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EXISTENCE OF POSITIVE BOUNDED SOLUTIONS FOR SOME
NONLINEAR POLYHARMONIC ELLIPTIC SYSTEMS

SABRINE GONTARA, ZAGHARIDE ZINE EL ABIDINE

ABSTRACT. We prove existence results for positive bounded continuous solu-
tions of a nonlinear polyharmonic system by using a potential theory approach
and properties of a large functional class K, ,n called Kato class.

1. INTRODUCTION

The goal is to study the existence of positive continuous bounded solutions for
the nonlinear elliptic higher order system
(=A)"u+ Agg(v) =0 in B,
(=A)™v + upf(u) =0 in B,

D e e O (1.1)
. v(x) -
A eyt = Y

where m is a positive integer, B = {x € R" : || < 1} is the unit ball of R™ (n > 2),
OB = {z € R™ : |z| = 1} is the boundary of B, A, p, are nonnegative constants and
©, ¥ are two nontrivial nonnegative continuous functions on 0B.

For the case m = 1, the existence of solutions for nonlinear elliptic systems has
been extensively studied for both bounded and unbounded C'*'domain D in R"
(n > 3) (see [8, 9, 11-13]).

The polyharmonic operator (—A)™, m € N*  has been studied several years

later. Indeed, Boggio [7] showed that the Green function G,,, of the operator
9 om—t

m

(=A)™ on B with Dirichlet boundary conditions u = 5-u = -+ = 5 %=u =0 on
0B, is given by:
[z,y]
B To—g] <V2 _ 1)m—1
Gm,n($>y) = km,n|$ - y|2m " . Td% (1.2)

where k,,, ,, is a positive constant, % is the outward normal derivative and for x, y

in B, [z,y]* = |z —y|* + (1 — |z*)(1 - y*).
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From its expression, it is clear that G,,, is nonnegative in B%. This does not
hold for the Green function of (—A)™ in an arbitrary bounded domain (see for
example [10]). It is well known that for m = 1, we do not have this restriction. In
[2], the properties of the Green function G,, ,, of (—A)™ on B allowed the authors to
introduce a large functional class called Kato class denoted by K, ,, (see Definition
below). This class played a key role in the study of some nonlinear polyharmonic
equation (see [2], 4l [T4]). For the case m = 1, the Kato class has been introduced
and studied for general domain possibly unbounded in [II, B [15] for » > 3 and [16]
for n = 2.

Definition 1.1 ([2]). A borel measurable function ¢ on B belongs to the Kato
class K, , if ¢ satisfies the condition

i (s [ ()" Gl latw)y) =0

a—0\zep (5(1‘)

Here and always §(z) = 1 — |z|, is the Euclidian distance between z and 9B.
As typical example of functions belonging to the class K, ,, we have

Example 1.2 ([4]). The function g defined in B by

PTG P ——
(0(2)(log 32,

is in K, if and only if A <2m and p € Ror A =2m and px > 1.

Before presenting our main results, we lay out a number of potential theory
tools and some notations which will be used throughout the paper. We are mainly
concerned with the bounded continuous solution H¢ of the Dirichlet problem

Au=0 in B

ulp =,

where ¢ is a nonnegative continuous function on dB. We remark that the func-
tion defined on B and denoted by H™p : x — (1 — |z|*)™ 1 Hp(z) is a bounded
continuous solution of the problem
(-A)"u =0 in B
. u(z (1.3)

N sy |a(c|2))m1 = (-
For simplicity, we denote

Co(B) = {w continuous on B and m_%lgrélan(z) =0}

and - B

C(B) = {w continuous on B}.
We also refer to V;,,  f the m-potential of a nonnegative measurable function f on
B by

Vm,nf(x) = /BGm,n(myy) f(y)dy, for x € B.

Recall that for each nonnegative measurable function f on B such that f and V,;, ,, f

Tl
are in L) (B), we have

(—A)m(mef) = f7

in the distributional sense.
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The outline of this paper is as follows. In section 2, we collect some preliminary
results about the Green function and the Kato class K, . In section 3, a careful
analysis about continuity is performed. In particular, we prove the following result.

Theorem 1.3. Let m —1 < < m, q € Ky, p, then the function v defined on B
by

o) = [ (55) Gl lawldy

is in C(B) and if m —1 < 3 < m, we have lim v(z) = 0.
r—E€0B
Based on these properties of the Green’s function Gy, , and Kato class Ky, ,,, we
establish in section 4 the first existence result stated in Theorem [[.4] below. The
following conditions are considered

(H1) The functions f, g : (0,00) — [0, 0) are nondecreasing and continuous.
(H2) The functions p and ¢ are measurable nonnegative in B such that the
functions

xH& and x+—

(6(z))m—t (6(z))mt
belong to the Kato class Ky, ;.
(H3) We suppose that

. H™p(x)
Ao = @)
. )

= LV ) @)

Theorem 1.4. Assume (H1)—(H3). Then for each A € [0, Xg) and each p € [0, f10),
the problem (1.1)) has a positive continuous solution (u,v) satisfying for each x € B,

(1= ™ o(2) < ule) < H™o(a),
0

(1= L)H™)(2) < v(a) < H™Y(a).
Ho
In section 5, we study the system (1.1) when the functions f and g are non-
increasing and A = u = 1. More precisely, we fix a nontrivial nonnegative continu-
ous function ® on 9B and we suppose the following hypotheses

(1.4)

(H4) The functions f, g : (0,00) — [0, 00) are non-increasing and continuous.

(H5) The functions p and ¢ are measurable nonnegative in B such that the
functions

f(Hm(I)(m)) i g (37) g(H"“I)(.%‘))

(@)= tHO(x)" (0(z))m~tH®(x)

belong to the Kato class Ky, 5.

ﬁ:w»—>p(m)(5

Using a fixed point argument, we prove in section 5 the following second existence
result.

Theorem 1.5. Assume that A = p =1 and that (H4)—(H5) are satisfied. Suppose
that there exists v > 1 such that ¢ > v® and ¢ > v® on OB. Then (L.1) has a
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positive continuous solution satisfying for each x € B
H™®(z) < u(x) < H™p(x),

H™®(z) <v(x) < H™p(x). (1.5)

Note that for m = 1 we find again the result of [II] which was our original
motivation for deriving our study. The last section is reserved to examples. We
conclude this section by giving some notation.

(7) Let f and g be nonnegative functions on a set S. We write f(z) =~ g(x) for
x € S if there is ¢ > 0 not depending on z such that

Tg(@) < f(a) < cgle), VoS

(7) For s, t € R, we denote s At =min(s,t) and s V¢t = max(s,t).
(#4i) For any measurable function f on B, we use the notation

G (2, 2)Gn(2,Y)
/B ) f(2)

Finally, we mention that the letter ¢ will be a positive generic constant which may
vary from line to line.

Qy = sup
xz,yeB

2. PROPERTIES OF THE GREEN FUNCTION G, , AND CLASS K, ,,

To make the paper self contained, this section is devoted to recall some results
established in [2] [5] that will be useful in our study.

Proposition 2.1 (3G-Theorem). There exists Cyypn > 0 such that for each x, y,
z€B

e ) o (§) Ot (55) Gt @

Proposition 2.2. On B2, the following estimates hold
(i) For 2m < n,

~ 2m—n (6($)6(y))m
Gm’n($7y) ~ |{L‘ - yl (1 A W) (22)
(ii) For 2m = n,

UGLTGY

2.3
|z — y[>™ (2:3)

G, y) = log (1+

(iii) For 2m > n,

2 g (0@)8(y)""?

Gmn(,y) = (6(2)0(y))™ = (LA iz — g )- (2.4)

Proposition 2.3. On B? there exists ¢ > 0 such that
c(0(z)6(y))™ < Gmnlz,y). (2.5)
Moreover if |x — y| > r, we have

o(x)o(y))™
G () < ¢ EOWD™
/rn
Proposition 2.4. Let q be a function in Ky, ., then
(i) The constant oy is finite.

(ii) The function x v+ (6(x))?>™ Yq(x) is in L'(B).
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Proposition 2.5. For each nonnegative function ¢ € Ky, , and h a nonnegative
harmonic in B we have for x € B

/;Gm,n(xvy)(l =)™ h(y)aly)dy < aq(l — [z[*)™ " h(z). (2.7)
In particular,

21612/3 (%)m_le,n(Ly)q(y)dy <2 ey, (2.8)

3. MobuLUS OF CONTINUITY

The objective of this section is to prove Theorem Let g be the function
defined in B by
1

1= G
It is shown in [2] that the function ¢ € K, , if and only if A < 2m and V,, »q is
bounded if and only if A < m + 1. More precisely, we give in the following sharp
estimates, on the m-potential V;, ¢, which improve the inequalities given in [2]
Proposition 3.10].

Proposition 3.1. On B, the following estimates hold:

(i) Vinna(x) = (8(z))™ if A < m,

(i) Vinna(x) = (8(x))™ log(5%5) if A =m,

(i4) Vipnq(z) = (5(x))?™2 if m < A <m + 1.

To prove Proposition [3.1] we need the next two lemmas. In what follows, for
x € B, we denote

Di={ye B, |o—yI* < 6()dy)},
Dy ={y € B, |z —y> 2 6(2)(y)}-
Lemma 3.2 ([5]). Let z € B.
(1) If y € Dy, then

Pty <o) < 2 P0w) and oy < TV

(2) If y € Do, then

Lemma 3.3. For each x € B,

log((S(Q—x)) ~(1+ /D ﬁdy)

Proof. In [6, Example 6], the authors showed that

Gin(@,y) ~ cb(x)lo 2
R R
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Then, since the functions = — [5 Glgl(;a;’y) dy and x — 6(z) log(éf—m)) are positive

continuous in B we deduce that

Gunl®9) 4 o, z)lo 2 or all x
/deyrv& )1 g(d(x))f Il z € B. (3.1)

Now for z € B, we write

Gl,n<xay) _ Gl,n(xay) Gl,n(may)
|, %50 dy‘/Dl 5(y) d“/m o)

So to prove the result, it is sufficient by (3.1]) to show

Glm('x’y) ~ &z
/D sy~ o) (3.2)
and
Gin(z,y) . 1
/Dz 5) dy”‘s“/m P (3.3)

To this end, we distinguish two cases.
Case 1: n > 3. Let z € B. By using (2.2)), we have

G1n(z,y) 1 / 1
: dy = dy. 3.4
Jou 255~ 55 o, T 4
On the other hand, by Lemma [3.2]

1 1 1
n—2 dy S n—2 dy S n—2 dy’
B(z,¥5=15(x)) |z — | Dy [T =yl B(z, X5t 5(x)) |z —yl
which implies
V5—1 \/52+1 5(z)

2 §(I) 1
/ rdrg/ 772dy§/ rdr.
0 p, [T —y[" 0

Hence, we deduce that

/ ¥dy ~ (6(z))% (3.5)
D

e —yn?

By (3.4) and (3.5)) we deduce (3.2). Furthermore, by (2.2)) and the definition of D,
we have for x € B and y € Dy

o(x)é
Grnly) = 7,

|z =y
So we have clearly (3.3).

Case 2: n = 2. Let y € Dy and = € B, then using that log(1+t) < ct'/? for t > 0,
we obtain

6(x)d(y) 6(2)3(y) \1/2
log2 < log(1 + <c /2,
U o=y =y
this together with (2.3)) and Lemma imply

1 1
/ dy < / Mdy < c/ dy.
c6(2) JB(x, Lo 5(a)) b, 6(y) B(z, 51 5(2)) 1T — Yl

2

So, we obtain
V5—1

@b

Va5 ()

5(x)
rdr S/ 701’71(%:” dy < c/ ’ dr.
D, 5(1/) 0
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Hence, we obtain the claim (3.2). On the other hand, since 325 ¢ [0,1] for

lz—y[?

x € B and y € Dy and using the fact that log(1 +t) = ¢ for ¢ € [0, 1], we obtain

Gln(zyy) / 1
LA Ty = S — _dy,
/D2 sy Y @) D, T —yl? Y

which gives (3.3]) for n = 2. This completes the proof. O

Proof of Proposition[3.d} In [2], the authors proved the result (i) and the upper
estimates of V,,, nq if A € [m,m + 1). Let us prove the lower estimates. First we
need to show that

7Gm’n(sc,y) c(6(z))>™ for z
/131 oy > c(b(a) for = € B. (3.6)

For this, we remark by Proposition and the definition of D; that for each n,
m € N*

Gmn(z,y) > cle —y[*" ™", z€B,yeD.
It follows from Lemma that

Gm,n (l’, y) c I
/131 (6(y)* dyz(a(x)y /D |z =yl dy

|z —y*" " dy

\%

C
~ (0(x)) /B(ac,‘/glé(ac))

2

c VBl 5 () N
—_ P N
0

(6(x))*

> c(6(x))?™m N

Then is proved for each m and n and so (iii) holds.

It remains to prove the lower estimate in (ii); i.e., for A = m. Since %‘;ﬂg) €
[0,1], for y € Dy, x € B and using the fact that log(1l +¢) ~ ¢ for ¢t € [0, 1], we
obtain immediately by Proposition |2.2

(0(x)d(y)™

|z —y|"

v

Gmn(z,y) = , forye Dy, x€B. (3.7)

Now let z € B, by writing

Gmn 3 Gmn )
Vong(z) = / Gmnl®,9) ) / Gmn(®.9) )
D1 Dy

(d(y)™ (6(y)™
it follows from (3.6 and (3.7]) that
Vinng(x ZcémmlJr/ dy).
@z o) (1+ | = mdv)
Now, using Lemma [3.3] we deduce that
Viwa(w) > e(6(2))" o855,

This completes the proof. (I
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Proposition 3.4. Let o € B and q € Ky n. Then we have

. Gm,n(x,y)Gmyn(y’Z) _
lim (sup /BQB(ZO)Q) G, |q(y)|dy> =0

a—=0\zeB n(.l?, Z)
uniformly in z € B.

Proof. Let € > 0, then by the definition of K,, ,, there is r > 0 such that

5(y)\m
su Gmon(x, dy <e.
sup /B nBW)( ) Gy

Now, let g € B, x,z € B and a > 0 then by (2.1])

: : q(y)|dy
/BmB(aco,a) Gmn(z,2) la(w)|

5 m
< 2Cmn sup/ (@) Gman(&y)la(y)|dy.
BNB(zo,a)

£eB 5(5)
Furthermore, from ([2.6)), for each = € B, we have
5(y)\™
=) Gmanlz, d
/ e (55) Gmntevlatwlay
a(y)\™
< G (2, y)|q(y)|dy
/BﬁB(acU,a)ﬁ(:c—y|<T) (6($))
S(y)\™
+/ =) Gun(z,y)la(y)ldy
BNB(zo,a)N(|z—y|>7) (5(96)) @)
C
<et+— (6(y))*™a(y)|dy
r BNB(zg,x)
C _
<e+— (6(y)*™ aly)|dy.

" BNB(zo,w)

Using Proposition (ii), we deduce the result by letting o — 0. |

Corollary 3.5. Let m —1 < 8 <m, x¢ € B, then for each q € Ko,

i (smp [ (5) Coalrwlatulir) =0

Proof. For 8 = m — 1, the result was proved in [I4]. For 8 € (m — 1, m], we deduce
from Proposition that

= i 1 ~ (6(x))", z
W) = [ Gonlan) sy ~ (@), @ € B, (33)

where A =2m — B if B € (m—1,m) and A < m if 3 = m. Let ¢ > 0, then by
Proposition [3.4] there exists a > 0 such that for each z € B we have

/ Gm,n(xay)Gm,n(yaz)
BNB(xg,a) Gmn(T, 2)

sup
zeB

lq(y)ldy < e.
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By Fubini’s theorem, we have

/ h(y) G (2, 9)la(y)ldy
BNB(zo,)

mn(may)Gm,n(:%Z) Gmﬂl(xVZ)
/ /m(w G,y W) =G

< ceh(x
Which together with (3.8]) imply

izg/mm . (i) Gt

<c sup/ LG (z,y)|q(y)|dy < ce.
z€B J BNB(x0,a) (z)

This completes the proof. ([l

Proof of Theorem[I.3 Let 8 € [m —1,m], o € B and ¢ > 0. By Corollary
there exists o > 0 such that

5(y)\*?
sup /BOB(MQQ) (@) Gmn(&y)la(y)ldy <e. (3.9)

We distinguish following two cases.
Case 1: § € [m — 1,m). First we prove that v is continuous on B. For this aim
we fix 29 € B and z, z € BN B(xg,a). So we have

o) = o) < [ (S = Sl ) ol

Gm n(l' y) B Gmn(Z y) 3
/1303(10,204) (6(x))B (6(2))8 1(6(y))" la(y)|dy
Gm,n(m,y) G n( )

*/BOB%,M O@)F  02)7

<omp [ (58) Gl et

1(6(y)° la(y)|dy

¢EB 5(5)
Gmm(%y) _ Gm,n(z7y)
* /Bngcwa> 6@ ()7
=1 + Is.

|(6())” la(y)ldy

If |y — xo| > 2« then |y — x| > o and |y — 2| > a.
So applying (2.6)), for all x € BN B(xp,«) and y € B N B°(xg, 2a), we have

(55) Gl < 0"+ < (o),

On the other hand, for y € B N B¢(xg,2a), x — %()‘;g’) is continuous in B N
B(xg,a). Hence since x +— (§(z))?" 1q(x) is in L'(B) then by the dominated

convergence theorem, we obtain

Bl [Srnaled) Sl )ty — 0

as |z — z| — 0. This together with (3.9 imply that v is continuous on B.
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Next, we show that
v(z) =0 asd(x) — 0. (3.10)
For this we consider g € OB and z € B(xg,«) N B, then

v(x) :/BQB(I . (%)BGm,n(%y)lq(y)ldy

+ / (Sy?
BNBe¢(z0,2a) 5(z)

< Sup/ ( d
£eB J BNB(xo,2)

o)
y)
46(¢)
J(
+/BOBC(mO,2a)(5( )

Gmn(,y)lq(y)|dy
D) G )l
=Ji1 + Jo.

s
G (& 9)la(y)|dy

For y € BN B°(x,2a) we have |y — 2| > a. So from (2.6) we obtain

5(y)\* .
(@) Grnn(,y) < c(8(x))™ 7 — 0 as §(z) — 0.

Then by the same arguments as above, we deduce that Jy — 0 as 6(x) — 0. This

together with (3.9) gives (3.10)).
Gm.n(z,y)

Case 2: f = m. We point out that for y € B, the function = — Gy is

continuous in B outside the diagonal. So using similar arguments as in the case 1
we prove that v € C'(B). This completes the proof. O

Proposition 3.6. Let m — 1 < 3 < m and q be a nonnegative function in Ky, .
Then the family of functions

{/B (%)ﬁ%n(%y)‘f(y)dy, Ifl < q}

is relatively compact in Co(B).

The proof of the above proposition is similar to the one of Theorem So we
omit it.

4. PROOF OF THEOREM [[4]
Assume that the hypotheses (H1)—(H3) are satisfied. Then for € B we have
AoV (qg(H™Y))(z) < H™ p(x), (4.1)
1o Vi (pf (H™p))(x) < H™ (). (4.2)
Let A € [0, o) and p € [0, o). We define the sequences (ug)r>0 and (vg)r>0 by
Vo = Hmw
up = H™p = AV n(a9(vr))
Vg41 = Hm?/J - Nvm,n(pf(uk))
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We will prove that for all k£ € N,

A

0<(1- )\—)ngo <up < uppr < HM, (4.3)
0

0<(1— Mﬁ)Hmw < vppr < o < H™). (4.4)
0

From (4.1) we have that for each = € B,
uo(x) = H™p(x) = AV n(qg(vo))(x)
m A m
> H™ () - — H™ ()
0
A\ prm
=(1— —)H™p(x) > 0.
Ao
So
v1(z) = vo(z) = —pVmn(pf (u0))(z) < 0.
On the other hand, since g is nondecreasing we have

u1(x) — uo(x) = AVinnlg(g(vo) — g(v1))](x) > 0.

Since f is nondecreasing and using that
up(z) < H™p(x), (4.5)

we deduce from (4.2)) that
01(2) = H" (@) = Vi (pf (u0)(2) 2 (1= <) H" () > 0.
This implies that
u(z) < H™p(x).
Finally, we obtain

A
0< (1—>\—)Hm<p§u0 <wu; < H"p,
0

0<(1—YH™p <oy <y < H™p.
Ho
This implies that (4.3) and (4.4) hold for ¥ = 0 and we conclude for any k € N by
induction.
Therefore, the sequences (uy)r>0 and (vy)r>0 converge respectively to two func-
tions u and v satisfying

A
0

0< (1—/%)HmwgugHm¢.
0

Now, since g is nondecreasing continuous, we obtain by (4.4) that for each (x,y) €
B2

(4.6)

0 < G, y)a(y)g(vr) < [|g(H"P)|ocGm,n (T, y)q(y).
Moreover, since x +— % € K, n then by (2.8), we have for each « € B,

y = Gl y)a(y) € L'(B).
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So using the continuity of g and the dominated convergence theorem we deduce
that

k]LH;O van(qg(vk)) = Vm,n(qg(v))a

and so we have that for each = € B,

u(z) = H™ () = AVinn(q9(v)) (). (4.7)
Similarly we prove that for each = € B,
v(z) = H"p(x) = pVinn (pf (u)) (2). (4.8)

Next, we claim that (u,v) satisfies
(—A)™u = —Aqg(v),
(—A)™0 = —ppf(u).
Indeed, since g(v) is bounded and = — % € K, n, we deduce by Proposition
2.4 that
q9(v) € Lige(B).
On the other hand by Theorem we have
= ),
T | Grn(z,9)q(y)dy € Co(B).
(@)™ Jp

Therefore, using that g(v) is bounded we get
Vinn(ag9(v)) € Co(B), (4.9)

which implies
Vinn(a9(v)) € Lioe(B).
So we have in the distributional sense
(=A)"Vinn(q9(v)) = qg(v) in B.
Similarly,
(=)™ Vi n(pf(u)) = pf(u) in B.
Now, applying the operator (—A)™ in and (4.8), it follows by that (u,v)

is a positive bounded solution of
(—=A)"™u+ Agg(v) =0 in B,
(=A)™v + upf(u) =0 in B.

From (4.7) and (4.9)), we deduce that « is continuous in B. Similarly v is continuous.
Finally, by (1.3)), (4.7) and Theorem we obtain

. u(z) _
B A eyt - P

Similarly,
)

li D w—
o—teon (1— [z]?)

This completes the proof.
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5. PROOF OF THEOREM [L.5]

Assume that A = p = 1 and the hypotheses (H4) and (H5) are satisfied. Let p
and ¢ be the functions in K, ,, given by hypothesis (H5). Put v = 1 + a3 + o3,
where a and o are the constants associated respectively to the functions p and q.

Let us consider two nonnegative continuous functions ¢ and % on 0B such that
@ > ~® and ¢ > vP. It follows that for each x € B,

H™ o) > vH™®(x),  H™(x) > yH™(x). (5.1)
Let S be the non-empty closed convex set given by
S={weCy(B): H"® <w < H™p}.
We define the operator T on S by
Tw=H"Y = Vin(pf[H™ ¢ — Vinn(ag9(w))])-

We aim to prove that T" has a fixed point in S. First, we shall prove that T'S is
relatively compact in Cy(B). Let w € S, then since w > H™® we deduce from
hypothesis (H4) that

Vinin(49(0)) < Vinn(q9(H™ @) = Vi ((8(.))" 1 qH®).
Which implies by (H5) and that
Vin,n(gg(w)) < agH™®. (5.2)
This together with imply
H™p = Vinn(qg(w)) = yH™® — agH™®

={1+4+ap)H"®
> H™®.
Hence, using (H4), we have
PfIH™p — Vinu(ag(w))] < pf(H™®) = (5(.)" ' pH. (5:3)
This yields
PIH™ ¢ = Vinn(qg(w)] < [ H®[loo(3(.)™ P (5-4)

Then using Proposition [3.6] with 8 = m — 1, we deduce that the family of functions

Ve fIH™ 0 = Vi m(qg(w))]) : w € S}

is relatively compact in Co(B). So since H™p € Cy(B), we conclude that the
family T'S is relatively compact in Cy(B).
Next, we shall prove that T'(S) C S. For all w € S, we have obviously

Tw(z) < H™Y(z), Vz € B.
On the other hand, by (5.3)), we have

Vi (Pf[H™ @ = Vin (g9 (w))] n((6())" ' pH®)

w(PH™®).

< Vi,
< Vi,

Then, by (H5) and ([2.7) we have
Vinn (P IH™ @ = Vinn(q9(w))] < apH™ . (5.5)
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Which implies by (5.1), that for each z € B
Tw(x) > H™Y(z) — azH™ O (z)
> (v — ap) H"®(z)
> (1+ag) H"®(z)
> H™®(x),
which proves that T(S) C S.
Now, we prove the continuity of the operator T in S for the supremum norm.

Let (wg)ken be a sequence in S which converges uniformly to a function w in S.
Since ¢ is nonincreasing we deduce by (Hj) that

q9(wr) < qg(H™®) < [HP|(5(.)"'q.
Now, it follows from (H5) and (2.8)), that for each = € B,
y = (6y)" ™ Gnn(,9)4ly) € L'(B).

We conclude by the dominated convergence theorem that for all x € B,
Tim Vi (09(01))(2) = Vinn g9 () (2) (5.6)
and so from the continuity of f, we have
Ji p(z) fIH™ o (x) = Vinn(a9(wi)) ()] = p(z) FIH™ o (2) = Vin,n(a9(w)) ()]
By , for each x,y in B,

G (2, 9)p(W) FIH™0(y) = Vi (ag9(wi)) ()] < c(6@)™ " P(y) G (2, 9).

Then since p € Ky, , we get by and the dominated convergence theorem that
for each = € B,

Twi(x) — Tw(z) as k — +oo.
Consequently, since T'(S) is relatively compact in Cy(B), we deduce that the point-
wise convergence implies the uniform convergence, namely,

|Twy — Tw|,, — 0 ask — +oo.

Therefore, T is a continuous mapping of S to itself. So, since T'(S) is relatively
compact in Cy(B), it follows that T is a compact mapping on S. Finally, the
Schauder fixed-point theorem implies the existence of a function w € S such that
w = Tw. We put for x € B

u(z) = H™p(x) = Vin.n(q9(w))(x) (5.7)
and v(z) = w(z). Then

v(@) = H" () = Vinn (pf (w)) ().
It is clear that (u,v) satisfies and it remains to prove that (u,v) satisfies
with A=p = 1.
Since 0 < gg(v) < ¢(6(.))™ ¢ then by Proposition [2.4] it follows that qg(v) €
L .(B) and from (5.2), we have Vinn(qg(v)) € LIOC(B). Hence u satisfies (in the
distributional sense)

(=A)"u = —(=A)" Vi n(gg(w)) = —qg(v).
On the other hand,
(=A)"v = —=(=A)"Vinn(pfIH™ ¢ — Vin,n(ag(v))])-
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Using (5.4) and Proposition [2.4) we deduce that pf[H™p — V;,.n(q9(v))] € Li .(B).
Moreover, by (5.5) we get

Vinn(pf (@) = Vin n (pf [H™ ¢ — Vinn(q9(v))]) € Llloc(B)'
Hence, we have in the distibutional sense
(—A)™ = —pf(u).

Finally, let £ € @B, then since qg(v) < ¢(§(.))™1q, we deduce by Theorem for
08 =m — 1, that

- Vinn(a9(v))(z) _
P a2t
Hence by and we have
. U(:ﬂ) . . Vm,n(qg(v))(x) _
ing W = (&) - iIng W = (&)
Similarly,
. v(x) B . Vin(pf(u)

This completes the proof.

6. EXAMPLES

In this section, we give examples that illustrate the existence results for (|1.1]).
In the following two examples (H3) is satisfied.

Example 6.1. Let ¢ be a continuous function on dB such that there exists cg > 0
satisfying o(z) > ¢ for all x € OB. Let p be a nonnegative function on B such that
po = W is in K, and ¢ be a nonnegative measurable function satisfying
for each x € B, ¢q(z) < W with A < m. We consider f, ¢g : (0,00) — [0,0)
nondecreasing and continuous functions. Then (H3) is satisfied. Indeed, let x € B,

by , we have
Vinn(p)(2) < 2m_lapo (5($))m_1-
So
Hop) (1-|af)m e
Vi (pf (H™ 1)) () — 27 o, || f (HY)||oo (6(2)) ™1

Co
> >0,
2m_1al)o||f(H¢)Hoo

which implies that Ag > 0.
Now since v is a nonnegative continuous function, then there exists ¢ > 0 such
that for all x € B, Hy(z) > ¢d(x). So we have

H™p(x) o oS(@)(1 — |a[*)™ "
Vinn(ag(H™@)) (@) ~ [|g(H®)lloc Vinna(z)
Since ¢q(z) < W, A < m, we have by Proposition ﬂ that

Vinn (@) () & (6(x))™.

So
(1= |2)" " Hy(x)

Vinn(ag(H™p)) ()

cb(x)(1 — Ja*)™ ¢
l9(H@)[[oo(8(z))™ — llg(Hep)

> > 0.
oo
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This proves that pg > 0.

Example 6.2. Let ¢ and 9 two nonnegative continuous functions on 0B. We
consider f, g : (0,00) — [0, 00) nondecreasing and continuous functions. Since the
functions H™ @ and H™1) are nonnegative bounded, then there exist a; > 0, as > 0
such that a; + as > 0 and for each x € B,
fH™p(x)) < arH™p(x) + a2,  g(H™Y(2)) < ar H™P(x) + as.
We assume
(A1) arp =~ a19;
(A2) agp < agw asq < QQW with o < m.
Then (H3) is satisfied. Indeed for each x € B, we have
Vinn (qg(H™ ) () < a1V n(gH™ ) (2) + a2V n(q) ().
By , we have
Vinn(qH™ ) (z) < ag H™ (),
and by Proposition [3.1
Vi (@) (z) < c(6(x))™.
Then
Vinn(gg(H™))(2) < arogH™¢(x) + age(5(x))™
< o(8(2))" " Har Hyp(2) + azé ().
So using that there exists ¢ > 0 such that for all x € B, Hp(z) > ¢d(z), we obtain
H™p(x) S a1+ az)Ho(z)
Vinn(qg(H™))(x) — a1 Hip(x) 4 az6(x)

a1 H(z) 4+ a2d(x)

arHY(x) 4+ az6(x)
Hence \g > 0. Similarly we have up > 0. Note that if a; = 0 then hypothesis (A1)

is satisfied for each ¢ and ¥ and if ag = 0 then the hypothesis (A2) is satisfied for
each p and gq.

=c>0.

Now, as an application of Theorem we give the following example.

Example 6.3. Let )\, p be nonnegative constants, and ¢, ¥ be two nontrivial
nonnegative continuous functions on dB. Let f(t) = t* and g(t) = t°, where a,
B > 0. Now, let ¢ < m. We take p and g two nonnegative measurable functions
satisfying for each =z € B,

c c

p(r) < »oqle) < :
(0(x))” (0(x))”
Using similar arguments as above in Example we show that (H3) is satisfied.
Then for each A € [0, Ag) and each u € [0, pg), the problem

(=A)™u+ Aqv® =0 in B,
(=A)™v + ppu® =0 in B,
u(z)

N e i AC
. )

r—E€OB (1 — ‘$|2>m_1
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has positive continuous solution (u,v) satisfying (|1.4)).
We end this section by giving an example as application of Theorem

Example 6.4. Let a > 0, 3 > 0, f(t) =t~ and g(t) = t~®. Let p and ¢ two
nonnegative measurable functions such that
p(z) < with A < m(1 — ),

(0(x))*
and
with < m(1 - 3).

(1) € ==
AQ\T) > 753,
(0(z))"
Let ¢, ¢ and ® nontrivial nonnegative continuous functions on dB. Then there
exists a constant v > 1 such that if ¢ > v® and ¥ > v® on 9B, the problem

(=A)"u+qv =0 in B,
(=A™ +pu= =0 in B,

. u@)

2y T eyt~ )
) v(x)

B T )l

=¥(8),

has a positive continuous solution satisfying ([1.5]).
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