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WEIGHTED PSEUDO-ALMOST PERIODIC SOLUTIONS FOR
SOME NEUTRAL PARTIAL FUNCTIONAL DIFFERENTIAL

EQUATIONS

KHALIL EZZINBI, SAMIR FATAJOU, GASTON M. N’GUÉREKATA

Abstract. In this work, we give sufficient conditions for the existence and

uniqueness of a weighted pseudo-almost periodic solutions for some neutral
partial functional differential equations. Our working tools are based on the

variation of constant formula and the spectral decomposition of the phase

space. To illustrate our main result, we propose to study the existence and
uniqueness of a weighted pseudo-almost periodic solution for some neutral

model arising in physical systems.

1. Introduction

The aim of this work is to study the existence and uniqueness of a weighted
pseudo-almost periodic solutions for the following neutral partial functional differ-
ential equation

d

dt
D(ut) = AD(ut) + L(ut) + f(t) for t ∈ R, (1.1)

where A is a linear operator on a Banach space X satisfying the well-known Hille-
Yosida condition:

(H0) There exist M̄ ≥ 1 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

|R(λ,A)n| ≤ M̄

(λ− ω)n
for n ∈ N and λ > ω,

where ρ(A) is the resolvent set of A and R(λ,A) = (λI−A)−1 for λ ∈ ρ(A).

D : C → X is a bounded linear operator, where C = C([−r, 0];X) is the space of
continuous functions from [−r, 0] to X endowed with the uniform norm topology.
For the well posedness of (1.1), we assume that D has the form

D(ϕ) = ϕ(0)−
∫ 0

−r

[dη(θ)]ϕ(θ) for ϕ ∈ C,

2000 Mathematics Subject Classification. 34G20, 43A60.
Key words and phrases. Neutral partial functional differential equation;

spectral decomposition; weighted pseudo-almost periodic solution; exponential dichotomy.
c©2010 Texas State University - San Marcos.

Submitted May 1, 2010. Published September 8, 2010.

1



2 K. EZZINBI, S. FATAJOU, G. M. N’GUÉREKATA EJDE-2010/128

for a mapping η : [−r, 0] → L(X) of bounded variation and non atomic at zero,
which means that there exists a continuous nondecreasing function δ : [0, r] →
[0,+∞) such that δ(0) = 0 and∣∣ ∫ 0

−s

[dη(θ)]ϕ(θ)
∣∣ ≤ δ(s) sup

−r≤θ≤0
|ϕ(θ)| for ϕ ∈ C and s ∈ [0, r],

where L(X) is the space of bounded linear operators from X to X. For every t ∈ R,
the history function ut ∈ C is defined by

ut(θ) = u(t+ θ) for θ ∈ [−r, 0].

L is a bounded linear operator from C to X and the input function f is weighted
pseudo-almost periodic from R to X. Partial neutral functional differential equa-
tions becomes now an interesting field in dynamical systems and have many ap-
plications in physical systems. In [27] and [28], the authors proposed and studied
a system of partial neutral functional differential-difference equations defined on
the unit circle S, which models a continuous circular array of resistively coupled
transmission lines, the system is given by

∂

∂t
[x(ξ, t)− qx(ξ, t− r)] = k

∂2

∂ξ2
[x(ξ, t)− qx(ξ, t− r)] + f(xt(ξ, .)) (1.2)

for t ≥ 0, where ξ ∈ S1 xt(ξ, θ) = xt(ξ, t + θ), −r ≤ θ ≤ 0, t ≥ 0, k is a positive
constant, f is a continuous function and 0 ≤ q ≤ 1. In [22] and [23], the author
investigated many interesting properties for the model (1.2). In [1], [2], [3] and
[5], the authors considered a more general neutral partial functional differential
equation of the form

d

dt
D(xt) = AD(xt) + F (xt) for t ≥ 0,

x0 = ϕ ∈ C.
(1.3)

where A is a nondensely defined linear operator that satisfies the Hile-Yosida con-
dition in a Banach space X, F is a continuous function from C into E, the authors
gave many fundamental results on the behavior of solutions.

The principal working tools in this work is the variation of the constants formula
and the spectral decomposition of the phase space. In [5], the authors developed a
new variation of constants formula for neutral partial functional differential equa-
tions and gave many applications. More details about the problem of variation of
constants formula in the context of delay differential equations and partial func-
tional differential equations can be found in the following books [18], [24], [25] and
[26]. Recall, in [18] the authors developed a new theory about the sun star re-
flexivity in order to obtain a variation of constants formula for delay differential
equations in finite dimensional spaces and gave many important applications in the
asymptotic behavior of solutions.

The organization of this work is as follows: In section 2, we give the framework
of the pseudo-almost periodic functions.In section 3, we recall the variation of con-
stants formula and the spectral decomposition that will be used in the whole of
this work. In section 4, we prove the existence and uniqueness of a pseudo-almost
periodic solution for equation (1.1) when the linear homogeneous equation has an
exponential dichotomy. Finally, for illustration, we propose to study the existence
and uniqueness of a pseudo-almost periodic solution for the model (1.2).
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2. Weighted pseudo-almost periodic functions

In what follows we recall some definitions and notations needed in the sequel.
Let X be a Banach space and L1

loc(R) denotes the space of locally integrable scalar
functions on R. Let U be defined by

U := {ρ ∈ L1
loc(R) : ρ(x) > 0 almost everywhere x ∈ R}.

For ρ ∈ U and R > 0, we set

m(R, ρ) :=
∫ R

−R

ρ(x) dx.

The space of weighted functions is defined by

U∞ :=
{
ρ ∈ U : lim

R→∞
m(R, ρ) = ∞

}
.

UB :=
{
ρ ∈ U∞ : ρ is bounded and inf

x∈R
ρ(x) > 0

}
.

Throughout this work BC(R, X) stands for the space of all X-valued bounded
continuous functions equipped with the sup norm defined by |φ|∞ := supt∈R |φ(t)|.

Definition 2.1. [21] A continuous function f : R → X is called almost periodic
if for each ε > 0 there exists an l(ε) > 0, such that every interval I of length l(ε)
contains a number τ with the property that |f(t+ τ)− f(t)| < ε for all t ∈ R.

This number τ is called ε-translation number of f .

Let AP (X) denote the space of almost periodic functions. Denote by PAP0(X)
the space of ergodic perturbations defined by

PAP0(X) :=
{
f ∈ BC(R, X) : lim

R→∞

1
2R

∫ R

−R

|f(t)| dt = 0
}
.

Definition 2.2. [14] A function f : R → X is called pseudo-almost periodic if
f = g + φ, where g ∈ AP (X) and φ ∈ PAP0(X).

The collection of all pseudo-almost periodic functions from R into X is denoted
by PAP (X).

Definition 2.3. [12] Let ρ ∈ U∞. We define the weighted ergodic space by

PAP0(X, ρ) :=
{
f ∈ BC(R, X) : lim

R→∞

1
m(R, ρ)

∫ R

−R

|f(t)|ρ(t) dt = 0
}
.

Definition 2.4 ([12]). Let ρ ∈ U∞. A function f : R → X is called weighted-
pseudo-almost periodic (or ρ-pseudo-almost periodic) if it is decomposed as

f = g + φ,

where g ∈ AP (X) and φ ∈ PAP0(X, ρ).

The collection of all weighted-pseudo-almost periodic functions from R into X
is denoted by PAP (X, ρ).

Remark 2.5. [12] The functions g and φ appearing in definition 2.4 are respectively
called the almost periodic and the weighted ergodic components of f .
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Definition 2.6. [12] Let Y be a Banach space. A function F : R×Y → X is called
almost periodic in t ∈ R uniformly in y ∈ Y if for each ε > 0 and any compact
K ⊂ Y there exists an l(ε) such that every interval of length l(ε) contains a number
τ with the property that

|F (t+ τ, y)− F (t, y)| < ε for each t ∈ R and y ∈ K.

The collection of those functions is denoted by AP (Y,X). In the same way, we
define PAP0(Y,X, ρ) as the collection of jointly continuous functions F : R×Y → X
such that F (·, y) is bounded and

lim
R→∞

1
m(R, ρ)

∫ R

−R

|F (s, y)|ρ(s) ds = 0,

uniformly with respect to y in each compact subset of Y .

Definition 2.7. [12] A function F : R× Y → X is called weighted pseudo-almost
periodic in t with respect to the second argument if

F = G+H,

where G ∈ AP (Y,X) and H ∈ PAP0(Y,X, ρ).

The class of such functions is denoted by PAP (Y,X, ρ) We give now some prop-
erties of a weighted pseudo-almost periodic functions.

Definition 2.8. [12] Let ρ1, ρ2 ∈ U∞. One says that ρ1 is equivalent to ρ2 or
ρ1 ∼ ρ2 whenever ρ1

ρ2
∈ UB .

Theorem 2.9 ([12]). If ρ1, ρ2 ∈ U∞, and ρ1 is equivalent to ρ2, then PAP (X, ρ1)
= PAP (X, ρ2).

An immediate consequence of Theorem 2.9 is the next corollary, which enables
us to connect the Zhang’s space PAP (X) = AP (X) ⊕ PAP0(X) with a weighted
pseudo-almost periodic class PAP (X, ρ).

Corllary 2.10 ([12]). If ρ ∈ UB, then PAP (X, ρ) = PAP (X).

3. Variation of constants formula and spectral decomposition

In the sequel, we assume that the operator A satisfies the Hille-Yosida condition
(H0). To equation (1.1), we associate the Cauchy problem

l
d

dt
D(ut) = AD(ut) + L(ut) + f(t) for t ≥ σ,

uσ = ϕ ∈ C.
(3.1)

Definition 3.1. [5] A continuous function u : [−r + σ,+∞) → X is called an
integral solution of (3.1), if

(i)
∫ t

σ
D(us)ds ∈ D(A) for t ≥ σ,

(ii) D(ut) = D(ϕ) +A
∫ t

σ
D(us)ds+

∫ t

σ
[L(us) + f(s)]ds for t ≥ σ,

(iii) uσ = ϕ.

If u is an integral solution of (3.1), then from the continuity of u, we have
D(ut) ∈ D(A) for all t ≥ σ. In particular, D(ϕ) ∈ D(A).
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Let us introduce the part A0 of the operator A in D(A) defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)}
A0x = Ax for x ∈ D(A0).

Lemma 3.2. [5] Assume that (H0) holds. Then A0 generates a strongly continuous
semigroup (T0(t))t≥0 on D(A).

For the existence of the integral solutions, one has the following results.

Theorem 3.3 ([5]). Assume that (H0) holds. Then, for all ϕ ∈ C such that
D(ϕ) ∈ D(A), equation (3.1) has a unique integral solution u on [−r + σ,+∞).
Moreover, u is given by

D(ut) = T0(t− σ)D(ϕ) + lim
λ→+∞

∫ t

σ

T0(t− s)Bλ[L(us) + f(s)]ds for t ≥ σ,

where Bλ = λR(λ,A) for λ > ω.

In the sequel, u(., σ, ϕ, f) denotes the integral solution of (3.1). The phase space
C0 of equation (3.1) is given by

C0 = {ϕ ∈ C : D(ϕ) ∈ D(A)}.
For each t ≥ 0, we define the linear operator U(t) on C0 by

U(t)ϕ = vt(., ϕ),

where v(., ϕ) is the integral solution of the homogeneous equation
d

dt
D(vt) = AD(vt) + L(vt) for t ≥ 0,

v0 = ϕ ∈ C.
(3.2)

We have the following result.

Proposition 3.4 ([5]). Assume that (H0) holds. Then (U(t))t≥0 is a strongly
continuous semigroup on C0. Moreover, the operator A defined on C0 by

D(A) =
{
ϕ ∈ C1([−r, 0];X) : D(ϕ) ∈ D(A),D(ϕ′) ∈ D(A)

and D(ϕ′) = AD(ϕ) + L(ϕ)
}
,

Aϕ = ϕ′,

is the infinitesimal generator of (U(t))t≥0 on C0.

To determine the asymptotic behavior of the semigroup (U(t))t≥0, we need to in-
troduce some preliminary results. In neutral system, many fundamental properties
depend essentially on the choice of the difference operator D. Here we suppose that
D is stable in the sense given in literature, more details can be found in [22, 25, 26].

Definition 3.5 ([22, 25]). The operator D is said to be stable if there exist positive
constants η and µ such that the solution of the following homogenous difference
equation

D(ut) = 0 for t ≥ 0,
u0 = ϕ,

where ϕ ∈ {ψ ∈ C : D(ψ) = 0}, satisfies

|ut(., ϕ)| ≤ µe−ηt|ϕ| for t ≥ 0.
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As an example, the operator D defined by

D(ϕ) = ϕ(0)− qϕ(−r)
is stable if and only if |q| < 1.

In the following, we assume
(H1) The semigroup (T0(t))t≥0 is compact on D(A) whenever t > 0.
(H2) The operator D is stable.

Then, we have the following fundamental result on the semigroup (U(t))t≥0.

Theorem 3.6 ([5, Lemma 10]). Assume that (H0)–H(2) hold. Then the semigroup
(U(t))t≥0 is decomposed on C0 as follows

U(t) = U1(t) + U2(t) for t ≥ 0,

where (U1(t))t≥0 is an exponentially stable semigroup on C0, which means that there
are positive constants γ0 and N0 such that

|U1(t)ϕ| ≤ N0e
−γ0t|ϕ| for t ≥ 0 and ϕ ∈ C0.

Moreover U2(t) is compact for every t > 0.

We introduce the Kuratowski’s measure of noncompactness α(·) of bounded sets
K in a Banach space Y by

α(K) = inf{ε > 0 : K has a finite cover of balls of diameter < ε}.
For a bounded linear operator B on Y , |B|α is defined by

|B|α = inf{ε > 0 : α(B(K)) ≤ εα(K) for any bounded set K of Y }.
The essential growth bound ωess(U) of the semigroup (U(t))t≥0 is defined by

ωess(U) = lim
t→+∞

1
t

log |U(t)|α = inf
t>0

1
t

log |U(t)|α.

Consequently form Theorem 3.6, we obtain the following interesting results that
will be used for the spectral decomposition.

Corllary 3.7. Assume that (H0)–(H2) hold. Then ωess(U) < 0.

Definition 3.8. Let C be a densely defined operator on a Banach space Y . The
essential spectrum σess(C) of C is the set of λ in the spectrum σ(C) of C, such that
one of the following conditions holds:

(i) Im(λI − C) is not closed,
(ii) the generalized eigenspace Mλ(C) = ∪k≥1 ker(λI −C)k is of infinite dimen-

sion,
(iii) λ is a limit point of σ(C) \ {λ}.

The essential radius of any bounded operator T in Y is defined by

ress(T ) = sup{|λ| : λ ∈ σess(T )}.

Lemma 3.9 ([4]). Assume that (H0)–(H2) hold. Then

σ+(A) = {λ ∈ σ(A) : Re(λ) ≥ 0}
is a finite set of the eigenvalues of A which are not in the essential spectrum.
More precisely, λ ∈ σ+(A) if and only if there exists a ∈ D(A)\{0} solving the
characteristic equation

∆(λ)a = λD(eλ·a)−AD(eλ·a)− L(eλ·a) = 0.
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Definition 3.10. The semigroup (U(t))t≥0 is said to have an exponential dicho-
tomy if

σ(A) ∩ iR = ∅.

Since (H0), (H1) and (H2) hold, by Corollary 3.7 we have ωess(U) < 0. Conse-
quently, we get the following result on the spectral decomposition of C0.

Theorem 3.11 ([4]). Assume that (H0)–(H2) hold. If the semigroup (U(t))t≥0

has an exponential dichotomy, then the space C0 is decomposed as a direct sum
C0 = S ⊕U of two U(t) invariant closed subspaces S and U such that the restricted
semigroup on U is a group and there exist positive constants M and c such that

|U(t)ϕ| ≤Me−ct|ϕ| for t ≥ 0 and ϕ ∈ S
|U(t)ϕ| ≤Mect|ϕ| for t ≤ 0 and ϕ ∈ U .

Here S and U are the stable and unstable spaces. [4]

To give a variation of constants formula associated to equation (3.1), we need
to extend the semigroup (U(t))t≥0 to the space C0 ⊕ 〈X0〉 where 〈X0〉 is the space
defined by

〈X0〉 = {X0y : y ∈ X},
the function X0y is given, for y ∈ X, by

(X0y)(θ) =

{
0 if θ ∈ [−r, 0),
y if θ = 0.

The space C0⊕〈X0〉 equipped with the norm |φ+X0y| = |φ|+|y| for (φ, y) ∈ C0×X,
is a Banach space. Consider the extension Ã of the operator A on C0⊕〈X0〉 defined
by

D(Ã) = {ϕ ∈ C1([−r, 0];X) : D(ϕ) ∈ D(A) and D(ϕ′) ∈ D(A)},

Ãϕ = ϕ′ +X0(AD(ϕ) + L(ϕ)−D(ϕ′)).

To compute the resolvent operator R(λ, Ã) = (λ−Ã)−1, we introduce the assump-
tion

(H3) D(eλ.y) ∈ D(A), for all y ∈ D(A) and all complex λ.

Lemma 3.12 ([5, Theorem 13]). Assume that (H0), (H3) hold. Then Ã satisfies
the Hille-Yosida condition on C0 ⊕ 〈X0〉: there exist M̃ ≥ 0 and ω̃ ∈ R such that
(ω̃,+∞) ⊂ ρ(Ã) and∣∣R(λ, Ã)n

∣∣ ≤ M̃

(λ− ω̃)n
for n ∈ N and λ > ω̃.

Now, we can state the variation of constants formula associated with (3.1).

Theorem 3.13 ([5, Theorem 16]). Assume that (H0), (H3) hold. Then, for all ϕ ∈
C0, the integral solution u(., σ, ϕ, f) of (3.1) is given by the variation of constants
formula

ut(., σ, ϕ, f) = U(t− σ)ϕ+ lim
n→+∞

∫ t

σ

U(t− s)(B̃nX0f(s))ds for t ≥ σ,

where B̃nX0y = nR(n, Ã)(X0y) for n > ω̃ and y ∈ X.



8 K. EZZINBI, S. FATAJOU, G. M. N’GUÉREKATA EJDE-2010/128

Theorem 3.14 ([5]). Assume that (H0)–(H3) hold and the semigroup (T (t))t≥0

has an exponential dichotomy. If f is bounded on R, then equation (1.1) has a
unique bounded integral solution on R which is given by

xt = lim
n→+∞

∫ t

−∞
T s(t−τ)Πs(B̃nX0f(τ)) dτ+ lim

n→+∞

∫ t

+∞
Tu(t−τ)Πu(B̃nX0f(τ)) dτ,

where Πs and Πu are the projections of C onto the stable and unstable subspaces,
respectively, T s and Tu are the restrictions of T (t) respectively on S and U .

4. Weighted pseudo-almost periodic solutions

In this section we study the existence and uniqueness of a weighted-pseudo-
almost periodic solution to equation (1.1). We give the main result of this work,
which shows the existence and uniqueness of ρ−pseudo-almost periodic solution if
the input function f is ρ−pseudo-almost periodic.

Theorem 4.1. Fix ρ ∈ U∞. Assume that (H0)–(H3) hold and the semigroup
(T (t))t≥0 has an exponential dichotomy. If f is ρ-pseudo-almost periodic in t ∈ R
and ρ is non increasing with

P (c) := sup
R>0

( ∫ R

−R

e−c(t+R)ρ(t) dt
)
<∞, (4.1)

where c is the positive constant given in Theorem 3.11. Then (1.1) has one and
only one ρ-pseudo-almost periodic integral solution.

Proof. Equation (1.1) has one and only one bounded solution on R which is given
by

xt = lim
n→+∞

∫ t

−∞
T s(t−τ)Πs(B̃nX0f(τ)) dτ+ lim

n→+∞

∫ t

+∞
Tu(t−τ)Πu(B̃nX0f(τ)) dτ

We will show that both of the above terms are ρ-pseudo-almost periodic. Since
f is ρ-pseudo-almost periodic then, f = g + φ where g is almost periodic and
φ ∈ PAP 0(X, ρ). Recall that φ ∈ PAP 0 (X, ρ) if and only if

φ ∈ BC(R, X) and lim
R→∞

1
m(R, ρ)

∫ R

−R

|φ(t)|ρ(t)dt = 0.

Note that

lim
n→+∞

∫ t

−∞
T s(t− τ)Πs(B̃nX0f(τ)) dτ

= lim
n→+∞

∫ t

−∞
T s(t− τ)Πs(B̃nX0g(τ)) dτ + lim

n→+∞

∫ t

−∞
T s(t− τ)Πs(B̃nX0φ(τ)) dτ

and

lim
n→+∞

∫ t

+∞
Tu(t− τ)Πu(B̃nX0f(τ)) dτ

= lim
n→+∞

∫ t

+∞
Tu(t− τ)Πu(B̃nX0g(τ)) dτ

+ lim
n→+∞

∫ t

+∞
Tu(t− τ)Πu(B̃nX0φ(τ)) dτ .
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Using the dominated convergence theorem, we show that the two integrals on the
right=hand side are almost periodic. It remains to show that

lim
R→∞

1
m(R, ρ)

∫ R

−R

∣∣ lim
n→+∞

∫ t

−∞
T s(t− τ)Πs(B̃nX0φ(τ)) dτ

∣∣ρ(t) dt = 0

and

lim
R→∞

1
m(R, ρ)

∫ R

−R

∣∣ lim
n→+∞

∫ t

+∞
Tu(t− τ)Πu(B̃nX0φ(τ)) dτ

∣∣ρ(t) dt = 0 .

Let us put

I(t) = lim
n→+∞

∫ t

−∞
T s(t− τ)Πs(B̃nX0φ(τ)) dτ,

J(t) = lim
n→+∞

∫ t

+∞
Tu(t− τ)Πu(B̃nX0φ(τ)) dτ .

On the other hand, we have

lim
R→∞

1
m(R, ρ)

∫ R

−R

|I(t)|ρ(t) dt

≤ lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

[ ∫ t

−∞
e−c(t−τ)|φ(τ)| dτ

]
ρ(t) dt

= lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

[ ∫ t

−R

e−c(t−τ)|φ(τ)| dτ
]
ρ(t) dt

+ lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

[ ∫ −R

−∞
e−c(t−τ)|φ(τ)| dτ

]
ρ(t) dt

= I1(ρ) + I2(ρ)

Using the Fubini’s theorem, we obtain

I1(ρ) = lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

[ ∫ t

−R

e−c(t−τ)|φ(τ)| dτ
]
ρ(t) dt

= lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

|φ(τ)|
[ ∫ R

τ

e−c(t−τ)ρ(t) dt
]
dτ

Since ρ is a decreasing function then we have

I1(ρ) ≤ lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

|φ(τ)|ρ(τ)
[1
c

(
1− e−c(R−τ)

)]
dτ.

Furthermore, −R ≤ t ≤ R and c > 0 then 1
c

(
1 − e−c(R−τ)

)
is bounded uniformly

in τ .

I1(ρ) ≤ lim
R→∞

MM̃

cm(R, ρ)

∫ R

−R

|φ(τ)|ρ(τ) dτ = 0.
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By (4.1) we have

I2(ρ) = lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

[ ∫ −R

−∞
e−c(t−τ)|φ(τ)| dτ

]
ρ(t) dt

= lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

e−ct
[ ∫ −R

−∞
ecτ |φ(τ)| dτ

]
ρ(t) dt

= lim
R→∞

MM̃

m(R, ρ)

∫ R

−R

e−ctρ(t) dt
[ ∫ −R

−∞
ecτ |φ(τ)| dτ

]
= lim

R→∞

MM̃

cm(R, ρ)ecR
sup
τ∈R

|φ(τ)|
∫ R

−R

e−ctρ(t) dt = 0.

By a similar argument we show that

lim
R→∞

1
m(R, ρ)

∫ R

−R

|J(t)|ρ(t) dt = 0.

This completes the proof of the theorem. �

5. Application

To apply the abstract results of the previous section, we consider the following
model (1.2) proposed in [27, 28]:

∂

∂t
[w(t, ξ)− qw(t− r, ξ)]

=
∂2

∂x2
[w(t, ξ)− qw(t− r, ξ)] +

∫ 0

−r

γ(θ)w(t+ θ, ξ)dθ + κ(t)µ(ξ)

for t ∈ R, ξ ∈ [0, π],

w(t, ξ)− qw(t− r, ξ) = 0 for ξ = 0, t ∈ R

(5.1)

where γ : [−r, 0] → R, µ : [0, π] → R are continuous function, and q ∈ (0, 1). The
function κ : R → R is given by

κ(t) = sin t+ sin
√

2t+ eαt for t ∈ R,

where α > 0. To rewrite equation (5.1) in the abstract form (1.1), we introduce
X = C([0, π]; R) the space of continuous functions from [0, π] to R endowed with
the uniform norm topology and we define the operator A : D(A) ⊂ X → X by

D(A) = {y ∈ C2([0, π]; R) : y(0) = y(π) = 0},
Ay = y′′.

Lemma 5.1 ([6]). The operator A satisfies the Hille-Yosida condition on the space
X, (0,+∞) ⊂ ρ(A), and

|(λI −A)−1| ≤ 1
λ

for λ > 0.

This lemma implies that condition (H0) is satisfied. Let A0 be the part of the
operator A in D(A). Then A0 is given by

[c]lD(A0) = {y ∈ C2([0, π]; R) : y(0) = y(π) = y′′(0) = y′′(π) = 0},
A0y = y′′ for y ∈ D(A0).
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Then it is well-known that A0 generates a strongly continuous compact semigroup
(T0(t))t≥0 on D(A). This implies that (H1) holds. On the other hand, we can see
that

D(A) = {y ∈ X : y(0) = y(π) = 0}.
Let us introduce the bounded linear operator D : C := C([−r, 0];X) → X by

D(φ) = φ(0)− qφ(−r).
Since 0 < q < 1, then D is stable and Condition (H2) holds. Moreover, by defi-
nitions of the operators A and D, it follows that Condition (H3) is satisfied. Let
L : C → X be the operator defined by

L(φ)(ξ) =
∫ 0

−r

γ(θ)φ(θ)(ξ)dθ for ξ ∈ [0, π] and φ ∈ C.

Let f : R → X be defined by

f(t)(ξ) = κ(t)µ(ξ) for y ∈ X and t ∈ R, ξ ∈ [0, π].

Then L is a bounded linear operator from C to X. Let u(t) = w(t, .) for t ∈ R.
Then equation (5.1) takes the abstract form

d

dt
D(ut) = AD(ut) + L(ut) + f(t) for t ∈ R. (5.2)

Proposition 5.2. Assume the above conditions and that∫ 0

−r

|γ(θ)|dθ < 1− q. (5.3)

Then the semigroup (T (t))t≥0 is exponentially stable: there exist M ≥ 1 and ω > 0
such that

|T (t)| ≤Me−ωt for all t ≥ 0.

Proof. It is sufficient to show that σ+(A) = ∅. We proceed by contradiction and
suppose that there exists λ ∈ σ+(A), then by Lemma 3.9, there exists y ∈ D(A)\{0}
such that ∆(λ)y = 0, which is equivalent to say that

Ay =
(
λ− 1

1− qe−λr

∫ 0

−r

γ(θ)eλθdθ
)
y = 0. (5.4)

This implies

λ− 1
1− qe−λr

∫ 0

−r

γ(θ)eλθdθ ∈ σp(A).

Since the spectrum σ(A) is reduced to the point spectrum σp(A) and σp(A) =
{−n2 : n ∈ N∗}. Then λ is a solution of the characteristic equation (5.4) with
Re(λ) ≥ 0 if and only if λ satisfies

λ− 1
1− qe−λr

∫ 0

−r

γ(θ)eλθdθ = −n2 for some n ∈ N∗. (5.5)

It follows that

Re(λ) ≤ 1
|1− qe−λr|

∫ 0

−r

|γ(θ)|eRe(λ)θdθ − 1,

Re(λ) ≤ 1
1− q

∫ 0

−r

|γ(θ)|eRe(λ)θdθ − 1 < 0.
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Then a contradiction is obtained with the fact that Re(λ) ≥ 0. Consequently
σ+(A) = ∅ and Lemma 3.9 implies that the semigroup (T (t))t≥0 solution of the
homogeneous linear equation

d

dt
D(vt) = AD(vt) + L(vt) for t ≥ 0,

v0 = ϕ ∈ C

has an exponential dichotomy. For β > 0, set the weighted function

ρ(t) =

{
1 if t < 0,
e−βt if t ≥ 0.

Then, limR→+∞m(R, ρ) = +∞ and hence ρ ∈ U∞. �

Proposition 5.3. Assume that 0 < α < β. Then, (5.2) has a unique ρ-pseudo-
almost periodic solution.

Proof. If α < β, then condition (4.1) is satisfied, namely

P (ω) := sup
R>0

( ∫ R

−R

e−ω(R+t)ρ(t) dt
)
<∞.

The function ψ does not belong to PAP (R) since

lim
R→∞

1
2R

∫ R

−R

eαt dt = ∞.

and ψ ∈ PAP (R, ρ) with sin t+sin(
√

2t) is the almost periodic component and eαt

is the ρ-ergodic component which satisfies

lim
R→∞

1
m(R, ρ)

∫ R

−R

eαtρ(t) dt = 0.

By Theorem 4.1, we deduce that (5.2) has a unique ρ-pseudo-almost periodic inte-
gral solution. �
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