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EXISTENCE OF POSITIVE BOUNDED SOLUTIONS FOR SOME
NONLINEAR POLYHARMONIC ELLIPTIC SYSTEMS

SABRINE GONTARA, ZAGHARIDE ZINE EL ABIDINE

Abstract. We prove existence results for positive bounded continuous solu-

tions of a nonlinear polyharmonic system by using a potential theory approach
and properties of a large functional class Km,n called Kato class.

1. Introduction

The goal is to study the existence of positive continuous bounded solutions for
the nonlinear elliptic higher order system

(−∆)mu+ λqg(v) = 0 in B,

(−∆)mv + µpf(u) = 0 in B,

lim
x→ξ∈∂B

u(x)
(1− |x|2)m−1

= ϕ(ξ),

lim
x→ξ∈∂B

v(x)
(1− |x|2)m−1

= ψ(ξ),

(1.1)

where m is a positive integer, B = {x ∈ Rn : |x| < 1} is the unit ball of Rn (n ≥ 2),
∂B = {x ∈ Rn : |x| = 1} is the boundary of B, λ, µ, are nonnegative constants and
ϕ, ψ are two nontrivial nonnegative continuous functions on ∂B.

For the case m = 1, the existence of solutions for nonlinear elliptic systems has
been extensively studied for both bounded and unbounded C1,1domain D in Rn

(n ≥ 3) (see [8, 9, 11-13]).
The polyharmonic operator (−∆)m, m ∈ N∗, has been studied several years

later. Indeed, Boggio [7] showed that the Green function Gm,n of the operator
(−∆)m on B with Dirichlet boundary conditions u = ∂

∂νu = · · · = ∂m−1

∂νm−1u = 0 on
∂B, is given by:

Gm,n(x, y) = km,n|x− y|2m−n

∫ [x,y]
|x−y|

1

(ν2 − 1)m−1

νn−1
dν, (1.2)

where km,n is a positive constant, ∂
∂ν is the outward normal derivative and for x, y

in B, [x, y]2 = |x− y|2 + (1− |x|2)(1− |y|2).
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From its expression, it is clear that Gm,n is nonnegative in B2. This does not
hold for the Green function of (−∆)m in an arbitrary bounded domain (see for
example [10]). It is well known that for m = 1, we do not have this restriction. In
[2], the properties of the Green function Gm,n of (−∆)m on B allowed the authors to
introduce a large functional class called Kato class denoted by Km,n (see Definition
1.1 below). This class played a key role in the study of some nonlinear polyharmonic
equation (see [2, 4, 14]). For the case m = 1, the Kato class has been introduced
and studied for general domain possibly unbounded in [1, 3, 15] for n ≥ 3 and [16]
for n = 2.

Definition 1.1 ([2]). A borel measurable function q on B belongs to the Kato
class Km,n if q satisfies the condition

lim
α→0

(
sup
x∈B

∫
B∩B(x,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|q(y)|dy

)
= 0.

Here and always δ(x) = 1− |x|, is the Euclidian distance between x and ∂B.

As typical example of functions belonging to the class Km,n, we have

Example 1.2 ([4]). The function q defined in B by

q(x) =
1

(δ(x))λ(log 2
δ(x) )

µ
,

is in Km,n if and only if λ < 2m and µ ∈ R or λ = 2m and µ > 1.

Before presenting our main results, we lay out a number of potential theory
tools and some notations which will be used throughout the paper. We are mainly
concerned with the bounded continuous solution Hϕ of the Dirichlet problem

∆u = 0 in B

u
∣∣
∂B

= ϕ,

where ϕ is a nonnegative continuous function on ∂B. We remark that the func-
tion defined on B and denoted by Hmϕ : x → (1 − |x|2)m−1Hϕ(x) is a bounded
continuous solution of the problem

(−∆)mu = 0 in B

lim
x→ξ∈∂B

u(x)
(1− |x|2)m−1

= ϕ(ξ).
(1.3)

For simplicity, we denote

C0(B) = {w continuous on B and lim
x→ξ∈∂B

w(x) = 0}

and
C(B) = {w continuous on B}.

We also refer to Vm,nf the m-potential of a nonnegative measurable function f on
B by

Vm,nf(x) =
∫

B

Gm,n(x, y) f(y)dy, for x ∈ B.

Recall that for each nonnegative measurable function f on B such that f and Vm,nf
are in L1

loc(B), we have
(−∆)m(Vm,nf) = f,

in the distributional sense.
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The outline of this paper is as follows. In section 2, we collect some preliminary
results about the Green function and the Kato class Km,n. In section 3, a careful
analysis about continuity is performed. In particular, we prove the following result.

Theorem 1.3. Let m − 1 ≤ β ≤ m, q ∈ Km,n, then the function v defined on B
by

v(x) =
∫

B

( δ(y)
δ(x)

)β

Gm,n(x, y) |q(y)|dy

is in C(B) and if m− 1 ≤ β < m, we have lim
x→ξ∈∂B

v(x) = 0.

Based on these properties of the Green’s function Gm,n and Kato class Km,n, we
establish in section 4 the first existence result stated in Theorem 1.4 below. The
following conditions are considered

(H1) The functions f , g : (0,∞) → [0,∞) are nondecreasing and continuous.
(H2) The functions p and q are measurable nonnegative in B such that the

functions

x 7→ p(x)
(δ(x))m−1

and x 7→ q(x)
(δ(x))m−1

belong to the Kato class Km,n.
(H3) We suppose that

λ0 = inf
x∈B

Hmϕ(x)
Vm,n(qg(Hmψ))(x)

> 0,

µ0 = inf
x∈B

Hmψ(x)
Vm,n(pf(Hmϕ))(x)

> 0.

Theorem 1.4. Assume (H1)–(H3). Then for each λ ∈ [0, λ0) and each µ ∈ [0, µ0),
the problem (1.1) has a positive continuous solution (u, v) satisfying for each x ∈ B,

(1− λ

λ0
)Hmϕ(x) ≤ u(x) ≤ Hmϕ(x),

(1− µ

µ0
)Hmψ(x) ≤ v(x) ≤ Hmψ(x).

(1.4)

In section 5, we study the system (1.1) when the functions f and g are non-
increasing and λ = µ = 1. More precisely, we fix a nontrivial nonnegative continu-
ous function Φ on ∂B and we suppose the following hypotheses

(H4) The functions f , g : (0,∞) → [0,∞) are non-increasing and continuous.
(H5) The functions p and q are measurable nonnegative in B such that the

functions

p̃ : x 7→ p(x)
f(HmΦ(x))

(δ(x))m−1HΦ(x)
, q̃ : x 7→ q (x)

g(HmΦ(x))
(δ(x))m−1HΦ(x)

belong to the Kato class Km,n.
Using a fixed point argument, we prove in section 5 the following second existence

result.

Theorem 1.5. Assume that λ = µ = 1 and that (H4)–(H5) are satisfied. Suppose
that there exists γ > 1 such that ϕ ≥ γΦ and ψ ≥ γΦ on ∂B. Then (1.1) has a
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positive continuous solution satisfying for each x ∈ B
HmΦ(x) ≤ u(x) ≤ Hmϕ(x),

HmΦ(x) ≤ v(x) ≤ Hmψ(x).
(1.5)

Note that for m = 1 we find again the result of [11] which was our original
motivation for deriving our study. The last section is reserved to examples. We
conclude this section by giving some notation.

(i) Let f and g be nonnegative functions on a set S. We write f(x) ≈ g(x) for
x ∈ S if there is c > 0 not depending on x such that

1
c
g(x) ≤ f(x) ≤ cg(x), ∀x ∈ S.

(ii) For s, t ∈ R, we denote s ∧ t = min(s, t) and s ∨ t = max(s, t).
(iii) For any measurable function f on B, we use the notation

αf := sup
x,y∈B

∫
B

Gm,n(x, z)Gm,n(z, y)
Gm,n(x, y)

|f(z)|dz.

Finally, we mention that the letter c will be a positive generic constant which may
vary from line to line.

2. Properties of the Green function Gm,n and class Km,n

To make the paper self contained, this section is devoted to recall some results
established in [2, 5] that will be useful in our study.

Proposition 2.1 (3G-Theorem). There exists Cm,n > 0 such that for each x, y,
z ∈ B
Gm,n(x, z)Gm,n(z, y)

Gm,n(x, y)
≤ Cm,n

[( δ(z)
δ(x)

)m

Gm,n(x, z) +
(δ(z)
δ(y)

)m

Gm,n(y, z)
]
. (2.1)

Proposition 2.2. On B2, the following estimates hold
(i) For 2m < n,

Gm,n(x, y) ≈ |x− y|2m−n
(
1 ∧ (δ(x)δ(y))m

|x− y|2m

)
. (2.2)

(ii) For 2m = n,

Gm,n(x, y) ≈ log
(
1 +

(δ(x)δ(y))m

|x− y|2m

)
. (2.3)

(iii) For 2m > n,

Gm,n(x, y) ≈ (δ(x)δ(y))m−n
2 (1 ∧ (δ(x)δ(y))n/2

|x− y|n
). (2.4)

Proposition 2.3. On B2 there exists c > 0 such that

c(δ(x)δ(y))m ≤ Gm,n(x, y). (2.5)

Moreover if |x− y| ≥ r, we have

Gm,n(x, y) ≤ c
(δ(x)δ(y))m

rn
. (2.6)

Proposition 2.4. Let q be a function in Km,n, then
(i) The constant αq is finite.
(ii) The function x 7→ (δ(x))2m−1q(x) is in L1(B).
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Proposition 2.5. For each nonnegative function q ∈ Km,n and h a nonnegative
harmonic in B we have for x ∈ B∫

B

Gm,n(x, y)(1− |y|2)m−1h(y)q(y)dy ≤ αq(1− |x|2)m−1h(x). (2.7)

In particular,

sup
x∈B

∫
B

( δ(y)
δ(x)

)m−1

Gm,n(x, y)q(y)dy ≤ 2m−1αq. (2.8)

3. Modulus of Continuity

The objective of this section is to prove Theorem 1.3. Let q be the function
defined in B by

q(x) =
1

(δ(x))λ
.

It is shown in [2] that the function q ∈ Km,n if and only if λ < 2m and Vm,nq is
bounded if and only if λ < m + 1. More precisely, we give in the following sharp
estimates, on the m-potential Vm,nq, which improve the inequalities given in [2,
Proposition 3.10].

Proposition 3.1. On B, the following estimates hold:
(i) Vm,nq(x) ≈ (δ(x))m if λ < m,
(ii) Vm,nq(x) ≈ (δ(x))m log( 2

δ(x) ) if λ = m,
(iii) Vm,nq(x) ≈ (δ(x))2m−λ if m < λ < m+ 1.

To prove Proposition 3.1, we need the next two lemmas. In what follows, for
x ∈ B, we denote

D1 = {y ∈ B, |x− y|2 ≤ δ(x)δ(y)},
D2 = {y ∈ B, |x− y|2 ≥ δ(x)δ(y)}.

Lemma 3.2 ([5]). Let x ∈ B.
(1) If y ∈ D1, then

3−
√

5
2

δ(x) ≤ δ(y) ≤ 3 +
√

5
2

δ(x) and |x− y| ≤ 1 +
√

5
2

(δ(x) ∧ δ(y)).

(2) If y ∈ D2, then

δ(x) ∨ δ(y) ≤
√

5 + 1
2

|x− y|.

In particular, we have

B(x,
√

5− 1
2

δ(x)) ⊂ D1 ⊂ B(x,
√

5 + 1
2

δ(x)).

Lemma 3.3. For each x ∈ B,

log(
2

δ(x)
) ≈ (1 +

∫
D2

1
|x− y|n

dy).

Proof. In [6, Example 6], the authors showed that∫
B

G1,n(x, y)
δ(y)

dy ∼
δ(x)→0

cδ(x) log(
2

δ(x)
).
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Then, since the functions x 7→
∫

B
G1,n(x,y)

δ(y) dy and x 7→ δ(x) log( 2
δ(x) ) are positive

continuous in B we deduce that∫
B

G1,n(x, y)
δ(y)

dy ≈ δ(x) log(
2

δ(x)
) for all x ∈ B. (3.1)

Now for x ∈ B, we write∫
B

G1,n(x, y)
δ(y)

dy =
∫

D1

G1,n(x, y)
δ(y)

dy +
∫

D2

G1,n(x, y)
δ(y)

dy.

So to prove the result, it is sufficient by (3.1) to show∫
D1

G1,n(x, y)
δ(y)

dy ≈ δ(x) (3.2)

and ∫
D2

G1,n(x, y)
δ(y)

dy ≈ δ(x)
∫

D2

1
|x− y|n

dy. (3.3)

To this end, we distinguish two cases.
Case 1: n ≥ 3. Let x ∈ B. By using (2.2), we have∫

D1

G1,n(x, y)
δ(y)

dy ≈ 1
δ(x)

∫
D1

1
|x− y|n−2

dy. (3.4)

On the other hand, by Lemma 3.2,∫
B(x,

√
5−1
2 δ(x))

1
|x− y|n−2

dy ≤
∫

D1

1
|x− y|n−2

dy ≤
∫

B(x,
√

5+1
2 δ(x))

1
|x− y|n−2

dy,

which implies ∫ √
5−1
2 δ(x)

0

r dr ≤
∫

D1

1
|x− y|n−2

dy ≤
∫ √

5+1
2 δ(x)

0

r dr.

Hence, we deduce that ∫
D1

1
|x− y|n−2

dy ≈ (δ(x))2. (3.5)

By (3.4) and (3.5) we deduce (3.2). Furthermore, by (2.2) and the definition of D2,
we have for x ∈ B and y ∈ D2

G1,n(x, y) ≈ δ(x)δ(y)
|x− y|n

.

So we have clearly (3.3).
Case 2: n = 2. Let y ∈ D1 and x ∈ B, then using that log(1+ t) ≤ ct1/2 for t ≥ 0,
we obtain

log 2 ≤ log(1 +
δ(x)δ(y)
|x− y|2

) ≤ c(
δ(x)δ(y)
|x− y|2

)1/2,

this together with (2.3) and Lemma 3.2 imply

1
cδ(x)

∫
B(x,

√
5−1
2 δ(x))

dy ≤
∫

D1

G1,n(x, y)
δ(y)

dy ≤ c

∫
B(x,

√
5+1
2 δ(x))

1
|x− y|

dy.

So, we obtain

1
cδ(x)

∫ √
5−1
2 δ(x)

0

r dr ≤
∫

D1

G1,n(x, y)
δ(y)

dy ≤ c

∫ √
5+1
2 δ(x)

0

dr.
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Hence, we obtain the claim (3.2). On the other hand, since δ(x)δ(y)
|x−y|2 ∈ [0, 1] for

x ∈ B and y ∈ D2 and using the fact that log(1 + t) ≈ t for t ∈ [0, 1], we obtain∫
D2

G1,n(x, y)
δ(y)

dy ≈ δ(x)
∫

D2

1
|x− y|2

dy,

which gives (3.3) for n = 2. This completes the proof. �

Proof of Proposition 3.1. In [2], the authors proved the result (i) and the upper
estimates of Vm,nq if λ ∈ [m,m + 1). Let us prove the lower estimates. First we
need to show that ∫

D1

Gm,n(x, y)
(δ(y))λ

dy ≥ c(δ(x))2m−λ for x ∈ B. (3.6)

For this, we remark by Proposition 2.2 and the definition of D1 that for each n,
m ∈ N∗

Gm,n(x, y) ≥ c|x− y|2m−n, x ∈ B, y ∈ D1.

It follows from Lemma 3.2, that∫
D1

Gm,n(x, y)
(δ(y))λ

dy ≥ c

(δ(x))λ

∫
D1

|x− y|2m−ndy

≥ c

(δ(x))λ

∫
B(x,

√
5−1
2 δ(x))

|x− y|2m−ndy

≥ c

(δ(x))λ

∫ √
5−1
2 δ(x)

0

r2m−nrn−1dr

≥ c(δ(x))2m−λ.

Then (3.6) is proved for each m and n and so (iii) holds.
It remains to prove the lower estimate in (ii); i.e., for λ = m. Since δ(x)δ(y)

|x−y|2 ∈
[0, 1], for y ∈ D2, x ∈ B and using the fact that log(1 + t) ≈ t for t ∈ [0, 1], we
obtain immediately by Proposition 2.2,

Gm,n(x, y) ≈ (δ(x)δ(y))m

|x− y|n
, for y ∈ D2, x ∈ B. (3.7)

Now let x ∈ B, by writing

Vm,nq(x) =
∫

D1

Gm,n(x, y)
(δ(y))m

dy +
∫

D2

Gm,n(x, y)
(δ(y))m

dy,

it follows from (3.6) and (3.7) that

Vm,nq(x) ≥ c(δ(x))m
(
1 +

∫
D2

1
|x− y|n

dy
)
.

Now, using Lemma 3.3, we deduce that

Vm,nq(x) ≥ c(δ(x))m log(
2

δ(x)
).

This completes the proof. �
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Proposition 3.4. Let x0 ∈ B and q ∈ Km,n. Then we have

lim
α→0

(
sup
x∈B

∫
B∩B(x0,α)

Gm,n(x, y)Gm,n(y, z)
Gm,n(x, z)

|q(y)|dy
)

= 0

uniformly in z ∈ B.

Proof. Let ε > 0, then by the definition of Km,n, there is r > 0 such that

sup
x∈B

∫
B∩B(x,r)

( δ(y)
δ(x)

)m

Gm,n(x, y)|q(y)|dy ≤ ε.

Now, let x0 ∈ B, x, z ∈ B and α > 0 then by (2.1)∫
B∩B(x0,α)

Gm,n(x, y)Gm,n(y, z)
Gm,n(x, z)

|q(y)|dy

≤ 2Cm,n sup
ξ∈B

∫
B∩B(x0,α)

(δ(y)
δ(ξ)

)m

Gm,n(ξ, y)|q(y)|dy.

Furthermore, from (2.6), for each x ∈ B, we have∫
B∩B(x0,α)

( δ(y)
δ(x)

)m

Gm,n(x, y)|q(y)|dy

≤
∫

B∩B(x0,α)∩(|x−y|<r)

( δ(y)
δ(x)

)m

Gm,n(x, y)|q(y)|dy

+
∫

B∩B(x0,α)∩(|x−y|≥r)

( δ(y)
δ(x)

)m

Gm,n(x, y)|q(y)|dy

≤ ε+
c

rn

∫
B∩B(x0,α)

(δ(y))2m|q(y)|dy

≤ ε+
c

rn

∫
B∩B(x0,α)

(δ(y))2m−1|q(y)|dy.

Using Proposition 2.4 (ii), we deduce the result by letting α→ 0. �

Corollary 3.5. Let m− 1 ≤ β ≤ m, x0 ∈ B, then for each q ∈ Km,n,

lim
α→0

(
sup
x∈B

∫
B∩B(x0,α)

( δ(y)
δ(x)

)β

Gm,n(x, y)|q(y)|dy
)

= 0.

Proof. For β = m− 1, the result was proved in [14]. For β ∈ (m− 1,m], we deduce
from Proposition 3.1, that

h(x) :=
∫

B

Gm,n(x, y)
1

(δ(y))λ
dy ≈ (δ(x))β , x ∈ B, (3.8)

where λ = 2m − β if β ∈ (m − 1,m) and λ < m if β = m. Let ε > 0, then by
Proposition 3.4 there exists α > 0 such that for each z ∈ B we have

sup
x∈B

∫
B∩B(x0,α)

Gm,n(x, y)Gm,n(y, z)
Gm,n(x, z)

|q(y)|dy ≤ ε.
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By Fubini’s theorem, we have∫
B∩B(x0,α)

h(y)Gm,n(x, y)|q(y)|dy

=
∫

B

(
∫

B∩B(x0,α)

Gm,n(x, y)Gm,n(y, z)
Gm,n(x, z)

|q(y)|dy)Gm,n(x, z)
(δ(z))λ

dz

≤ εh(x).

Which together with (3.8) imply

sup
x∈B

∫
B∩B(x0,α)

( δ(y)
δ(x)

)β

Gm,n(x, y)|q(y)|dy

≤ c sup
x∈B

∫
B∩B(x0,α)

h(y)
h(x)

Gm,n(x, y)|q(y)|dy ≤ cε.

This completes the proof. �

Proof of Theorem 1.3. Let β ∈ [m − 1,m], x0 ∈ B and ε > 0. By Corollary 3.5,
there exists α > 0 such that

sup
ξ∈B

∫
B∩B(x0,2α)

(δ(y)
δ(ξ)

)β

Gm,n(ξ, y)|q(y)|dy ≤ ε. (3.9)

We distinguish following two cases.
Case 1: β ∈ [m − 1,m). First we prove that v is continuous on B. For this aim
we fix x0 ∈ B and x, z ∈ B ∩B(x0, α). So we have

|v(x)− v(z)| ≤
∫

B

|Gm,n(x, y)
(δ(x))β

− Gm,n(z, y)
(δ(z))β

|(δ(y))β |q(y)|dy

≤
∫

B∩B(x0,2α)

|Gm,n(x, y)
(δ(x))β

− Gm,n(z, y)
(δ(z))β

|(δ(y))β |q(y)|dy

+
∫

B∩Bc(x0,2α)

|Gm,n(x, y)
(δ(x))β

− Gm,n(z, y)
(δ(z))β

|(δ(y))β |q(y)|dy

≤ 2 sup
ξ∈B

∫
B∩B(x0,2α)

(δ(y)
δ(ξ)

)β

Gm,n(, y)|q(y)|dy

+
∫

B∩Bc(x0,2α)

|Gm,n(x, y)
(δ(x))β

− Gm,n(z, y)
(δ(z))β

|(δ(y))β |q(y)|dy

= I1 + I2.

If |y − x0| ≥ 2α then |y − x| ≥ α and |y − z| ≥ α.
So applying (2.6), for all x ∈ B ∩B(x0, α) and y ∈ B ∩Bc(x0, 2α), we have( δ(y)

δ(x)

)β

Gm,n(x, y) ≤ c(δ(y))β+m ≤ c(δ(y))2m−1.

On the other hand, for y ∈ B ∩ Bc(x0, 2α), x 7→ Gm,n(x,y)
(δ(x))β is continuous in B ∩

B(x0, α). Hence since x 7→ (δ(x))2m−1q(x) is in L1(B) then by the dominated
convergence theorem, we obtain

I2 =
∫

B∩Bc(x0,2α)

∣∣Gm,n(x, y)
(δ(x))β

− Gm,n(z, y)
(δ(z))β

∣∣(δ(y))β |q(y)|dy → 0

as |x− z| → 0. This together with (3.9) imply that v is continuous on B.
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Next, we show that

v(x) → 0 as δ(x) → 0. (3.10)

For this we consider x0 ∈ ∂B and x ∈ B(x0, α) ∩B, then

v(x) =
∫

B∩B(x0,2α)

( δ(y)
δ(x)

)β

Gm,n(x, y)|q(y)|dy

+
∫

B∩Bc(x0,2α)

( δ(y)
δ(x)

)β

Gm,n(x, y)|q(y)|dy

≤ sup
ξ∈B

∫
B∩B(x0,2α)

(δ(y)
δ(ξ)

)β

Gm,n(ξ, y)|q(y)|dy

+
∫

B∩Bc(x0,2α)

( δ(y)
δ(x)

)β

Gm,n(x, y)|q(y)|dy

= J1 + J2.

For y ∈ B ∩Bc(x0, 2α) we have |y − x| ≥ α. So from (2.6) we obtain( δ(y)
δ(x)

)β

Gm,n(x, y) ≤ c(δ(x))m−β → 0 as δ(x) → 0.

Then by the same arguments as above, we deduce that J2 → 0 as δ(x) → 0. This
together with (3.9) gives (3.10).
Case 2: β = m. We point out that for y ∈ B, the function x 7→ Gm,n(x,y)

(δ(x))m is
continuous in B outside the diagonal. So using similar arguments as in the case 1
we prove that v ∈ C(B). This completes the proof. �

Proposition 3.6. Let m − 1 ≤ β < m and q be a nonnegative function in Km,n.
Then the family of functions{∫

B

( δ(y)
δ(x)

)β

Gm,n(x, y)f(y)dy, |f | ≤ q
}

is relatively compact in C0(B).

The proof of the above proposition is similar to the one of Theorem 1.3. So we
omit it.

4. Proof of Theorem 1.4

Assume that the hypotheses (H1)–(H3) are satisfied. Then for x ∈ B we have

λ0Vm,n(qg(Hmψ))(x) ≤ Hmϕ(x), (4.1)

µ0Vm,n(pf(Hmϕ))(x) ≤ Hmψ(x). (4.2)

Let λ ∈ [0, λ0) and µ ∈ [0, µ0). We define the sequences (uk)k≥0 and (vk)k≥0 by

v0 = Hmψ

uk = Hmϕ− λVm,n(qg(vk))

vk+1 = Hmψ − µVm,n(pf(uk)).



EJDE-2010/113 EXISTENCE OF POSITIVE BOUNDED SOLUTIONS 11

We will prove that for all k ∈ N,

0 < (1− λ

λ0
)Hmϕ ≤ uk ≤ uk+1 ≤ Hmϕ, (4.3)

0 < (1− µ

µ0
)Hmψ ≤ vk+1 ≤ vk ≤ Hmψ. (4.4)

From (4.1) we have that for each x ∈ B,

u0(x) = Hmϕ(x)− λVm,n(qg(v0))(x)

≥ Hmϕ(x)− λ

λ0
Hmϕ(x)

= (1− λ

λ0
)Hmϕ(x) > 0.

So
v1(x)− v0(x) = −µVm,n(pf(u0))(x) ≤ 0.

On the other hand, since g is nondecreasing we have

u1(x)− u0(x) = λVm,n[q(g(v0)− g(v1))](x) ≥ 0.

Since f is nondecreasing and using that

u0(x) ≤ Hmϕ(x), (4.5)

we deduce from (4.2) that

v1(x) = Hmψ(x)− µVm,n(pf(u0))(x) ≥ (1− µ

µ0
)Hmψ(x) > 0.

This implies that
u1(x) ≤ Hmϕ(x).

Finally, we obtain

0 < (1− λ

λ0
)Hmϕ ≤ u0 ≤ u1 ≤ Hmϕ,

0 < (1− µ

µ0
)Hmψ ≤ v1 ≤ v0 ≤ Hmψ.

This implies that (4.3) and (4.4) hold for k = 0 and we conclude for any k ∈ N by
induction.

Therefore, the sequences (uk)k≥0 and (vk)k≥0 converge respectively to two func-
tions u and v satisfying

0 < (1− λ

λ0
)Hmϕ ≤ u ≤ Hmϕ,

0 < (1− µ

µ0
)Hmψ ≤ v ≤ Hmψ.

(4.6)

Now, since g is nondecreasing continuous, we obtain by (4.4) that for each (x, y) ∈
B2

0 ≤ Gm,n(x, y)q(y)g(vk) ≤ ||g(Hmψ)||∞Gm,n(x, y)q(y).

Moreover, since x 7→ q(x)
(δ(x))m−1 ∈ Km,n then by (2.8), we have for each x ∈ B,

y 7→ Gm,n(x, y)q(y) ∈ L1(B).
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So using the continuity of g and the dominated convergence theorem we deduce
that

lim
k→∞

Vm,n(qg(vk)) = Vm,n(qg(v)),

and so we have that for each x ∈ B,

u(x) = Hmϕ(x)− λVm,n(qg(v))(x). (4.7)

Similarly we prove that for each x ∈ B,

v(x) = Hmψ(x)− µVm,n(pf(u))(x). (4.8)

Next, we claim that (u, v) satisfies

(−∆)mu = −λqg(v),
(−∆)mv = −µpf(u).

Indeed, since g(v) is bounded and x 7→ q(x)
(δ(x))m−1 ∈ Km,n, we deduce by Proposition

2.4 that
qg(v) ∈ L1

loc(B).

On the other hand by Theorem 1.3, we have

x 7→ 1
(δ(x))m−1

∫
B

Gm,n(x, y)q(y)dy ∈ C0(B).

Therefore, using that g(v) is bounded we get

Vm,n(qg(v)) ∈ C0(B), (4.9)

which implies
Vm,n(qg(v)) ∈ L1

loc(B).

So we have in the distributional sense

(−∆)mVm,n(qg(v)) = qg(v) in B.

Similarly,
(−∆)mVm,n(pf(u)) = pf(u) in B.

Now, applying the operator (−∆)m in (4.7) and (4.8), it follows by (4.6) that (u, v)
is a positive bounded solution of

(−∆)mu+ λqg(v) = 0 in B,

(−∆)mv + µpf(u) = 0 in B.

From (4.7) and (4.9), we deduce that u is continuous in B. Similarly v is continuous.
Finally, by (1.3), (4.7) and Theorem 1.3, we obtain

lim
x→ξ∈∂B

u(x)
(1− |x|2)m−1

= ϕ(ξ).

Similarly,

lim
x→ξ∈∂B

v(x)
(1− |x|2)m−1

= ψ(ξ).

This completes the proof.
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5. Proof of Theorem 1.5

Assume that λ = µ = 1 and the hypotheses (H4) and (H5) are satisfied. Let p̃
and q̃ be the functions in Km,n given by hypothesis (H5). Put γ = 1 + αep + αeq,
where αep and αeq are the constants associated respectively to the functions p̃ and q̃.

Let us consider two nonnegative continuous functions ϕ and ψ on ∂B such that
ϕ ≥ γΦ and ψ ≥ γΦ. It follows that for each x ∈ B,

Hmϕ(x) ≥ γHmΦ(x), Hmψ(x) ≥ γHmΦ(x). (5.1)

Let S be the non-empty closed convex set given by

S = {w ∈ C0(B) : HmΦ ≤ w ≤ Hmψ}.

We define the operator T on S by

Tw = Hmψ − Vm,n(pf [Hmϕ− Vm,n(qg(w))]).

We aim to prove that T has a fixed point in S. First, we shall prove that TS is
relatively compact in C0(B). Let w ∈ S, then since w ≥ HmΦ we deduce from
hypothesis (H4) that

Vm,n(qg(w)) ≤ Vm,n(qg(HmΦ)) = Vm,n((δ(.))m−1q̃HΦ).

Which implies by (H5) and (2.7) that

Vm,n(qg(w)) ≤ αeqHmΦ. (5.2)

This together with (5.1) imply

Hmϕ− Vm,n(qg(w)) ≥ γHmΦ− αeqHmΦ

= (1 + αep)HmΦ

≥ HmΦ.

Hence, using (H4), we have

pf [Hmϕ− Vm,n(qg(w))] ≤ pf(HmΦ) = (δ(.))m−1p̃HΦ. (5.3)

This yields
pf [Hmϕ− Vm,n(qg(w))] ≤ ‖HΦ‖∞(δ(.))m−1p̃. (5.4)

Then using Proposition 3.6 with β = m− 1, we deduce that the family of functions

{Vm,n(pf [Hmϕ− Vm,n(qg(w))]) : w ∈ S}

is relatively compact in C0(B). So since Hmψ ∈ C0(B), we conclude that the
family TS is relatively compact in C0(B).

Next, we shall prove that T (S) ⊂ S. For all w ∈ S, we have obviously

Tw(x) ≤ Hmψ(x), ∀x ∈ B.

On the other hand, by (5.3), we have

Vm,n(pf [Hmϕ− Vm,n(qg(w))] ≤ Vm,n((δ(.))m−1p̃HΦ)

≤ Vm,n(p̃HmΦ).

Then, by (H5) and (2.7) we have

Vm,n(pf [Hmϕ− Vm,n(qg(w))] ≤ αepHmΦ. (5.5)
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Which implies by (5.1), that for each x ∈ B
Tw(x) ≥ Hmψ(x)− αepHmΦ(x)

≥ (γ − αep)HmΦ(x)

≥ (1 + αeq)HmΦ(x)

≥ HmΦ(x),

which proves that T (S) ⊂ S.
Now, we prove the continuity of the operator T in S for the supremum norm.

Let (wk)k∈N be a sequence in S which converges uniformly to a function w in S.
Since g is nonincreasing we deduce by (H5) that

qg(wk) ≤ qg(HmΦ) ≤ ‖HΦ‖∞(δ(.))m−1q̃.

Now, it follows from (H5) and (2.8), that for each x ∈ B,

y 7→ (δ(y))m−1Gm,n(x, y)q̃(y) ∈ L1(B).

We conclude by the dominated convergence theorem that for all x ∈ B,

lim
k→∞

Vm,n(qg(wk))(x) = Vm,n(qg(w))(x) (5.6)

and so from the continuity of f , we have

lim
k→∞

p(x)f [Hmϕ(x)− Vm,n(qg(wk))(x)] = p(x)f [Hmϕ(x)− Vm,n(qg(w))(x)].

By (5.4), for each x, y in B,

Gm,n(x, y)p(y)f [Hmϕ(y)− Vm,n(qg(wk))(y)] ≤ c(δ(y))m−1p̃(y)Gm,n(x, y).

Then since p̃ ∈ Km,n, we get by (2.8) and the dominated convergence theorem that
for each x ∈ B,

Twk(x) → Tw(x) as k → +∞.

Consequently, since T (S) is relatively compact in C0(B), we deduce that the point-
wise convergence implies the uniform convergence, namely,

‖Twk − Tw‖∞ → 0 as k → +∞.

Therefore, T is a continuous mapping of S to itself. So, since T (S) is relatively
compact in C0(B), it follows that T is a compact mapping on S. Finally, the
Schauder fixed-point theorem implies the existence of a function w ∈ S such that
w = Tw. We put for x ∈ B

u(x) = Hmϕ(x)− Vm,n(qg(w))(x) (5.7)

and v(x) = w(x). Then

v(x) = Hmψ(x)− Vm,n(pf(u))(x).

It is clear that (u, v) satisfies (1.5) and it remains to prove that (u, v) satisfies (1.1)
with λ = µ = 1.

Since 0 ≤ qg(v) ≤ c(δ(.))m−1q̃ then by Proposition 2.4, it follows that qg(v) ∈
L1

loc(B) and from (5.2), we have Vm,n(qg(v)) ∈ L1
loc(B). Hence u satisfies (in the

distributional sense)

(−∆)mu = −(−∆)mVm,n(qg(w)) = −qg(v).
On the other hand,

(−∆)mv = −(−∆)mVm,n(pf [Hmϕ− Vm,n(qg(v))]).
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Using (5.4) and Proposition 2.4 we deduce that pf [Hmϕ−Vm,n(qg(v))] ∈ L1
loc(B).

Moreover, by (5.5) we get

Vm,n(pf(u)) = Vm,n(pf [Hmϕ− Vm,n(qg(v))]) ∈ L1
loc(B).

Hence, we have in the distibutional sense

(−∆)mv = −pf(u).

Finally, let ξ ∈ ∂B, then since qg(v) ≤ c(δ(.))m−1q̃, we deduce by Theorem 1.3 for
β = m− 1, that

lim
x→ξ

Vm,n(qg(v))(x)
(1− |x2|)m−1

= 0.

Hence by (1.3) and (5.7) we have

lim
x→ξ

u(x)
(1− |x|2)m−1

= ϕ(ξ)− lim
x→ξ

Vm,n(qg(v))(x)
(1− |x2|)m−1

= ϕ(ξ).

Similarly,

lim
x→ξ

v(x)
(1− |x|2)m−1

= ψ(ξ)− lim
x→ξ

Vm,n(pf(u))
(1− |x|2)m−1

= ψ(ξ).

This completes the proof.

6. Examples

In this section, we give examples that illustrate the existence results for (1.1).
In the following two examples (H3) is satisfied.

Example 6.1. Let ϕ be a continuous function on ∂B such that there exists c0 > 0
satisfying ϕ(x) ≥ c0 for all x ∈ ∂B. Let p be a nonnegative function on B such that
p0 = p

(δ(.))m−1 is in Km,n and q be a nonnegative measurable function satisfying
for each x ∈ B, q(x) ≤ c

(δ(x))λ with λ < m. We consider f , g : (0,∞) → [0,∞)
nondecreasing and continuous functions. Then (H3) is satisfied. Indeed, let x ∈ B,
by (2.8), we have

Vm,n(p)(x) ≤ 2m−1αp0(δ(x))
m−1.

So
Hmϕ(x)

Vm,n(pf(Hmψ))(x)
≥ (1− |x|2)m−1c0

2m−1αp0‖f(Hψ)‖∞(δ(x))m−1

≥ c0
2m−1αp0‖f(Hψ)‖∞

> 0,

which implies that λ0 > 0.
Now since ψ is a nonnegative continuous function, then there exists c > 0 such

that for all x ∈ B, Hψ(x) ≥ cδ(x). So we have

Hmψ(x)
Vm,n(qg(Hmϕ))(x)

≥ cδ(x)(1− |x|2)m−1

‖g(Hϕ)‖∞Vm,nq(x)
.

Since q(x) ≤ c
(δ(x))λ , λ < m, we have by Proposition 3.1 that

Vm,n(q)(x) ≈ (δ(x))m.

So
(1− |x|2)m−1Hψ(x)
Vm,n(qg(Hmϕ))(x)

≥ cδ(x)(1− |x|2)m−1

‖g(Hϕ)‖∞(δ(x))m
≥ c

‖g(Hϕ)‖∞
> 0.
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This proves that µ0 > 0.

Example 6.2. Let ϕ and ψ two nonnegative continuous functions on ∂B. We
consider f , g : (0,∞) → [0,∞) nondecreasing and continuous functions. Since the
functions Hmϕ and Hmψ are nonnegative bounded, then there exist a1 ≥ 0, a2 ≥ 0
such that a1 + a2 > 0 and for each x ∈ B,

f(Hmϕ(x)) ≤ a1H
mϕ(x) + a2, g(Hmψ(x)) ≤ a1H

mψ(x) + a2.

We assume
(A1) a1ϕ ≈ a1ψ;
(A2) a2p ≤ a2

c
(δ(x))σ a2q ≤ a2

c
(δ(x))σ with σ < m.

Then (H3) is satisfied. Indeed for each x ∈ B, we have

Vm,n(qg(Hmψ)(x) ≤ a1Vm,n(qHmψ)(x) + a2Vm,n(q)(x).

By (2.7), we have
Vm,n(qHmψ)(x) ≤ αqH

mψ(x),
and by Proposition 3.1,

Vm,n(q)(x) ≤ c(δ(x))m.

Then

Vm,n(qg(Hmψ))(x) ≤ a1αqH
mψ(x) + a2c(δ(x))m

≤ c(δ(x))m−1(a1Hψ(x) + a2δ(x)).

So using that there exists c > 0 such that for all x ∈ B, Hϕ(x) ≥ cδ(x), we obtain
Hmϕ(x)

Vm,n(qg(Hmψ))(x)
≥ c

(a1 + a2)Hϕ(x)
a1Hψ(x) + a2δ(x)

≥ c
a1Hψ(x) + a2δ(x)
a1Hψ(x) + a2δ(x)

= c > 0.

Hence λ0 > 0. Similarly we have µ0 > 0. Note that if a1 = 0 then hypothesis (A1)
is satisfied for each ϕ and ψ and if a2 = 0 then the hypothesis (A2) is satisfied for
each p and q.

Now, as an application of Theorem 1.4, we give the following example.

Example 6.3. Let λ, µ be nonnegative constants, and ϕ, ψ be two nontrivial
nonnegative continuous functions on ∂B. Let f(t) = tα and g(t) = tβ , where α,
β > 0. Now, let σ < m. We take p and q two nonnegative measurable functions
satisfying for each x ∈ B,

p(x) ≤ c

(δ(x))σ
, q(x) ≤ c

(δ(x))σ
.

Using similar arguments as above in Example 6.1, we show that (H3) is satisfied.
Then for each λ ∈ [0, λ0) and each µ ∈ [0, µ0), the problem

(−∆)mu+ λqvα = 0 in B,

(−∆)mv + µpuβ = 0 in B,

lim
x→ξ∈∂B

u(x)
(1− |x|2)m−1

= ϕ(ξ),

lim
x→ξ∈∂B

v(x)
(1− |x|2)m−1

= ψ(ξ),
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has positive continuous solution (u, v) satisfying (1.4).

We end this section by giving an example as application of Theorem 1.5.

Example 6.4. Let α > 0, β > 0, f(t) = t−α and g(t) = t−β . Let p and q two
nonnegative measurable functions such that

p(x) ≤ c

(δ(x))λ
with λ < m(1− α),

and
q(x) ≤ c

(δ(x))µ
with µ < m(1− β).

Let ϕ, ψ and Φ nontrivial nonnegative continuous functions on ∂B. Then there
exists a constant γ > 1 such that if ϕ ≥ γΦ and ψ ≥ γΦ on ∂B, the problem

(−∆)mu+ qv−α = 0 in B,

(−∆)mv + pu−β = 0 in B,

lim
x→ξ∈∂B

u(x)
(1− |x|2)m−1

= ϕ(ξ),

lim
x→ξ∈∂B

v(x)
(1− |x|2)m−1

= ψ(ξ),

has a positive continuous solution satisfying (1.5).
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[5] S. Ben Othman, H. Mâagli, M. Zribi; Existence results for polyharmonic boundary value
problems in the unit ball, Abstract and Applied Analysis 2007 (2007), 1-17.
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