (4.30)

with u0 the initial value to (1.1) and u0 and ud respectively the solution of (3.1)
with r = 0 and of (3.1).

We can now give a stability result assuming that (1.1) admits a unique solution.

Theorem 4.7. Assume (4.29) and f, g ∈ L2
rad(Ω). Let u, ud and u0 respectively

the solution of (1.1), (Pd) and (P0). If u0 ≤ u0 ≤ ud, then

u0 ≤ u ≤ ud ∀t.

Proof. Let
S = {t : l(u(s)) ∈ [0, ld(ud)], ∀s ≤ t}. (4.31)

It is easy to prove that S contains 0 (see 4.30). By setting

t? = sup{t : t ∈ S}. (4.32)

By continuity of the mapping t 7→ ld(u(t)), we have

ld(u(t?)) ∈ [0, ld(ud)]. (4.33)

By using (1.1) and (3.1) we get in D(0, t?)
d

dt
(ud−u, φ)+

∫
Ω

a(ld(u))∇(ud−u)∇φ = −
∫

Ω

(a(ld(ud))−a(ld(u)))∇ud∇φ (4.34)

for all φ ∈ H1
0 (Ω). Choosing φ = (ud − u)−, (4.34) becomes

1
2

d

dt
|(ud − u)−|22 +

∫
Ω

a(ld(ud))|∇(ud − u)−|2

=
∫

Ω

(a(ld(u))− a(ld(ud)))∇ud∇(ud − u)−.

(4.35)

Since a is non-increasing (a(ld(u))− a(ld(ud)) ≥ 0 for all t ≤ t?) hence proposition
3.3 yields ∫

Ω

(a(ld(u))− a(ld(ud)))∇ud∇(ud − u)− ≤ 0. (4.36)

Thus
1
2

d

dt
|(ud − u)−|22 + a(ld(ud))|∇(ud − u)−|22 ≤ 0 (4.37)

Applying Poincarr Sobolev inequality, we have
1
2

d

dt
|(ud − u)−|22 + C2|(ud − u)−|22 ≤ 0, (4.38)

this proves
d

dt
{e2t C2 |(ud − u)−|22} ≤ 0.

Moreover, (ud − u)−(0) = (ud − u0)− = 0 it follows that ud ≥ u ∀t ∈ [0, t?]. In
the same way we can also prove u0 ≤ u for all t ∈ [0, t?]. It follows that

u0 ≤ u ≤ ud ∀t ∈ [0, t?] (4.39)

To finish we just need to prove that t? is very large, this is typically the case. Indeed
if t? < ∞ then

l(u(t?)) = 0 or ld(ud). (4.40)
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From (4.29) and (4.39) we deduce

u(t?) = u0 or u(t?) = ud. (4.41)

Due to the uniqueness of (1.1), we deduce that t = ∞. This shows that

u0 ≤ u ≤ ud ∀t,
and completes the proof. �

Remark 4.8. The fact that |u(t)|22 is not a Lyapunov function that is to say
decreases in time, makes very complex the study of certain asymptotic properties
of our problem. Indeed under our study it is tempting to show that for r fixed
r ∈]0, d[

u(t) → u1
r in L2(Ω),

where u is the solution of (1.1) and u1
r the solution belonging to the stable global

branch described previously. A numerical study would be a great contribution to
try to carry out some of our theoretical intuitions.
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[15] Siegwart, M.; Asymptotic behavior of some nonlocal parabolic problems, Adv. Diff Equations,
2 (2006), p. 167-199.

[16] Temam, R.; Infinite-dimensional dynamical systems in mechanics and physics, Springer-
Verlag, 1997.

Armel Andami Ovono

L.A.M.F.A CNRS UMR 6140, 33 rue Saint Leu, 80039 Amiens cedex 1, France
E-mail address: andami@u-picardie.fr


	1. Introduction
	2. Existence and uniqueness results
	3. Stationary solutions
	3.1. The case r=d
	3.2. The case 0<r<d
	3.3. Stable solutions of (3.1)

	4. Parabolic problem
	4.1. L estimate
	4.2. Uniform estimate in time
	4.3. Asymptotic behaviour

	References

