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ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTION
FOR HENON TYPE SYSTEMS

YING WANG, JIANFU YANG

ABSTRACT. In this article, we investigate the asymptotic behavior of positive
ground state solutions, as o — oo, for the following Hénon type system

2 2
u= —2 |z|YuP~ e, —Av = el |z|*uPv?~1,  in By (0)
+4q +4q

with zero boundary condition, where B1(0) C RN (N > 3) is the unit ball
centered at the origin, p,¢ > 1, p+ ¢ < 2* = 2N/(N — 2). We show that both
components of the ground solution pair (u,v) concentrate on the same point
on the boundary 8B;(0) as o — oo.

1. INTRODUCTION

In this article, we investigate the asymptotic behavior of positive ground state
solution pairs of the following Hénon type system

2 2
—Au = —p|x|"‘up_lvq, —Av = 7q|x|aupvq_1, in B1(0) (1.1)
p+q p+q
with zero boundary condition, where B;(0) C RY (N > 3) is the unit ball centered
at the origin, « > 0, p,¢g > 1, p+q < 2* =2N/(N — 2).
Hénon [6] considered the so called Hénon equation

—Au = |z, zeQ,

1.2
u=0, x€df, (12)

which stems from a research of rotating stellar structures. Such a problem enjoys
special features. As usual, for arbitrary bounded {2, critical exponent for problem

(1.2) is 2*, while if Q is a ball, it was shown in [8] that problem (|1.2)) has a radially

symmetric solution for p € (2, Q(JJ\YLO‘ ) ), the critical exponent %

the critical Sobolev exponent 2*. Moreover, even in a ball, problem possesses
non-radial solutions under some conditions, see [9] and references therein. This can
also be seen as in [3], where it was shown that the ground state solution of problem
has a unique maximum point approaching to a point on 9B1(0) provided that
a > 0 fixed, p € (2,2%) and p — 2*. Similar results for p € (2,2*) fixed and o — oo
can be found in [T 2] [].

is larger than
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For system (1.1)), we proved in [10] that there exists &* > 0 such that the ground
state solution of problem is non-radial if @« > a*, p,q > 1 and p + g < 2%;
the maximum points of both components u and v of the ground state solution pair
(u,v) concentrate at the same point on the boundary 99 as p + ¢ — 2*.

In this paper, we investigate the asymptotic behavior of the ground state solution
pair of problem as a — o0o. Our main result is as follows.

Theorem 1.1. Let (uq,vs) be a positive ground state solution of (1.1) and de-
note kg = (0,...,0,1). Suppose xq,ya € B1(0) is a mazimum point of uq, Ve
respectively. Then
Ty Yo — T € 0B1(0),
lim_o(1~ [ra). lm_a(l— |u) € (0. +00).

@=N)(pta)+2N
o S [ (9 - e u(ale - a0)P
B1(0)
+ |V(ve — arTi v(a(r — x0))|*)dz — 0
as a — +00, where (u,v) is a ground state solution of the system
2 2
—Au = —peINupflvq, —Av = iewNupvqfl, in RY (1.3)
p+q p+gq
with u=v =0 on ORY.

The proof of Theorem [1.1]is inspired by that in [4]. In section 2, we prove that
(1.3) has a ground state solution pair. We establish in section 3 an asymptotic
estimate for S, ,, which is defined in the section 3. Then using the blow up
argument, we show in section 4 that the maximum points of both components of

the ground state solution of ([L.1) concentrate on the same point of the boundary
of the domain. The proof of Theorem is also given in section 4.

2. A VARIATIONAL PROBLEM
We consider for v > 0 the variational problem
Jan (IVul? + [Vo|*)dx

My,p,q = O;éu,velgé‘Q(R’_V) (fRﬁ’ even |ulp|v|adz)?/ (p+a)’

(2.1)

where p+ ¢ € (2,2*). We will show that m, , 4 is achieved. First, we prove that
the problem is well defined. For any u € C§°(RY), by Holder’s inequality,

O Bua! t) 2\ /2
u(a, o) < |xN|1/2(/m 2D 2 )

If p1 + ¢1 =2 and u,v € C§°(RY), we have

/ e’Yl‘N|u|p1‘v|Q1 dz
RY
0 / Pl 0 / a1
ou(z',t) 2 \ = ov(z',;t) 2 . \N=2 .,
< TEN ——=|"dt ——2\7dt) d
- /IN<0 |'TN|€ xN \/RN—l (/ | at ) (/ | at ) r
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< c/ (1Vul? + [Vol2) da.
RN

If po + g2 = 2%, again by Holder’s inequality,

2%/2
/ TN |ulP?v|* d < C(/ (|Vul? + |Vv|2)da:> .
RN R

N
Using interpolation inequality for p 4+ ¢ € (2,2*), we have

(p+q)/2
/ VN julP|v|? dx < C(/ (|Vul|* + \Vv|2)dm) e
RY RN

This implies m. , 4 > 0. Next, for every R > 0,

/ / VN y|Plo|? dx < C’e*VR/2</ (IVul? + |Vv|?) do
any<—RJRN-1 RN

Hence, fo < €N |ulP|v|? dz is uniformly decay in the xy-direction. The varia-
tional problem m., , , is compact in the zy-direction and it is translation invariant
in z1,...,2n—1. So we may prove as the proof of [IT, Theorem 1.4] the following
result.

)(p-l-q)/?

Proposition 2.1. Suppose p+q € (2,2*), v >0, N > 3. Then, m., p, 4 is achieved
by (u,v) with positive functions u,v € D(l)’2 (RN).

3. ESTIMATE FOR Sq p.q

It is known that the problem

(|Vul? + |Vo|?) dz
Sapqg = inf Jo(u,v) = in fBl(O) i
; uw,wEHE (B1(0)\{0} w,veHE(B1(0)\{0} (fB1(O) 2| [ulP[o]7 dz)?/ P+

is achieved and the minimizer is a solution of problem (1.1)) up to a constant.
Furthermore, we have the following result.

Proposition 3.1. Let p+ g > 2. There is C > 0 such that

C < Saapaq

= o Ni2N < mapq+o(1),
q

where o(1) — 0 as o — oo.

Proof. We use the idea in [4]. We establish the upper bound first. For any ¢ > 0,
there exist we, he € C§°(RY), we, he # 0, such that

lej(|vws|2 + |Vha|2)d'r

J
(f]RN e [we|P|he|1dx) 2/ (P+a)

e, RN (we, he) =

<Mipgq+E.

Let

o (@) = welaa’, alay + (1= [/)V2), va(a) = he(aa’, aley + (1 - 2[)V/2),
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where 2’ = (21, 22,...,2x-1). Then u,, v, € H}(B1(0)) if o > 0 is large enough.
. 0
Denote B, = {y : oty + ¢ € B1(0)}, where g = (0,0,...,1). Then
N—1 1
/ |V |2dz = OF*N/ > ‘Diwg(x',xN +a(l+ (1— =/ )?))
B1(0) Ba -1 o
a‘lxi

1 2
’ L n2z1/2
T A ey el o ol (L= gl F))

1
+ |[Dyw. (2’ zn + a(1+ (1 — @|xl|2)1/2))|2) dz.

(3.1)
Let

. 1
yi=x, 1=1,2,.... N=1 yy =2y +a(l+(1— $|x’|2)1/2),
then |det(2%)| = 1. By (31),
N-1
/ |Vua|2d:17 = a27N/ (Z |D;we + O(Ofl)DNws‘z + |DNws|2) dy
B1(0) RY

i=1 (3.2)
o N([ [Vl dy + 0(a)
RN
Similarly,
[ 9o =a* ([ 98P dy+O@ ). (33)
B1(0) RN
For any x € sptw. N spth., we have
2 _
£ gl = (14 22K | O(a=ye/2 = gm0,
«@

Therefore,

/ 2] [t 0] de
B;(0)

—a Y [ bl (e + all+ (1= ) )P

a4

a2|$/‘2

1
X |he(a’,on +a(l+ (1= Z5r5m) )l de (3.4)

_ —a(1-(1—- 5 5)?)+0(a" !
—a N/ (=) R0 oy 1 g
RY

—a V([ e Pl dy -+ Ofa)
RN

It follows from (3.2)), (3.3 and (3.4) that
Jo(ta, Vo) = NV (I ow (we, he) + O(a™h))
<o N+t (M1,pqg+e+ O(a_l))

and then,

Saapaq
2N
a2 N+35g

<mipq+o(l).
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Next, we show the lower bound. Let r» € (0,1], w € SV~ For any u,v €
H(B1(0)\ {0}), we define ¢(r,w) = u(r?,w), (r,w) = v(r’,w), where § = 1.
Then

1
/ 2| ul? o] dz = 8 / / (W) Pl )oYV drdw,  (3.5)
B; (0) 0 JwesN-1

and

/ |Vu|*dz
B1(0)

1
1 1 _ _
= 5[) / o (Ig2r2(ﬁ_1) |g0r(7‘,w)‘2 + 28 |nga(’r7w)|2)7”ﬁ(N DAL dr duw
weSN-1

1 ! 9
B B/o / o Jer ()l + %Ww%’(nw)|2))r(2—N)(1—ﬁ)+N—1drdw.
we -

(3.6)
Similarly,
/ |Vo|?da
B1(0)
L[ § (3.7)
= B/ / (‘7/}r(7"7w)|2 + ﬁ|vw¢(T,w)\Q)r(Q*N)(lfﬁ)JrN—l drdo.
0 weSN-1
Note that
N-1 D N o
Vol = X (G, ~ T ? (38)

—0x; (1 ['[})V2 0N

and dw = (1+ [o/[2)712da’. Let ¢(r,a") = (r, Ba"), d(r,a') = (r, 2’), Sp =
{x € SN=1:|2'| <np}, where n > 0 is small. Then, we may deduce as in [4] that
for 5 > 0 small,

1 2
p CN)Y(1_B) AN
| [ et + HVaptra P00t ar
8

(3.9)
> CﬁN_l/ |V<ﬁ(r, x/)|2r(2—N)(1—ﬂ) dr dl‘/
BT/
and
1 2
[ [ @t + SVt P00
b (3.10)
> CophTt / (Ve (r, ) [2rG=N =0 gy gy
By,
where B,, = {z € B1(0) : |2’| <n}. Similarly,
1
| [ et dra
b (3.11)

<CB" [ Jplna PR dr e

By
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Since @, = 0 on S™V~1, there exists a constant C' > 0 such that

([ letra) oy Larde P00 < 0 [ [9gtal) B0 dr de’
By, B,

(3.12)
and

([ ot
B

n

Therefore, by (3.12)) and (3.13]),
([ 1oty Plitahion— ar s
BW

2/(p+q) _
) o SC/ |V1/1(r,x’)|2r(27N)(17ﬁ) drdx’.
B
’ (3.13)

)2/(P+q)

S C/ (|<,5(7“, x/)lp-i-qu—l drdx/)2/(P+Q) + C/ (lz/;(ﬁ x/)‘p-i-qTN—l drdx/)Q/(p-‘,—q)
B, B,

<c / (V3 2) 2 + (990, 2)2)r N dy ot
B77

(3.14)
We derive from (3.9))-(3.14) that
1 2/(p+q)
([ [ tsterplot o™= ara) "™
0 JSg
< B / 6, ") Pl (r, )N L dr da') 7
BTI
<o / (IV@(r, 22 + |V (r, ) [2)rE N 0=8) g dy/ (3.15)
B

2(N—1)

1 2
<cp M85 [ (o) + S Vap(r o)
0 Jss

2
+ |9r(r, W)|2 + ﬁ|vw¢(7“,w)|2)7“(2_N)(1_6)+N_1 dr dw

Since ([T.1]) is rotation invariant, we may choose 3 > 0 so that SV~! can be covered
by finite number Sz up to a rotation, that is S¥~1 C USs. Then

(/ / o, w) Pl (r, )| dr doo
0 JuesN-1
1
= Z (/0 /S |¢(T’w)|p|¢(’”7w)|qu\[’1drdw)2/(p+q)
B8

2(N—1)

1 2
- B
<cpt Nt //(Iwr(r,w)l2+—2lvww(r,w>|2
0o Jss T

)2/(P+q)

(3.16)
2
() P+ S [T, w) PO

2(

<cp' Nt

1 2
N-—1) /8
// (ler(r,w)|? + S| Vuo(r,w)|?
0 JsN-1 r

2
+ |y (1, W)|2 + ﬁ|vw1/1(7",w)|2)7"(27N)(17’8)+N71 dr dw.
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Hence, we deduce from (3.6)-(3.7) and (3.16]) that

2 2
I, o) ([Vul” + Vo) da > 0N 27 = 0?2 Ntite (3.17)
(s, o) 121 ulPlv]? da)?/(Pra) = N ' '
It yields
N_o_ 2N fBl(O)(|VU|2 + [Vo]?) dx (3.18)
(fBl(O) |z||ulp|v]e do)2/ (Pta) — }
The proof is complete since u and v are arbitrary. O

4. ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTION

Let (Uy, Vo) be a minimizer of Sy, p 4. Choosing Ay = (SQQP - ) 779 and defining

Ua = AaUa,Va = AoV, we see that (uq,vq) is a solution f)air of (1.1)), which is
also a minimizer of S, 4. That is,

/ (|Vua|2+|Vva|2)dx:2/ 2] |t [P |V | d: (4.1)
B1(0) B1(0)
and ) )
S I, 0)(IVual® +Vva|?) dz . (4.2)
@,p,q (fBl(O) |2 ¥|ua|P|va|? de)?/ P+a)
It yields
ptq
/ (IVual? + [Vva|?) do = 2 / [ g [P |va|? du = 27 772 ST .7 (4.3)
B1(0) B1(0)
By Proposition [3.1]
Ca = < / (Vual? + |Voa|?) de < C'a “ZF5525 (44
B1(0)
Let , " , .
U (x) = a‘qufzua(a), Vo(z) = a‘qufzva(a), x € B,(0).
Then
C < / (|Vii|* + |Va|?) dz < C. (4.5)
« 0)

Choose p1,q1 > 0 such that p > p1, ¢ > ¢1 and p1 + g1 = 2.

Lemma 4.1. As o — +00, we have

0<C <C max |ua|’™" max |77,
z€B4(0) zE€B,(0)

Proof. By Proposition [3.1

C;’Oé2 < Sap q = fBl(O)(‘vuaF + |V'Ua|2)d1'

fBl(o) || |ualPtva|® do
Equation (4.5) implies
/ 12 9t |7 5| d < c/ (Ve + Vo) dz < C.  (4.6)
B.(0) ¢ 0)

Hence, by (£3) and (@),
0<C< [ X fuaPlonrds

a
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T
< a 0. |P7PL|p |90 1% P o9 d
g (el T [ TGl d

< C max |ueP7P' max |U,]? .
z€B,(0) xE€Bo(0)

The assertion follows. O

Lemma 4.2. There is C > 0 such that |t (z)| < C, |04(z)| < C for x € B,(0).

Proof. Since (uq, vy) is a solution pair of (1.1)), then for = € B, (0) we have

_ 20 T p1, 2p -
—Auazzi—auglxvgu’c §7uglzvgx 4.7
(z) ijqlal (z)vd (2) pryrays (2)vd (2) (4.7)
and
~ 2q x —g—1 2q _ g1
—AUy () = —— | =Wl (2)vl™ " () < ——@b ()L " (z).
(z) erqloél (z)vd™ () P (z)vd ™ ()

Now we use the Moser iteration to prove the result. Without confusion, we use
(u,v) to denote (i, V). Let s > 1. Multiplying (4.7) by u?® and integrating by
parts, we obtain

2
57%(25 — 1) / |Vl | do < =P uP 125y d,
Ba(0) Pt4qJB, (0

Since s72(2s — 1) > s 1if s > 1,

2
/ |Vus|? do < ﬂ/ uP 712507 d.
Ba(0) P+4q.JB, (0

By Sobolev inequality and Hoélder’s inequality, we deduce

(/B ( )UQ*de)z/g*
(0

< 2sp/ uP 2502 g
B4 (0)

S ptgq

p—1+42s g (48)
< 2sp (/ yPTa—1+2s da:) pHa—1F2s (/ pPHa—142s d:c) pTa-1T2s
Pt qa)N)B.(0) B (0)
< Sp / (up+q—1+25 + Up+q—l+25) dz.
D+ q .JB.(0)
Similarly, we have
X 2/2"
(/ v? e d:v) < ikl / (uPTam1H2s 4 ypra=1t2s) gg (4.9)
Ba/(0) P+4JB.(0)

Therefore,

(/B (O)(UQ*S—FUQ*S)dx)Q/Z* - (/B (O)uQ*de)Z/T_F(/B (0)U2*5d$)2/2*

< 8/ (up+q—1+28 +Up+q—1+2s) dr.
BO{(O)

(4.10)
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Now we define {s;} by induction. Let p+¢—1+42s9 = 2* and pHq—1+2sj41 = 2*s;,
j=0,1,2,.... We also define My =1, M; 14 (JM) ,j=0,1,2,.... We claim
that for all j > 0,

/ (uPTa=1H2s5 P Ha=14255) 4y < OM; (4.11)
Ba/(0)
and

M; < em®i-t, (4.12)
where C,m > 0. and imply

_1 _1
(/ (u2*5j _|_U2*Sj)dx)2 55 < CM; 55 <e %5 <C
B.(0)

for all j. The assertion then follows. Now, we show (4.11]). Obviously, if 7 = 0,
(4.11)) holds. Suppose it holds for j, we deduce it holds for j 4+ 1. Indeed,

/ (up+q71+23j+1 + UP+Q*1+25]‘+1) dx
Ba(0)

— / (UQ*S]' + UQ*Sj)d.'E
Ba(0)

< 3]2.*/2(/ (up+q—1+23j +Up+q—1+2$j>dx>2*/2
Ba(0)

2% /2
< (Sij) = M1
Inequality can be proved, as in [7]. O
Let M, = max,ep, (0) Yas No = MaXze B, (0) Va-
Lemma 4.3. There holds
Coava? < My, Ny < CaaiFis.
Proof. By Lemmas [£.1] and [£.2] we have

0<C <C max |ue/P™ and 0<C; <C max |U,]7 %.
z€B,(0) z€B,(0)

This yields the result. O

Let 2, € B1(0) be a maximum point of u, and y, € B1(0) be a maximum point
of vg.

Lemma 4.4. The following hold limy— oo a(l — |24]) and limg— 400 @(1 = |ya|)
are in € (0,400).

Proof. We only prove lim,_ 4o (1 — |24|) = L and L € (0,400). The other case
can be done in the same way. Let Bo(—2o) = {2 : £ + 2, € B1(0)} and define

ia(a) = 0 P2 b aa), Bale) = o (S 4 ).
Then, for x € B, (—x4),

—At,(z) = -+ xa
o
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By Lemma [£.3]

U, U < C,  0s(0) = én?x )ﬂa(a:) >Cy >0
reBa(—%a

and
/ (IVita|? + |Via|?) dz < C.
Ba(—z4a)
Suppose that a1 — |z4|) — 400, we assume that there are @,9 € DV2(RY) such
that
Uo = U, Uq =0, in DV2(RY)
lig — Uy, Tq — 0, in Ch (RY).
Now, we distinguish two cases: (i) |24 <1 < 1; (ii) |zo| — 1 as @ — +o00. For any
x with |z| < C, in case (i), we have
C C
1Z 420l < (= 4 |2a)* < (= +D* < (I4)* =0, asa— +x.
@ a a
In case (ii), since a(1 — |z4]) — +00,
1L 4 |o < eamlEHlzal=141) — p(ealE Hoal-1)) = O(eleltaleal -1y _, o,
a
So @ satisfies
—A@=0, @eD"}RY).
This implies @ = 0, a contradiction to @(0) = limg—, 400 U (0) > C > 0. Therefore,
a(l = |z4]) = L < +00.

Now, we claim L > 0. Indeed, we have @(0) = limy—, o0 % (0) > 0. Since (1.1)
is invariant under the rotations. After suitably rotating the coordinate system, we
may assume that z, = (0,...,0,2%), where 2§ — 1, as @« — 4o00. Then (@,7) is a
positive solution pair of (1.3) in @ = RY +(0,...,0,L) with @ = & = 0 on 9. If

L =0, we would have 2 = RY and then we obtain %(0) = 0, a contradiction. The
proof is complete. O

By Lemma [4.4] we know that zo, — 20 € 9B1(0), ya — yo € 0B1(0) if @ — +o0.
In the following, we show that xy = yo.

Lemma 4.5. Both z, and y, converge to a point xy € 0B1(0) as a — +o0.

Proof. We argue by contradiction. Suppose zg # yo, then there is a § > 0 such
that Bs(zg) N Bs(yg) = 0. After suitably rotating the coordinate system, we may
assume that g = (0,...,0,1). Applying the blow up argument for

aa(!E) :a7p+§72ua(§+$0), ’ﬁa(x) :ailﬁ%ﬁva(g‘i‘mo)

in B;(0)N Bj(x0), since iy, 7o are bounded in Dy (RY), we may assume that there
are @, 0 € Dy*(RN) such that

g = U, Do —0, inDy*RY),

iy — @, Uo—9, inCh (RY).
Moreover, (@, ) with @,0 € Dé’Q(Ry) is a positive solution of ((1.3). In the same
way, we may assume yo = (0,...,0,1). Define

o x B __ 2 oz
() = a P+;*2ua(a + 1), Ua(r)=a a2 va(a +yo)-
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Then
_ L o 1,2
Uo =T, Vo —0, in Dy (RJX)7

Uy — U, Uy — T, in Clloc(RJ_V),

and (@, ) is a positive solution of (|1.3)). It implies

_Dptq

/RNﬂvaPHWIQ)dw, AN<IVE\2+\V@|2>dxz2 Ty

By Proposition [3.1]

1 1
Htarva) = G =) [ (1Val? + 90l
1
1 1 2 ptg
= (= — — )2 pFq—2 §pta-2
(5 p+q) &pia
1 1 2 —N)(p+q ptq
< (5 o2 e TR I o).
On the other hand,
1 1
I(ua,va) =2 (5 ———) (IVua|? + [Vva|?)dz
2 p+q Bl(O)ﬂBg(:Eo)
1 1
+(z——) (|Vua|* + |Vug|?)dz
2 p+4q" JB(0)nBso)
2=N)(p+q) 1 1
> o O (1 7)/ (|Vital? + [Va|?)do
2 p+4q" JB.(—20)NBus(0)
@=N)(p+a) 1 1
Fa TR ) (IVia|? + |V0a|?)dz

2 p+q" JB.(—yo)NBas(0)

So we obtain

/ (Vo + Vo + [ (IVital? + [Voa|?)d
B ( :Eo)ﬂBa(;(O)

Ba(—=0y0)NBas (0)

<277 (7, + o()

Therefore,
2‘zo+3—2(mf;qqz +0(1)) > / (IVal]* + Vo )dx+/ (IVal* + |Vo|*)dz
RY
> 2 (i MEL, )
which is impossible. The proof is complete. ([l
Now, we may assume that g = (0,...,0,1). Let
o (@) :a_v+(217—2ua(§+x0), b (2) :a—#va(gmo), (4.13)

which, as before, satisfies
g =@, Do —0, inDy*RY),
g — G, o — 0, inCL (RY)
and (@,9) # (0,0) is a positive solution of (L.3).
Finally, we have following result.
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Proposition 4.6. The pair (4, 0) is a minimizer of my , 4, which satisfies

/ (|V (it — @) > + |V(00 — 0)[*)dz — 0, as a — +oc.
RN

Proof. By (1.3]), we have

/ (\Vﬂ|2+|Vﬁ|2)dx:2/ N PHd,
RY RY

and
Jax (IVul? + [Vo]*)dz

(Jen €7 |ufP|v|2da)?/ (Pt

Mip,q <

So we obtain
ptaq

/ (IVul? + |Vo|?)dz > 2_P+3*2mf+q72.
RY

sP,q
For R > 0 define
X
Bra = {z: 2 +0 € Bayyy NBi(0)}, Q= {a: = +a0 € Bi(O)}

By Proposition (Ua, Vo) is a minimizer of S, , , and satisfies (1.1)), then

/B ( )(|Vua|2 + Vg |?)de < 27 T (mf,i% To(1).  (4.14)
10
Moreover,
/ ([Vual? + [Voa[?)dz
B1(0)
- ([Vaua|? + IVva\Q)da:—i—/ (IVual? + [Voa[?)dz

B%(wo)mBl(O) Bl(O)/B%(xO)

(IVial? + [Va[?)dr )

(2=N)(p+a)+2N
= p+qg—2 (
Br

(2=N)(p+a)+2N

> o ety (/ (Vo + [Via?)dz + o(1))
RY¥NBR(0)

(|Viig|* + | Voo |?)dx +/

QO(/BR,OL

Yot

(2=N)(p+a)+2N

> a+77(/ (IVal® + Vo) +o(1)
RYNBR(0)

@=N)(p+a)+2N 2 —ptg
— —2
>a etz (27 EFaezm 4 o(1))

_ +
= 2_p+§—2a(2 Np)-(f—th;”N ((Tnpiq32 +o(1)).

1,p,q
By (&9) and ([E13),
| (190 + [95a)de = o)) + on(0)
Qa/BR,a

(4.15)

[ 9l ViaPyia = [ (9l + Voo +o(1)
R R¥NNBR(0)

Jo
pt+q

= 2772 m] e ® + o(1) + op(1).
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Let R — 400, the above equation yields

pt+q

/RN(IVuP + | Vo2)de = 2 sFaam Pt 7 (4.16)

P.q
An application of the Brezis-Lieb’s Lemma gives

/ (IV (i — u)|* + |V (00 — v)|*)dz — 0
RY

as @ — +o0. On the other hand, by (1.3) and (4.16),
Jan (IVul? + [Vo]*)dz

(s e [ulP[o]ida 27

ptg—2
= 22/(p+q)(-/RN(|vu|2 + |V@|2)dx) P =M g

This implies that (u,v) achieves mq , 4. As a consequence, we have

_@2=N)(pta)+2N

« T/ (|V(ua—aﬁu(a(x—xo))|2
B1(0)

+ |V (vg — arFizv(a(z — x0))|?)dz — 0,
as o — +00. 0

Now the the proof of Theorem is completed by Lemmas and Propo-
sition
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