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GENERALIZED PICONE AND RICCATI INEQUALITIES
FOR HALF-LINEAR DIFFERENTIAL OPERATORS

WITH ARBITRARY ELLIPTIC MATRICES

SIMONA FIŠNAROVÁ, ROBERT MAŘÍK

Abstract. In the article, we extend the well-known Picone identity for half-

linear partial differential equations to equations with anisotropic p-Laplacian.

1. Introduction

The Picone identity appears to be a useful tool in qualitative theory of differential
equations. In the simplest case it can be written as[u

v
(vru′ − uRv′)

]′
= (r −R)u′2 + (Q− q)u2 + R

(
u′ − u

v
v′

)2

+
u

v

[
v
(
(ru′)′ + qu

)
− u

(
(Rv′)′ + qv

)] (1.1)

and holds for sufficiently smooth real valued functions u, v, r, R, q and Q. Picone
[16] used this identity for a proof of Sturmian comparison theorem for linear second
order ODE and other related results. This identity has been extended in several
aspects to more general operators than second order linear differential operator.
Picone identity is used not only to derive important results in comparison and
oscillation theory of related differential equations, but can be also used to get
uniqueness or nonexistence results, monotonicity of eigenvalue in domain, results
for various eigenvalue problems and inequalities and other results. See [3, 6, 12,
11, 13, 17, 18, 20, 22] for more details. Furthermore, the Piccone identity is closely
related to Riccati equation which also appears to be a powerful tool in the general
theory of second order linear and half-linear equations.

Equations with p-Laplacian and half-linear equations attracted a wide interest in
last years because of their application in various physical and biological phenomena
such as flow of non-Newtonian fluids, slow diffusion problem and glaceology, see e.g.
[4]. In most applications it is sufficient to consider an isotropic p-Laplacian

div
(
a(x) ‖∇u‖p−2∇u

)
,
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where a(x) is either identity matrix or a scalar function. However, there are also
problems in which anisotropy plays an important role and it is necessary to treat
a(x) as a general elliptic matrix function. This includes for example nonlinear
dielectric composite, see e.g. [2].

In this article, we establish a suitable replacement for Picone identity in the
theory of half-linear partial differential operators

l(u) := div
(
a(x) ‖∇u‖p−2∇u

)
+ c(x)|u|p−2u, (1.2)

L(u) := div
(
A(x) ‖∇u‖p−2∇u

)
+ C(x)|u|p−2u, (1.3)

with anisotropic p-Laplacian, where Ω ∈ Rn is a bounded domain in Rn for
which the Gauss-Ostrogradskii divergence theorem holds, a ∈ C1(Ω, Rn×n) and
A ∈ C1(Ω, Rn×n) are smooth elliptic matrix valued functions, c ∈ C0,α(Ω) and
C ∈ C0,α(Ω) are Hölder continuous functions, div(·) and ∇ are the usual diver-
gence and nabla operators, ‖·‖ is the usual Euclidean norm in Rn and p > 1 is a
real constant. The notation 〈·, ·〉 is used for the usual scalar product. By Λmax(x)
and Λmin(x) we denote the maximal and minimal eigenvalues of the matrix A(x)
and similarly λmax(x) and λmin(x) denote the maximal and minimal eigenvalues of
the matrix a(x).

The domain Dl(Ω) of operator l is the set of all functions u(x) ∈ C1(Ω) such
that a(x) ‖∇u‖p−2∇u ∈ C1(Ω) ∩ C(Ω). In a similar way we define domain DL(Ω)
of the operator L.

The operators l and L can be viewed as generalization of elliptic linear differential
operators and it turns out, that many results proved originally in the linear case
which can be obtained from (1.2), (1.3) by letting p = 2 can be extended for
operators l and L.

As mentioned above, the original Picone identity (1.1) has been generalized in
many different directions. These extensions include also isotropic half-linear partial
differential operators which have the same form as (1.2) and (1.3) but the matrices
a(x) and A(x) are replaced by smooth scalar functions. The Picone identity for
this case has been derived in [9] in the form

div
(

u

|v|p−2v

[
|v|p−2va(x) ‖∇u‖p−2∇u− |u|p−2uA(x)‖∇v‖p−2∇v

])
=

[
a(x)−A(x)

]
‖∇u‖p +

[
C(x)− c(x)

]
|u|p + A(x)Y (u, v)

+
u

|v|p−2v

[
|v|p−2vl(u)− |u|p−2uL(v)

]
,

(1.4)

where

Y (u, v) = ‖∇u‖p + (p− 1)‖u

v
∇v‖p − p‖u

v
∇v‖p−2〈∇u,

u

v
∇v〉.

An important property of the function Y (u, v) is that this function is nonnegative
and equals zero if and only if the function u is a constant multiple of v. As shown
in [5] and [9], (1.4) can be used to make a connection between ordinary and par-
tial differential equations and allows to embed easily new results from theory of
ordinary differential equations into theory of partial differential equations (see also
[6] for detailed references about half-linear and related equations). This approach
turns out to be valuable to get fast extension of some modern approaches to the
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conjugacy and oscillation theory. See for example [7] and [8] for some new meth-
ods in oscillation theory of half-linear ordinary differential equations, which can be
extended in this way to partial differential equations.

As far as we know, nothing is known about possible extension of Picone identity
to the case of anisotropic p-Laplacian and partial differential operators (1.2), (1.3).
The related results are known in few related cases only, like operators

m∑
k=1

div
(
ak(x)‖

√
ak(x)∇u‖p−2∇u

)
+ c(x)|u|p−2u,

where ak(x) are positive definite matrices (see [20]) or sublinear-superlinear oper-
ator with linear differential part

n∑
i,j=1

∂

∂xi

(
Aij(x, t)

∂v

∂xj

)
+ C(x, t)|v|β−1v + D(x, t)|v|γ−1v, (1.5)

where Aij is elliptic matrix, C and D are scalar positive functions, β > 1, 0 < γ < 1
and the corresponding parabolic equation

∂v

∂t
− L[v] = 0,

see [10]. The results for operator (1.5) have been extended to half-linear case
by Yoshida [21], however the replacement of the matrix Aij by scalar function is
necessary in [21].

Moreover, it seems that direct extension of Picone identity to anisotropic opera-
tors (1.2), (1.3) does not exist due to incompatibility between matrix product and
nonlinearity in the differential operator. The aim of this paper if to derive suitable
replacement for Picone identity which can be used in theory of half-linear partial
differential operators (1.2) and (1.3).

If we compare known results for (1.2) and (1.3) and its special cases (obtained
using transformation into Riccati type equation or inequality), we see an interesting
phenomenon: the results obtained directly for the linear case are sharper than the
results obtained from the general case p > 1 by letting p = 2. A closer discussion
related to this phenomenon is in [14] and it appears, that there is a difference
between sublinear (p ≤ 2) and superlinear (p > 2) case. Hence our task is not
only to extend Picone identity to operators (1.2) and (1.3), but we naturally aim to
respect this behavior and get results which are in the sublinear case sharper than
the results obtained for general p.

2. Main result

The following theorem presents our main result: inequality, which is a replace-
ment for Picone identity for operators (1.2) and (1.3). Note that due to necessity
to use some estimates based on minimal and (or) maximal eigenvalues of matrices
a(x) and A(x), we get only inequality and not equality like for the linear case or
like for equation (1.5). From this reason it is also not reasonable to include the
replacement for the term Y (u, v) in (1.4). Despite this fact, we are able to give a
common characterization of all cases, when inequality (2.2) below becomes equality.
Such a situation corresponds to the case when Y (u, v) = 0.
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Theorem 2.1. Let u ∈ Dl(Ω) and v ∈ DL(Ω), v 6= 0 on Ω. Denote

K(x) =


(

Λmax(x)
Λmin(x)

)p−1

Λmax(x) for p > 2,

Λmax(x) for 1 < p ≤ 2.
(2.1)

The inequality

div
( u

|v|p−2v

[
|v|p−2va(x) ‖∇u‖p−2∇u− |u|p−2uA(x)‖∇v‖p−2∇v

] )
≥

[
λmin(x)−K(x)

]
‖∇u‖p +

[
C(x)− c(x)

]
|u|p

+
u

|v|p−2v

[
|v|p−2vl(u)− |u|p−2uL(v)

] (2.2)

holds for every x ∈ Ω. The inequality becomes equality if and only if the following
conditions hold

(i) ∇u(x) is an eigenvector of the matrix a(x) associated with the eigenvalue
λmin(x),

(ii) ∇v(x) is an eigenvector of the matrix A(x) associated with the eigenvalue
Λmax(x),

(iii) if p > 2 then Λmax(x) = Λmin(x),
(iv) u(x) is a constant multiple of v(x).

Proof. Direct computations show

div
(
ua(x) ‖∇u‖p−2∇u

)
= ul(u)− c(x)|u|p + 〈∇u, a(x) ‖∇u‖p−2∇u〉

≥ ul(u)− c(x)|u|p + λmin(x) ‖∇u‖p
.

(2.3)

Evaluating the divergence and using definition of the operator L we obtain

− div
(
|u|p A(x)‖∇v‖p−2∇v

|v|p−2v

)
= −p|u|p−2u

〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
− |u|p

|v|p−2v
div

(
A(x)‖∇v‖p−2∇v

)
− (1− p)

|u|p

|v|p
〈
A(x)‖∇v‖p−2∇v,∇v

〉
= − |u|p

|v|p−2v
L(v) + C(x)|u|p − p|u|p−2u

〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
+ (p− 1)

|u|p

|v|p
〈
A(x)‖∇v‖p−2∇v,∇v

〉
.

(2.4)

To estimate the last two terms, in terms of the product K(x) ‖∇u‖p, we use the
Young inequality

p− 1
p

X
p

p−1 −XY ≥ −1
p
Y p (2.5)

and split the proof into two cases.
Case 1: First we consider general case p > 1. Schwarz inequality and the fact

that norm of the matrix A is Λmax imply

|u|p−2u
〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
≤ |u|p−1 ‖∇u‖

∥∥A(x)‖∇v‖p−2∇v

|v|p−2v

∥∥
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≤ |u|p−1‖∇u‖Λmax(x)
‖∇v‖p−1

|v|p−1
.

Using this inequality and Young inequality we can find an apriori bound for last
two terms at the right-hand side of (2.4) as follows

p− 1
p

|u|p

|v|p
〈
A(x)‖∇v‖p−2∇v,∇v

〉
− |u|p−2u

〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
≥ p− 1

p

∣∣u
v

∣∣p‖∇v‖pΛmin(x)− |u|p−1 ‖∇u‖Λmax(x)
‖∇v‖p−1

|v|p−1

=
p− 1

p

[(∣∣u
v

∣∣‖∇v‖Λ1/p
min(x)

)p−1] p
p−1 − |u|p−1 ‖∇u‖Λmax(x)

‖∇v‖p−1

|v|p−1

=
p− 1

p

[(∣∣u
v

∣∣‖∇v‖Λ1/p
min(x)

)p−1] p
p−1

−
(∣∣u

v

∣∣‖∇v‖Λ1/p
min(x)

)p−1

‖∇u‖Λmax(x)Λ
1−p

p

min (x)

≥ −1
p
Λp

max(x)Λ1−p
min (x) ‖∇u‖p

.

Case 2: In this second case we consider 1 < p ≤ 2 and use more careful
estimates. From the fact that the minimal eigenvalue of the inverse matrix A−1(x)
is Λ−1

max(x) we get the estimate

p− 1
p

|u|p

|v|p
〈
A(x)‖∇v‖p−2∇v,∇v

〉
=

p− 1
p

|u|p

|v|p
‖∇v‖p−2

〈
A(x)∇v,A−1(x)A(x)∇v

〉
≥ p− 1

p

|u|p

|v|p
‖∇v‖p−2 1

Λmax(x)
‖A(x)∇v‖2

=
p− 1

p

[( 1
Λmax(x)

) p−1
p ( |u|

|v|
)p−1‖∇v‖

(p−2)(p−1)
p ‖A(x)∇v‖

2(p−1)
p

] p
p−1

.

Schwarz inequality implies

|u|p−2u
〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
≤ |u|p−1 ‖∇u‖ ‖∇v‖p−2

|v|p−1
‖A(x)∇v‖ ,

and if we multiply by (−1) and rewrite the right hand side into the form suitable
for Young inequality, we get

−|u|p−2u
〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
≥ −|u|p−1 ‖∇u‖ ‖∇v‖p−2

|v|p−1
‖A(x)∇v‖

= −
[( 1

Λmax(x)

) p−1
p ( |u|

|v|
)p−1‖∇v‖

(p−2)(p−1)
p ‖A(x)∇v‖

2(p−1)
p

]
×

(
1

Λmax(x)

) 1−p
p

‖∇u‖ ‖∇v‖
p−2

p ‖A(x)∇v‖
2−p

p .
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Summing up the last two inequalities, using Young inequality and using obvious
inequality

‖A(x)∇v‖ ≤ Λmax(x)‖∇v‖
which for p ≤ 2 implies

‖A(x)∇v‖2−p ≤ Λ2−p
max(x)‖∇v‖2−p

we have
p− 1

p

|u|p

|v|p
〈
A(x)‖∇v‖p−2∇v,∇v

〉
− |u|p−2u

〈
∇u,

A(x)‖∇v‖p−2∇v

|v|p−2v

〉
≥ −1

p

( 1
Λmax(x)

)1−p

‖∇u‖p ‖∇v‖p−2 ‖A(x)∇v‖2−p

≥ −1
p

( 1
Λmax(x)

)1−p

‖∇u‖p ‖∇v‖p−2Λ2−p
max(x)‖∇v‖2−p

= −1
p
‖∇u‖p Λmax(x).

Summarizing both cases we have

−div
(
|u|p A(x)‖∇v‖p−2∇v

|v|p−2v

)
≥ − |u|p

|v|p−2v
L(v) + C(x)|u|p −K(x) ‖∇u‖p (2.6)

and adding to (2.3) we obtain

div
( u

|v|p−2v

[
|v|p−2va(x) ‖∇u‖p−2∇u− |u|p−2uA(x)‖∇v‖p−2∇v

] )
≥ ul(u)− c(x)|u|p + λmin(x) ‖∇u‖p

− |u|p

|v|p−2v
L(v) + C(x)|u|p −K(x) ‖∇u‖p

,

which implies (2.2).
It remains to investigate, when inequality becomes equality. A closer investiga-

tion of the proof shows, that to get equality in (2.2), all inequalities used in the
proof have to reduce into equalities. Remark that (2.5) becomes equality if and
only if X

p
p−1 = Y p. We distinguish two cases again.

Case 1: p > 2. In this case (2.2) becomes equality if and only if all the following
equalities hold:

〈∇u, a(x)∇u〉 = λmin ‖∇u‖2
, (2.7)

uv 〈∇u,∇v〉 = |uv| ‖∇u‖ ‖∇v‖, (2.8)

‖A(x)∇v‖ = Λmax(x)‖∇v‖, (2.9)

〈∇v,A(x)∇v〉 = Λmin‖∇v‖2, (2.10)∣∣u
v

∣∣p‖∇v‖pΛmin(x) = Λp
max(x)Λ1−p

min (x) ‖∇u‖p
. (2.11)

Equations (2.7) and (2.10) imply that ∇u and ∇v are eigenvectors of matrices
a(x) and A(x) belonging to λmin(x) and Λmin(x), respectively. Equation (2.9)
implies that ∇v is also an eigenvector of A(x) belonging to Λmax(x) and hence
Λmax(x) = Λmin(x). Using this fact, (2.11) becomes∣∣u

v

∣∣‖∇v‖ = ‖∇u‖ . (2.12)
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Equation (2.8) implies that∇u is a scalar multiple of∇v, i.e., there exists a function
ρ(x) such that ∇u = ρ∇v. Now (2.12) and (2.8) imply that u(x) = ρ(x)v(x).
Evaluating the gradient we get

∇u = v∇ρ + ρ∇v

and
‖∇u‖ ≤ |v| ‖∇ρ‖+ |ρ|‖∇v‖.

From here and from the fact that v does not have zeros on Ω we conclude that
‖∇ρ‖ = 0 and ρ is a constant function. Hence all conditions (i)–(iv) hold. On the
other hand, it is easy to see, that if (i)–(iv) hold, then (2.7)–(2.11) are satisfied and
hence equality holds in (2.2).

Case 2: p ≤ 2. Similarly to the previous case we find that (2.2) becomes equality
if and only if (2.7), (2.8), (2.9) and the following equations hold:〈

A(x)∇v,A−1(x)A(x)∇v
〉

= Λ−1
max(x) ‖A(x)∇v‖2

, (2.13)∣∣u
v

∣∣p‖∇v‖p−2 ‖A(x)∇v‖2

Λmax(x)
= Λp−1

max(x) ‖∇u‖p ‖∇v‖p−2 ‖A(x)∇v‖2−p
. (2.14)

As in the previous case (2.7) and (2.9) imply that ∇u and ∇v are eigenvectors
of matrices a(x) and A(x) belonging to λmin(x) and Λmax(x), respectively. This
also implies that (2.13) holds and (2.14) reduces into (2.12). The remaining part is
identical to the previous case and the proof that (i), (ii), and (iv) imply (2.7)–(2.9),
(2.13) and (2.14) is easy. Theorem is proved. �

Remark 2.2 (Riccati inequality). If L(v) = 0 and u ≡ 1, then (2.4) becomes the
generealized Riccati equation for the vector variable ~w(x) := A(x)‖∇v‖p−2∇v

|v|p−2v :

div ~w + C(x) + (p− 1)
∥∥A−1(x)~w

∥∥q−2 〈
~w,A−1(x)~w

〉
= 0.

Recall that the eigenvalues of the matrix A−1(x) are reciprocal values of the eigen-
values of the matrix A(x) and thus

1
Λmax(x)

‖~w‖ ≤
∥∥A−1(x)~w

∥∥ ≤ 1
Λmin(x)

‖~w‖ ,

1
Λmax(x)

‖~w‖2 ≤
〈
~w,A−1(x)~w

〉
≤ 1

Λmin(x)
‖~w‖2

.

Combinations of these estimates allow to derive various types of Riccati inequalities.

Remark 2.3. Remark that if the matrices a(x), A(x) are scalar multiples of iden-
tity matrix (say a(x) = ã(x)I and A(x) = Ã(x)I where ã and Ã are scalar functions)
as in [9], then λmax(x) = λmin(x) = ã(x) and K(x) = Λmax(x) = Λmin(x) = Ã(x).
In this case we have the following identity for the first term from the right hand
side of (2.2): [λmin(x)−K(x)] ‖∇u‖p = [ã(x)− Ã(x)] ‖∇u‖p.

Immediately from the proof of Theorem 2.1 we obtain the following statement,
where only the “second part” (2.6) of the Picone inequality (2.2) is considered. A
closer examination of the proof reveals that condition (i) in Theorem 2.1 is needed
only for the equality in the “first part” (2.3) of (2.2), while the other three conditions
(ii)–(iv) mean the equality in (2.6).
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Corollary 2.4. Let u ∈ C1(Ω), v ∈ DL(Ω), v 6= 0 on Ω and let K be the function
defined in (2.1). Then the following inequality

div
(
|u|p A(x)‖∇v‖p−2∇v

|v|p−2v

)
≤ |u|p

|v|p−2v
L(v)− C(x)|u|p + K(x) ‖∇u‖p (2.15)

holds for every x ∈ Ω. The inequality in (2.15) can be replaced by equality if and
only if conditions (ii)–(iv) of Theorem 2.1 hold.

Remark 2.5. Note that(Λmax(x)
Λmin(x)

)p−1

Λmax(x) ≥ Λmax(x) (2.16)

The quotient Λmax(x)
Λmin(x) is conditioned number of the matrix A(x) and this number

shows, that the inequality for the case p ≤ 2 is sharper than inequality for p > 2
(which holds in fact for every p > 1). In addition, if Λmax(x) = Λmin(x), then there
is no difference between cases p > 2 and p ≤ 2 in Theorem 2.1 and Corollary 2.4.

Remark 2.6. If p > 2 and A is not a scalar multiple of identity matrix, then
condition (iii) of Theorem 2.1 fails and (2.2) never becomes equality.

3. Applications of Picone inequality

As a consequence of the Picone inequality derived in the previous section we
have the following version of Leighton-type comparison theorem.

Theorem 3.1. Let u be a nontrivial solution of l(u) = 0 such that u = 0 on ∂Ω
and let ∫

Ω

[(λmin(x)−K(x)) ‖∇u‖p + (C(x)− c(x))|u|p] dx ≥ 0.

Then every solution of L(v) = 0 has a zero in Ω.

Proof. Suppose, by contradiction, that v is a solution of L(v) = 0 such that v 6= 0
in Ω. The functions u, v satisfy assumptions of Theorem 2.1 and since v is not
a constant multiple of u, the Picone inequality (2.2) holds strict. Integrating this
inequality with using the Gauss-Ostrogradskii theorem we obtain∫

∂Ω

〈 u

|v|p−2v

[
|v|p−2va(x) ‖∇u‖p−2∇u− |u|p−2uA(x)‖∇v‖p−2∇v

]
, ν

〉
dS

>

∫
Ω

[
λmin(x)−K(x)

]
‖∇u‖p +

[
C(x)− c(x)

]
|u|p dx,

where ν denotes the outside unit normal. The fact that u = 0 on ∂Ω gives∫
Ω

[(λmin(x)−K(x)) ‖∇u‖p + (C(x)− c(x))|u|p] dx < 0,

a contradiction. �

The next two statements follow directly from Theorem 3.1.

Corollary 3.2. Let u be a nontrivial solution of l(u) = 0 such that u = 0 on ∂Ω.
(i) If λmin(x) ≥ K(x) and C(x) ≥ c(x) in Ω, then every solution of L(v) = 0

has a zero in Ω.

(ii) If λmin(x) = λmax(x), then every solution of l(u) = 0 has a zero in Ω.
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Similarly as Theorem 3.1 follows from Theorem 2.1, the next theorem can be
obtained from Corollary 2.4.

Theorem 3.3. Suppose that there exists a nontrivial function u ∈ C1(Ω) such that
u = 0 on ∂Ω and ∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx ≤ 0.

Then every solution of L(v) = 0 has a zero in Ω.

Proof. Let v be a nontrivial solution of L(v) = 0 and suppose, by contradiction,
that v 6= 0 in Ω. The functions u, v satisfy the (strict) inequality (2.15). Integrating
this inequality and using the Gauss-Ostrogradskii theorem similarly as in the proof
of Theorem 3.1, we have∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx > 0,

a contradiction. �

As a direct consequence of the above theorem we obtain the following Wirtinger-
type inequality.

Corollary 3.4. If there exists a solution v of L(v) = 0 such that v 6= 0 in Ω, then∫
Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx > 0,

for any nontrivial function u ∈ C1(Ω, R) such that u = 0 on ∂Ω.

We finish this section with two statements which show that if the integral in-
equality in Theorem 3.1 or Theorem 3.3 is strict, then the zero of the solution of
L(v) = 0 occurs in Ω. The method of the proof is similar to that used in [9] or [19].

Theorem 3.5. Let ∂Ω ∈ C1 and suppose that there exists a nontrivial function
u ∈ C1(Ω) such that u = 0 on ∂Ω and∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx < 0. (3.1)

Then every solution of L(v) = 0 has a zero in Ω.

Proof. Conditions imposed on u and Ω imply that u ∈ W 1,p
0 (Ω). Hence (see e.g.

[1]) there exists a sequence of functions uk ∈ C∞
0 (Ω) converging to u in the norm

‖w‖p :=
( ∫

Ω

[‖w‖p + ‖∇w‖p] dx
)1/p

.

Suppose, by contradiction, that there exists a solution v of L(v) = 0 such that
v 6= 0 in Ω. From Corollary 2.4 it follows that for x ∈ Ω,

div
(
|uk|p

A(x)‖∇v‖p−2∇v

|v|p−2v

)
≤ K(x) ‖∇uk‖p − C(x)|uk|p.

Integrating this inequality over the set Ωk ⊂ Ω containing the (compact) support
of uk and using the Gauss-Ostrogradskii theorem we have

0 ≤
∫

Ωk

[K(x) ‖∇uk‖p − C(x)|uk|p] dx =
∫

Ω

[K(x) ‖∇uk‖p − C(x)|uk|p] dx.

(3.2)
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Next, it can be shown in the same way as in [19, Theorem 8.1.3] that∣∣ ∫
Ω

[K(x) ‖∇uk‖p − C(x)|uk|p] dx−
∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx
∣∣

≤ M
(
‖uk‖p + ‖u‖p

)p−1

‖uk − u‖p ,

where M is a positive constant. Since ‖uk − u‖p → 0 as k →∞, we have

lim
k→∞

∫
Ω

[K(x) ‖∇uk‖p − C(x)|uk|p] dx =
∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx,

which, together with (3.2), contradicts assumption (3.1). �

Corollary 3.6. Let ∂Ω ∈ C1 and suppose that there exists a nontrivial solution u
of l(u) = 0 such that u = 0 on ∂Ω and∫

Ω

[(λmin(x)−K(x)) ‖∇u‖p + (C(x)− c(x))|u|p] dx > 0. (3.3)

Then every solution of L(v) = 0 has a zero in Ω.

Proof. Inequality (3.3), computation used in (2.3) and Gauss-Ostrogradskii theo-
rem imply∫

Ω

[K(x) ‖∇u‖p − C(x)|u|p] dx <

∫
Ω

[λmin(x) ‖∇u‖p − c(x)|u|p] dx

≤
∫

Ω

[
div

(
ua(x) ‖∇u‖p−2∇u

)
− ul(u)

]
dx

= 0.

The statement now follows from Theorem 3.5. �

4. An oscillation result

Recall that the half-linear differential equation(
s(t)|y′|p−2y′

)′
+ q(t)|y|p−2y = 0,

where s > 0, q are real-valued continuous functions on t ∈ [t0,∞), is said to be
oscillatory if any nontrivial solution of this equation has a sequence of zeros tending
to ∞.

Concerning linear and half-linear partial equations, there are two types of oscil-
lation: oscillation (sometimes also weak oscillation) and nodal oscillation (strong
oscillation).

Denote
Ω(r0) = {x ∈ Rn : ‖x‖ ≥ r0}

and assume that the coefficients of the operator L satisfy A ∈ C1(Ω(r0), Rn×n),
C ∈ C0,α(Ω(r0)). We say that a solution v of L(v) = 0 is oscillatory if it has
a zero in Ω(r) for every r ≥ r0. Equation L(v) = 0 is said to be oscillatory if
every solution of this equation is oscillatory. The equation L(v) = 0 is said to be
nonoscillatory if it is not oscillatory.

Similarly, the equation L(v) = 0 is said to be nodally oscillatory, if every its
solution has a nodal domain outside of every ball in Rn and nodally nonoscillatory
in the opposite case.
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It is known that nodal oscillation implies oscillation. The opposite implication
is known to be valid only in the linear case p = 2 (see [15]) and remains an open
question in the half-linear multidimensional case (the case n = 1 is trivial). While
Riccati technique is suitable to study weak oscillation, Picone identity and vari-
ational technique are suitable to study both types of oscillation (and hence both
techniques overlap for weak oscillation). In the remaining part of this paper we
deal (for simplicity) with the weak oscillation (referred to as oscillation) and show
one simple but important application of Picone inequality.

The following oscillation theorem compares oscillation of the PDE L(u) = 0
with oscillation of a certain ordinary differential equation. This enables to extend
many oscillation criteria from theory of ordinary equations to partial differential
equations. Note that the statement we present has been proved using the Riccati
technique in [14]. Using Picone identity the proof is simple and straightforward.

Theorem 4.1. Suppose that the half-linear ordinary differential equation

l̃(y) :=
(
K̃(r)|y′|p−2y′

)′
+ C̃(r)|y|p−2y = 0, (4.1)

where
K̃(r) :=

∫
‖x‖=r

K(x) dS, C̃(r) :=
∫
‖x‖=r

C(x) dS,

is oscillatory. Then the equation L(v) = 0 is also oscillatory.

Proof. Let y = y(r) be an (oscillatory) solution of (4.1) and let r1 < r2 < · · · ,
rk →∞, be the sequence of its zeros. Denote

Dk = {x ∈ Rn; rk ≤ ‖x‖ ≤ rk+1}, k ∈ N.

Then the function defined by u(x) = y(‖x‖) satisfies u(x) = 0 on ∂Dk for k ∈ N.
By a direct computation we have∫

Dk

(K(x) ‖∇u(x)‖p − C(x)|u(x)|p) dx

=
∫ rk+1

rk

[( ∫
‖x‖=r

K(x) dS
)
|y′(r)|p −

( ∫
‖x‖=r

C(x) dS
)
|y(r)|p

]
dr

=
∫ rk+1

rk

(
K̃(r)|y′(r)|p − C̃(r)|y(r)|p

)
dr.

Using integration by parts,∫ rk+1

rk

(
K̃(r)|y′(r)|p

)
dr

= K̃(r)|y′(r)|p−2y′(r)y(r)
∣∣∣rk+1

rk

−
∫ rk+1

rk

(
K̃(r)|y′(r)|p−2y′(r)

)′
y(r) dr

= −
∫ rk+1

rk

(
K̃(r)|y′(r)|p−2y′(r)

)′
y(r) dr.

Hence∫
Dk

(K(x) ‖∇u(x)‖p − C(x)|u(x)|p) dx = −
∫ rk+1

rk

l̃(y(r))y(r) dr = 0, k ∈ N.

Now, it follows from Theorem 3.3 that every solution of L(v) = 0 has a zero in Dk,
k ∈ N, that is, L(v) = 0 is oscillatory. �
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Remark 4.2. The statement of the previous theorem remains to hold if we replace
the coefficients K̃(r), C̃(r) in (4.1) by rn−1K̄(r), rn−1C̄(r), respectively, where

K̄(r) :=
1

ωnrn−1

∫
‖x‖=r

K(x) dS, C̄(r) :=
1

ωnrn−1

∫
‖x‖=r

C(x) dS

are the spherical means of K(x), C(x), respectively, over the sphere Sr = {x ∈
Rn; ‖x‖ = r} and where ωn is the area of the unit sphere in Rn.

Summary. The Picone identity is a very powerful tool in comparison and oscilla-
tion theory of equations with p-Laplacian. In this paper we extended this identity
to the case of anisotropic p-Laplacian. Despite the fact that we get inequality
instead of equality, our extension is shown to be sharp (for isotropic p-Laplacian
reduces to the known Picone identity) and we believe, that it can be used to ex-
tend most of the results based on the Picone identity to equations with anisotropic
p-Laplacian. As an application, we proved related comparison theorems and new
variational inequalities. We also showed how to use our result to deduce oscilla-
tion of partial differential equations with anisotropic p-Laplacian from oscillation
of ordinary differential equations.
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