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EFFECT OF HYPERVISCOSITY ON THE NAVIER-STOKES
TURBULENCE

ABDELHAFID YOUNSI

Abstract. In this article, we modified the Navier-Stokes equations by adding
a higher order artificial viscosity term to the conventional system. We first
show that the solution of the regularized system converges strongly to the
solution of the conventional system as the regularization parameter approaches
zero, for each dimension d ≤ 4. Then we show that the use of this artificial
viscosity term leads to truncated the number of degrees of freedom in the
long-time behavior of the solutions to these equations. This result suggests
that the hyperviscous Navier-Stokes system is an interesting model for three-
dimensional fluid turbulence.

1. Introduction

We regularize the Navier-Stokes equations by adding a higher-order viscosity
term to the conventional system. In this paper we will restrict ourselves to periodic
boundary conditions.

duε

dt
+ ε(−∆)luε − ν∆uε + (uε.∇)uε +∇p = f(x), in Ω× (0,∞)

div uε = 0 in Ω× (0,∞),

p(x + Lei, t) = p(x, t), u(x + Lei, t) = u(x, t) i = 1, . . . , d t ∈ (0,∞)

uε(x, 0) = uε0(x) in Ω,

(1.1)

Where Ω = (0, L)d and (e1, . . . , ed) is the natural basis of Rd. Here ε > 0 is the
artificial dissipation parameter and ν > 0 is the kinematic viscosity of the fluid,
l > 1. The function uε is the velocity vector field, p is the pressure, and f is a given
force field. For ε = 0, the model is reduced to the Navier-Stokes system.

In Lions [25], the existence and uniqueness of weak solutions of the modified
Navier-Stokes equations were established for all l > 0 if l ≥ (d+2)/4, d is the space
dimension.

This type of regularization was proposed by Ladyzhenskaya [20] and Lions [26]
who added the artificial hyperviscosity (−∆)l/2, l > 2 to the Navier-Stokes system.

Mathematical model for such fluid motion play an important role in theoretical
and computational studies of bipolar fluids [7] and in the regularized Navier-Stokes
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equations (see [7, 26, 28] and the references therein). Hyperviscosity is introduced
in the works [28, 30] to demonstrate global unique solvability of the Navier-Stokes
equations in three dimensions. Hyperviscosity has been widely used for numerical
simulations of turbulence [1, 3, 5, 6] and in computer simulations for oceanic and
atmospheric flows (see [4, 23]) or to control the Navier–Stokes equations [31].

A well known example of such a result is the viscosity solution method for the
Hamilton-Jacobi equations [26].

In this paper, we will study the effect of hyperviscosity on the Navier-Stokes
turbulence. First, we show that the solutions of (1.1) converge strongly to the
corresponding solutions of the Navier–Stokes equations for d ≤ 4. This result can
extend to each domain Ω with one finite size.

In this result, we show that the conjecture of Lions [25, Remarque 8.2. SecII]
is true, for d ≤ 4. In addition, it is an extension of a result due to Lions [26]
(where only the weak convergence is proved). The results in this article can be
seen as an improved version of the convergence results announced by Yuh-Roung
and Sritharan [28, 29], in two different ways: On the one hand, we consider here a
dimension d ≤ 4, on the other hand the order viscosity term here is l ≥ sup(d

2 , d+2
4 ).

Next, we consider the system (1.1) with l = 2; i.e., we modified the 3D Navier-
Stokes system by adding a fourth order artificial viscosity term (Laplacian square)
and we show the existence of absorbing sets. This fact implies that the system
(l = 2) possesses a global attractor Aε.

Finally, we obtain scale-invariant estimates on the Hausdorff and fractal dimen-
sions of the global attractor Aε independent of ε in terms of the Landau–Lifschitz
theory [22] of the number of degrees of freedom in turbulent flow [11, 32]. In
fact such an estimate that improves on the Landau-Lifschitz estimates has already
been done by Avrin [1] in which hyperviscous terms are spectrally added to the
Navier-Stokes equations.

Thus we recover the improvement on the cubic power; i.e., get a bound propor-
tional to G

p
2 for p < 3. The latter should be a possibility, as the attractor results

in [1] were not intended to be optimal in this direction. We would then represent
an overlapping result that is new as far as we know, although readers familiar with
the attractor techniques used may anticipate that such a result is possible in the
hyperviscous case given the existing results in [1] and the expected improvement in
the Sobolev-space estimates in the fixed uniform hyperviscous case at hand.

In Section 2, we present the relevant mathematical framework for the paper. In
Section 3, we show the convergence of the system (1.1) to the conventional Navier–
Stokes equations. In Section 4, we consider the hyperviscous system (l = 2), we
show the existence of a global attractor. In Section 5, we estimate the dimension
of the attractor. Finally, we provide in Section 6, explicit upper bounds for the
dimension of the global attractor of the modified Navier–Stokes in terms of the
relevant physical parameters.

2. Notation and preliminaries

In this section we introduce notations and the definitions of standard functional
spaces that will be used throughout the paper. We denote by Hm(Ω), the Sobolev
space of L-periodic functions. These spaces are endowed with the inner product

(u, v) =
∑
|β|≤m

(Dβu, Dβv)L2(Ω)
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and the norm
‖u‖m =

∑
|β|≤m

(‖Dβu‖2
L2(Ω))

1/2.

H−m(Ω) Denote the dual space of Hm(Ω).
We denote by Ḣm(Ω) the subspace of Hm(Ω) with, zero average

Ḣm(Ω) = {u ∈ Hm(Ω);
∫

Ω

u(x)dx = 0}.

For m = 0, we have Ḣm(Ω) = L̇2(Ω).
We introduce the following solenoidal subspaces Vs, s ∈ R+ which are important

to our analysis

V0(Ω) = {u ∈ L̇2(Ω) : div u = 0, u.n
∣∣
Σi

= −u.n
∣∣
Σi+3

, i = 1, 2, 3};

V1(Ω) = {u ∈ Ḣ1(Ω) : div u = 0, γ0u
∣∣
Σi

= γ0u
∣∣
Σi+3

, i = 1, 2, 3};

V2(Ω) = {u ∈ Ḣ2(Ω) : div u = 0, γ0u
∣∣
Σi

= γ0u
∣∣
Σi+3

,

γ1u
∣∣
Σi

= −γ1u
∣∣
Σi+3

, i = 1, 2, 3};

see [32, Chapter III, Section 2]. We refer the reader to Temam [33] for details on
these spaces. Here the faces of Ω are numbered as

Σi = ∂Ω ∩ {xi = 0} and Σi+3 = ∂Ω ∩ {xi = L}, i = 1, 2, 3.

Here γ0, γ1 are the trace operators and n is the unit outward normal on ∂Ω.
• The space V0 is endowed with the inner product (u, v)L2(Ω) and norm ‖u‖ =

(u, u)1/2
L2(Ω).

• V1 Is the Hilbert space with the norm ‖u‖1 = ‖u‖V1 . The norm induced by
Ḣ1(Ω) and the norm ‖∇u‖are equivalent in V1.
• V2 Is the Hilbert space with the norm ‖u‖2 = ‖u‖V2 . In V2 the norm induced

by Ḣ2(Ω) is equivalent to the norm ‖∆u‖.
Let V ′

s denote the dual space of Vs. We denote by A the Stokes operator

Au = −∆u for u ∈ D(A).

We recall that the operator A is a closed positive self-adjoint unbounded operator,
with D(A) = {u ∈ V0, Au ∈ V0}. We have in fact,

D(A) = Ḣ2(Ω) ∩ V0 = V2.

The eigenvalues of A are {λj}j=∞
j=1 , 0 < λ1 ≤ λ2 ≤ . . . and the corresponding

orthonormal set of eigenfunctions {wj}j=∞
j=1 is complete in V0

Awj = λjwj , wj ∈ D(A1).

The spectral theory of A allows us to define the powers Al of A for l ≥ 1, Al is an
unbounded self-adjoint operator in V0 with a domain D(Al) dense in V2 ⊂ V0. We
set here

Alu = (−∆)lu for u ∈ D(Al) = V2l ∩ V0.

The space D(Al) is endowed with the scalar product and the norm

(u, v)D(Al) = (Alu, Alv), ‖u‖D(Al) = {(u, u)D(Al)}1/2.
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Let us now define the trilinear form b(·, ·, ·) associated with the inertia terms

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx.

The continuity property of the trilinear form enables us to define (using Riesz
representation Theorem) a bilinear continuous operator B(u, v); V2 × V2 → V ′

2 will
be defined by

〈B(u, v), w〉 = b(u, v, w), ∀w ∈ V2. (2.1)

Recall that for u satisfying ∇.u = 0, we have

b(u, u, u) = 0, b(u, v, w) = −b(u, w, v). (2.2)

Hereafter, ci for i ∈ N, will denote a dimensionless scale invariant positive constant
which might depend on the shape of the domain. Similarly, the trilinear form
b(u, v, w) satisfies the well-known inequalities (see, for instance, [30, Lemma 61.1]
and [8, 33])

|b(u, v, u)| ≤ c1‖u‖1/2‖u‖3/2
1 ‖v‖1 for all u, v ∈ V. (2.3)

We recall some well known inequalities that we will be using in what follows.
The Ladyzhenskaya inequality (cf.[19]) in R3

‖u‖Lθ(Ω) ≤ c2‖u‖
6−θ
2θ

L2(Ω)‖u‖
3(θ−2)

2θ

H1(Ω) (2.4)

for every u ∈ H1(Ω), 2 ≤ θ ≤ 6.
Agmon inequality (see, e.g., [8])

‖u‖∞ ≤ c3‖u‖1/2
1 ‖Au‖1/2 for all u ∈ V2 (2.5)

Young’s inequality

ab ≤ σ
p ap + 1

qσ
q
p
bq, a, b, σ > 0, p > 1, q =

p

p− 1
. (2.6)

Poincaré inequality

λ1‖u‖2 ≤ ‖A1/2u‖2 for all u ∈ V. (2.7)

To prove uniform bounds on different norms we use the uniform Gronwall Lemma;
for a proof see [32, Lemma III 1.1].

Lemma 2.1 (The Uniform Gronwall Lemma). Let g, h, y be three positive locally
integrable functions on (t0, +∞) which satisfy

dy

dt
≤ gy + h for t ≥ t0,∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3 for t ≥ t0,

where a1, a2, a3 are positive constants. Then

y(t + r) ≤ (
a3

r
+ a2) exp(a1) for t ≥ t0.

Denoting by G the dimensionless Grashoff number [10], this number measures
the relative strength of the forcing and viscosity.
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3. Strong convergence for the hyperviscous system

In this Section, we give a new Theorem which ensures the strong convergence of
the solutions of the system (1.1) to the corresponding solutions of the Navier–Stokes
equations for d ≤ 4. This result can extend to each domain Ω with one finite size.
Moreover, we show that uε ∈ C(0, T ;V0).

Using the operators defined above, we can write the modified system (1.1) in the
evolution form

duε

dt
+ εAluε + νAuε + B(uε, uε) = f(x), in Ω× (0,∞) (3.1)

uε0(x) = uε0 , in Ω. (3.2)

The existence and uniqueness results for initial value problem (1.1) can be found
in [25], [26, Chap.1, Remarque 6.11]. The following theorem collects the main result
in this work

Theorem 3.1. For l ≥ (d + 2)/4, d is the space dimension, for ε > 0 fixed,
f ∈ L2(0, T ;V ′

0) and uε0 ∈ V0 be given. There exists a unique weak solution of
(1.1) which satisfies

uε ∈ L2(0, T ;Vl) ∩ L∞(0, T ;V0), ∀T > 0.

Note that the conventional Navier-Stokes system can be written in the evolution
form

du

dt
+ νAu + B̂(u, u) = f(x) in Ω× (0,∞) (3.3)

u(0) = u0 in Ω. (3.4)

Theorem 3.2. For d ≤ 4, for f ∈ L2(0, T ;V0) and u0 ∈ V0 be given. There exists
a weak solution of (3.3)-(3.4) which satisfies u ∈ L∞(0, T ;V0) ∩ L2(0, T ;V1), for
T > 0. For d = 2, u is unique (Lions [25]).

We will establish various estimates uniform in ε for the solutions of the modified
Navier Stokes. These bounds will be used to establish the limit of these solutions
to the conventional Navier Stokes equations.

Proposition 3.3. For d ≤ 4 and for ε > 0 fixed, f ∈ L2(0, T ;V0) and uε0 ∈ V0.
The weak solution uε(t) of the modified Navier-Stokes equations satisfy

(i) uε is uniformly bounded in L∞(0, T ;V0),
(ii) uε is uniformly bounded in L2(0, T ;V1).

We need the following Lemma proved in Temam [33, Lemma 4.1.ChIII,Sec4].

Lemma 3.4. The form b is trilinear continuous on V × V × Vs if s ≥ d/2 and

‖b(u, v, w)‖ ≤ c4‖u‖‖v‖1‖w‖s.

Applying Lemma 3.4, we obtain the following result.

Lemma 3.5. Let uε(t) be a weak solution of the modified Navier-Stokes system.
Then B(uε) belongs to L2(0, T ;V ′

l ) for l ≥ d/2.

Proof. By the definition of the operator B and the above Lemma, we obtain

|〈B(u(t), v)〉| = |b(u(t), u(t), v)| ≤ c4‖u(t)‖‖u(t)‖1‖v‖V ′
l
, ∀v ∈ Vl.
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Thus,
‖B(u(t))‖V ′

l
≤ c4‖u(t)‖‖u(t)‖1 for 0 ≤ t ≤ T.

�

Lemma 3.6. If f ∈ L2(0, T ;V ′
1), then, for any solution uε(t) of problem (1.1) the

time derivative duε

dt is uniformly bounded in L2(0, T ;V ′
l ).

Proof. Due to Lemma 3.5 B(uε) belongs to L2(0, T ;V ′
l ), since f − εAluε − νAuε

belongs to L2(0, T ;V ′
l ), this implies that duε

dt belongs to L2(0, T ;V ′
l ). �

Lemma 3.7. The function uε is almost everywhere equal to a continuous function
from [0, T ] to the space V0.

Proof. Since uε ∈ L2(0, T ;V1) ∩ L∞(0, T ;V0) and duε

dt ∈ L2(0, T ;V ′
l ), the weak

continuity in V0 is a direct consequence of [33, Lemma 1.4.ChIII,Sec1].
Similarly, it follows that uε(0) converges to u(0) in V0, and since uε0 converges

to u0 in V ′
l , we conclude that u(0) = u0. �

Now we prove the strong convergence. It follows from (ii) of Proposition 3.3 and
from Lemma 3.6, that

uεn ∈ X ={uεn ∈ L2(0, T ;V1),
duεn

dt
∈ L2(0, T ;V ′

l )}

with bounds independent of εn. Hence (i) uεn → u in L2(0, T ;Vl) weakly; and (ii)
duεn

dt → du
dt in L2(0, T ;V ′

l ) weakly; These two properties allow us to establish the
strong convergence result.

The proof of the following theorem can be found in Temam [33, Theorem 2.1,
Chapter III, Sec 2].

Theorem 3.8. The injection of X = {u ∈ L2(0, T ;V1), duε

dt ∈ L2(0, T ;V ′
l )} into

Y = {u ∈ L2(0, T ;V0)} is compact.

By virtue of the above estimates and the compactness Theorem 3.8. We can now
state our first result.

Theorem 3.9. For l ≥ sup(d
2 , d+2

4 ) and for d ≤ 4, the weak solution uε of the
modified Navier-Stokes equations (1.1) given by Theorem 3.1 converges strongly in
L2(0, T ;V0) as ε → 0 to u the weak solution of the system (3.1)-(3.2).

Proof. Theorem 3.1 and Lemma 3.4 are satisfied for l ≥ sup(d
2 , d+2

4 ). We use
part ii) of Proposition 3.3 and Lemma 3.6 we can deduce that the weak solutions
uεn

∈ X ={uεn
∈ L2(0, T ;V1),

duεn

dt ∈ L2(0, T ;V ′
l )}. Hence, the compactness

Theorem 3.8 implies the strong convergence in L2(0, T ;V0). �

The following proposition is a consequence of Proposition 3.3.

Proposition 3.10. For all w ∈ L2(0, T ;V1), ∀dw
dt ∈ L2(0, T ;V ′

1)

(a) limn→∞
∫ T

0
(duεn (t)

dt , w)dt =
∫ T

0
(du(t)

dt , w(t))dt,
(b) limn→∞

∫ T

0
(∇uεn(t),∇w(t))dt =

∫ T

0
(∇u(t),∇w(t))dt,

(c) limn→∞
∫ T

0
b(uεn(t), uεn(t), w(t))dt =

∫ T

0
b(u(t), u(t), w(t))dt.
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Let us now establish the limit of the equations (3.1) as εn → 0. Taking the inner
product of (3.1) with a test function ϕ ∈ D(0, T ;D(Al/2)) then integrate by parts
and using the convergence Proposition 3.10 we can pass to the limit as εn → 0, we
get −

∫ T

0
(u, ϕ′)dt + ν

∫ T

0
(∇u,∇ϕ)dt +

∫ T

0
b(u, u, ϕ)dt =

∫ T

0
〈f, ϕ〉dt.

Here the term εn

∫ T

0
(Al/2uεn(t), Al/2ϕ(t))dt approaches 0 as εn → 0. Since the

weak solution uεn is in L2(0, T ;V1) with a uniform bound in εn and we obtain

εn

∫ T

0

|(Al/2uεn
, Al/2ϕ)|dt ≤ εn

∫ T

0

|(uεn
, Alϕ)|dt ≤ cεn.

Since u ∈ L2(0, T ;V1) ∩ L∞(0, T ;V0), we can conclude that u is indeed the weak
solution for the conventional Navier-Stokes equations.

4. The hyperviscous Navier-Stokes system and attractors

Now, we consider modifications of the 3D Navier-Stokes system by adding a
fourth order artificial viscosity term (Laplacian square) depending on a small pa-
rameter ε to the conventional system.

duε

dt
+ εA2uε + νAuε + B(uε, uε) = f(x), in Ω× (0,∞)

div uε = 0, in Ω× (0,∞), uε(x, 0) = uε0(x) in Ω,

p(x + Lei, t) = p(x, t), u(x + Lei, t) = u(x, t) i = 1, 2, 3. t ∈ (0,∞)

(4.1)

where Ω = (0, L)3. In this section we will show the existence of the compact global
attractor Aε associated with the semigroup Sε(t) generated by the problem (4.1).
For the theory of global attractors see [2, 8, 14, 18, 27, 30, 32].

For ε = 0 weak solutions of problem are known to exist by a basic result by
Leray from 1934 [24], only the uniqueness of weak solutions remains as an open
problem. Then the known theory of global attractors of infinite dimensional dy-
namical systems is not applicable to the 3D Navier–Stokes system.

The theory of trajectory attractors for evolution partial differential equations was
developed in [30], which the uniqueness theorem of solutions of the corresponding
initial-value problem is not proved yet, e.g. for the 3D Navier–Stokes system (see,
for instance,[14, 30]). Such trajectory attractor is a classical global attractor but
in the space of weak solutions.

The problem of upper semicontinuity of global attractors for the 2D with periodic
boundary conditions was discussed by Yuh-Roung Ou and S. S. Sritharan in [28].
For related results which use the theory has been introduced by Foias, Sell, and
Temam in [12, 32] to show that the system (1.1) possesses an inertial manifold (see
[1, 29, 32]).

The existence and uniqueness results for initial value problem (4.1) are conse-
quence of Theorem 3.9 for l = 2 and d = 3.

Theorem 4.1. Let Ω ⊂ R3, and let f ∈ L2(0, T ;V ′
2) and uε0 ∈ V0 be given. Then

there exists a unique weak solution of (4.1) which satisfies uε ∈ C([0, T ];V0) ∩
L2(0, T ;V2), for all T > 0. Then as ε → 0, the solution uε converges to the weak
solution of the Navier-Stokes equations.

Now, we show that the semigroup Sε(t) has an absorbing ball in V0 and an
absorbing ball in V1. Then we show that Sε(t) admits a compact attractor in V0

for each ε ≥ 0.
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We take the inner product of (4.1) with uε, we obtain the energy equality

d

dt
‖uε‖2 + 2ε‖Auε‖2 + 2ν‖∇uε‖2 = 2(f, uε).

Here we have used the fact that b(uε, uε, uε) = 0. By applying Young’s inequality
and the Poincaré Lemma, we get

d

dt
‖uε‖2 + 2ε‖Auε‖2 + ν‖∇uε‖2 ≤ ‖f‖2

νλ1
, (4.2)

we drop the term 2ε‖Auε‖2, we obtain

d

dt
‖uε‖2 + νλ1‖uε‖2 ≤ ‖f‖2

νλ1
,

by integrating the above inequality from 0 to t,we get

‖uε(t)‖2 ≤ ‖uε0‖2e−νλ1t + ρ2
0(1− e−νλ1t), t > 0, (4.3)

where ρ0 = 1
νλ1

‖f‖. Hence for any ball BR0 = {uε0 ∈ V0; ‖uε0‖ ≤ R0} there is a
ball B(0, δ0) in V0 centered at origin with radius δ0 > ρ0 (R0 > δ0) such that

Sε(t)BR0 ⊂ Br0 for t ≥ t0(BR0) =
1

νλ1
log

R2
0 − ρ2

0

δ2
0 − ρ2

0

. (4.4)

The ball Bδ0 is said to be absorbing and invariant under the action of Sε(t).
Taking the limit in (4.3) we obtain

lim sup
t→∞

‖uε(t)‖ ≤ ρ0. (4.5)

We integrate (4.2) from t to t + r, we obtain for uε0 ∈ BR0 ,∫ t+r

t

‖uε‖2
1ds ≤ 1

ν
(
r‖f‖2

νλ1
+ ‖uε(t)‖2),∀r > 0, ∀t ≥ t0(BR0). (4.6)

With the use of (4.5) we conclude that

lim sup
t→∞

∫ t+r

t

‖uε‖2
1ds ≤ r

ν2λ1
‖f‖2 +

‖f‖2

ν3λ2
1

, (4.7)

from which we obtain

lim sup
t→∞

1
t

∫ t

0

‖uε‖2
1ds ≤ ‖f‖2

ν2λ1
, (4.8)

this verifies that the left-hand side is finite.
To show that the semigroup Sε(t) has an absorbing set in V1, we consider the

strong solutions and take the inner product of (4.1) with Auε, we obtain

1
2

d

dt
‖A1/2uε‖2 + ε‖A3/2uε‖2 + ν‖Auε‖2 = −b(uε, uε, Auε) + (f,Auε). (4.9)

By applying Young’s inequality, we obtain

(f,Auε) ≤ ‖f‖‖Auε‖ ≤
ν

4
‖Auε‖2 +

1
ν
‖f‖2.
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By using the Agmon’s inequality (2.5) and Young’s inequality we can estimate the
last term in the left-hand side of (4.9) as follows

|b(uε, uε, Auε)| ≤ ‖uε‖∞‖uε‖1‖Auε‖

≤ c4‖uε‖3/2
1 ‖Auε‖3/2

≤ ν

4
‖Auε‖2 + c4‖uε‖6

1.

Hence we obtain from (4.9)

d

dt
‖uε‖2

1 + 2ε‖A3/2uε‖2 + ν‖Auε‖2 ≤ 2
ν
‖f‖2 + 2c5‖uε‖6

1.

Dropping the positive terms associated with ε we have

d

dt
‖uε‖2

1 + ν‖A1uε‖2 ≤ 2‖f‖2

ν
+ 2c4‖uε‖6

1 (4.10)

we apply the uniform Gronwall Lemma to (4.10) with

g = 2c4‖uε‖4
1, h =

2‖f‖2

ν
, y = ‖uε‖2

1.

Thanks to (4.3)-(4.7) we estimate the quantities a1, a2, a3 in Gronwall Lemma by

a1 = 2c4a
2
3, a2 =

2r‖f‖2

ν
, a3 =

r‖f‖2

ν2λ1
+
‖f‖2

ν3λ2
1

and we obtain

‖uε(t)‖2
1 ≤ (

a3

r
+ a2) exp(a1) = R2

1 for t ≥ t0, t0 as in (4.4).

Hence, for any ball BR1 , there exists a ball Bδ1 , in V1 centered at origin with radius
R1 > δ1 > ρ1 such that

Sε(t)BR1 ⊂ Bδ1 for t ≥ t1(BR0) = t0(BR0) + 1 +
1

νλ1
log

R2
1 − ρ2

1

δ2
1 − ρ2

1

.

The ball Bδ1 is said to be absorbing and invariant for the semigroup Sε(t).
Furthermore, if B is any bounded set of V0, then Sε(t)B ⊂ Bδ1 for t ≥ t1(B,R0),

this shows the existence of an absorbing set in V1. Since the embedding of V1 in V0

is compact, we deduce that Sε(t) maps a bounded set in V0 into a compact set in
V0. In addition, the operators Sε(t) are uniformly compact for t ≥ t1(B,R0). That
is,

∪t≥t1Sε(t, 0, BR0)

is relatively compact in V0.
Due to a the standard procedure (cf., for example, [32, Theorem I.1.1] for details),

one can prove that there is a global compact attractor Aε for the operators Sε(t)
for ε ≥ 0. Note that the global attractor Aε must be contained in the absorbing
balls V0 and V1

Aε = ∩t1≥0∪t≥t1Bδ1(t) ⊂ Bδ0 ∩Bδ1 . (4.11)

Notice that all the above bounds are independent of ε.
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5. Estimates of Dimensions of the Global Attractor

Our aim in this section is to study the finite dimensionality of the global attrac-
tor. In the first part we will prove the differentiability property of Sε(t) and in the
second part we will provide estimates of the fractal and Hausdorff dimensions of
their global attractors Aε.

Using the trace formula [32, Chapters V and VI], we estimate the Hausdorff and
the fractal dimensions of the global attractor Aε in V .

For a solution uε(t) = Sε(t)uε0 , t ≥ 0, lying on the attractor uε0 ∈ Aε, we see
from (4.1) that the linearized flow around uε is given by the equation

U ′
ε + εA2Uε + νAUε + B(uε, Uε) + B(Uε, uε) = 0, in V ′

Uε(0) = ξ, in V.
(5.1)

We show the differentiability of the semigroup Sε with respect to the initial data
in the space V .

Theorem 5.1. For any t > 0, the function uε0 → uε(t) = Sε(t)uε0 is Fréchet
differentiable on the attractor Aε. Its differential is the linear operator

D(Sε(t)uε0) = L(t, uε0) : ξ ∈ V → Uε(t) ∈ V , t ∈ [0, T ],

where Uε(t) is the solution of (5.1).

Proof. Let

η(t) = vε(t)− uε(t)− Uε(t), Uε(0) = ξ = vε0 − uε0 .

Clearly, η satisfies

ηt + εA2η + νAη + B(η, vε) + B(vε, η)−B(wε, wε) = 0, η(0) = 0

where wε = vε−uε. Taking the inner product of the last equation with η and using
the identity B(vε, η, η) = 0 we obtain

d‖η‖2

dt
+ 2ε‖Aη‖2 + 2ν‖η‖2

1 = 2b(η, vε, η)− 2b(wε, wε, η). (5.2)

By (2.3) the first term in the right-hand side of (5.2) has the estimate

|2b(η, vε, η)| ≤ 2c1‖η‖1/2‖η‖
3
2
1 ‖vε‖1

≤ 2c1R1‖η‖1/2‖η‖3/2
1

≤ c4
1R

4
1

ν3
‖η‖2 +

3ν

4
‖η‖2

1.

Employing the inequalities (2.3) we estimate the second term in the right hand side
of (5.2) as follows

2b(wε, wε, η) ≤ 2c2‖η‖1‖wε‖2
1 ≤

2c2
2

ν
‖wε‖4

1 +
ν

2
‖η‖2

1.

Hence, we obtain from (5.2)

d‖η‖2

dt
+ 2ε‖Aη‖2 +

3ν

4
‖η‖2

1 ≤
c4
1R

4
1

ν3
‖η‖2 +

2c2
1

ν
‖wε‖4

1

we drop the positive terms 2ε‖Aη‖2 and 3ν
4 ‖η‖

2
1 we get

d‖η‖2

dt
≤ c4

1R
4
1

ν3
‖η‖2 +

2c2
1

ν
‖wε‖4

1. (5.3)
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From the classical Gronwall Lemma (see [33]), (5.3) gives

‖η‖2 ≤ 2c2
1

ν

∫ t

0

‖wε‖4
1 exp(

∫ t

s

c4
1R

4
1

ν3
dτ)ds.

Thus

‖η‖2 ≤ Co

∫ t

0

‖wε‖4
1ds, Co =

2c2
1

ν
exp(

Tc4
1R

4
1

ν3
). (5.4)

The difference
wε(t) = vε(t)− uε(t) = Sε(t)vε0 − Sε(t)uε0

satisfies the equation

dwε

dt
+ εA2wε + νAwε + B(wε, vε) + B(vε, wε)−B(wε, wε) = 0,

wε(0) = vε0 − uε0 = wε0 .

Taking the inner product of the last equation with wε, we obtain

d

dt
‖wε‖2 + 2ε‖Awε‖2 + 2ν‖wε‖2

1 = 2b(wε, wε, vε). (5.5)

By using inequalities (2.3), and Young’s inequality we obtain

|2b(wε, vε, wε)| ≤ 2c1‖vε‖‖wε‖3/2
1 ‖wε‖1/2 ≤ c4

1R
4

ν3
‖wε‖2 +

3ν

4
‖wε‖2

1.

Substituting the above result into (5.5), we obtain

d

dt
‖wε‖2 + 2ε‖Awε‖2 +

5ν

4
‖wε‖2

1 ≤
c4
1R

4

ν3
‖wε‖2. (5.6)

We drop the positive terms 2ε‖Awε‖2 and 5ν
4 ‖wε‖2

1 to obtain the following differ-
ential inequality

d

dt
‖wε‖2 ≤ c4

1R
4

ν3
‖wε‖2. (5.7)

Using the classical Gronwall Lemma we deduce from (5.7) that

‖wε‖2 ≤ ‖wε(0)‖2 exp(
Tc4

1R
4

ν3
). (5.8)

From (5.8) we deduce that∫ t

0

‖uε(t)− vε(t)‖2dt ≤ C1‖uε0 − vε0‖2, C1 = T exp(
Tc4

1R
4

ν3
), (5.9)

with (5.4) we conclude that

‖η‖2 ≤ CoC
2
1‖uε0 − vε0‖4,

then we deduce from (5.4) and (5.9) that

‖η‖2 ≤ C2‖wε(0)‖4, where C2 =
2c2

1T
2

ν
exp(

Tc4
1(2R4 + R4

1)
ν3

) (5.10)

this shows that
‖vε(t)− uε(t)− Uε(t)‖2

‖vε0 − uε0‖2
≤ C2‖vε0 − uε0‖2 → 0 as ‖vε0 − uε0‖1 → 0 on Aε.

The differentiability of Sε(t) is proved. �
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From Theorem 5.1 the function Sε(t) is Fréchet differentiable on Aε for t > 0.
For ξ ∈ V0, there exists a unique solution Uε of (5.1) satisfies

Uε ∈ C([0, T ];V0) ∩ L2(0, T ;V2) ∀T > 0.

With the differentiability ensured in Theorem 4.1 we can then define a linear
map L(t;uε0) : ξ ∈ V0 → Uε(t) ∈ V0 where Uε is the solution of (5.1).

We can apply the trace formula (see [8] and [32, Section V. 3]) to find a bound
on the dimension of the global attractor Aε. We consider the trace TrF ′(uε) of the
linear operator F ′(uε) and for m ∈ N, the number

qm = lim sup
t→∞

sup
uε0∈Aε

sup
ξ1∈V0, |ξ1|≤1

i=1,...,m

1
t

∫ t

0

TrF ′(Sε(τ)uε0) ◦Qm(τ)dτ

where Qm(τ) = Qm(τ, uε0 ; ξ1, . . . , ξm) is the orthogonal projector in V0 onto the
space spanned by U1

ε (τ), . . . , Um
ε (τ). where U j

ε (τ) = L(τ, uε0).ξj , j = 1, . . . ,m,
t ≥ 0, are m solutions of (5.1), corresponding to ξ = ξ1, . . . , ξm ∈ V1. Let
ϕj(τ), j = 1, . . . ,m, τ ≥ 0, be an orthonormal basis of for Q̃m(τ)V0 =span
{U1

ε (τ), . . . , Um
ε (τ)}, ϕj(t) ∈ V1 for j = 1, . . . ,m, since U1

ε (τ), . . . , Um
ε (τ) ∈ V1,

τ ∈ R+.
From the general result in [32, Section V.3.41], we have that if qm < 0 for

some m ∈ N then the global attractor has finite Hausdorff and fractal dimensions
estimated respectively as

dimH(Aε) ≤ m, (5.11)

dimF (Aε) ≤ m(1 + max
1≤j≤m−1

(qj)+
‖qm‖

). (5.12)

Then we have

TrF ′(Sε(τ)uε0) ◦Qm(τ) =
∞∑

j=1

(TrF ′(uε(τ)) ◦Qm(τ)ϕj(τ), ϕj(τ))

=
m∑

j=1

(F ′(uε(τ))ϕj(τ), ϕj(τ)),

Recall that (·, ·) denotes the scalar product in V0, we write using (2.1) and (2.2),

Tr(F ′(uε(τ))ϕj(τ), ϕj(τ))

=
m∑

j=1

(−εA2ϕj − νAϕj −B(ϕj , uε)−B(uε, ϕj), ϕj)

=
m∑

j=1

(−ε‖Aϕj‖2 − ν‖A 1
2 ϕj‖2 − b(uε, ϕj , ϕj)− b(ϕj , uε, ϕj));

thus

Tr(F ′(uε(τ))ϕj(τ), ϕj(τ)) =
m∑

j=1

(−ε‖ϕj‖2
2 − ν‖ϕj‖2

1 − b(ϕj , uε, ϕj)). (5.13)

We estimate the nonlinear term as follows

|
m∑

j=1

b(ϕj , u, ϕj)| = |
m∑

j=1

∫
Ω

3∑
k,l=1

ϕjk
∂u

l

∂xk
(x)ϕjldx|



EJDE-2010/110 EFFECT OF HYPERVISCOSITY ON TURBULENCE 13

whence for almost every x ∈ Ω we have

|
m∑

j=1

3∑
k,l=1

ϕjk
∂u

l

∂xk
(x)ϕjldx| ≤ ‖u‖1‖ρ‖

where

‖u(x)‖1 = (
3∑

k,l=1

‖Diuk(x)‖2)
1
2 and ρ(x) =

m∑
j=1

3∑
i=1

(ϕji(x))2.

Therefore, ∣∣ m∑
j=1

b(ϕj , u, ϕj)
∣∣ ≤ ∫

Ω

ρ(x)‖u(x)‖1dx (5.14)

with the Schwarz inequality

|
m∑

j=1

b(ϕj , u, ϕj)| ≤ ‖u(x)‖1‖ρ(x)‖. (5.15)

Applying the weighted Sobolev-Lieb-Thirring inequality [32, Theorem A.3.1], there
exists c5 independent of the family ϕj , m and of ε such that

‖ρ‖2 ≤ c5

m∑
j=1

‖ϕj(x)‖2
1. (5.16)

Insert (5.16) into (5.15) to find

|
m∑

j=1

b(ϕj , u, ϕj)| ≤ ‖u‖1(c5

m∑
j=1

‖ϕj(x)‖2
1)

1/2
,

using the Young inequality we obtain

|
m∑

j=1

b(ϕj , u, ϕj)| ≤
ν

2

m∑
j=1

‖ϕj(x)‖2
1 +

c5

2ν
‖u‖2

1.

By using the Sobolev embedding Theorem V2 ⊂ V1, we have

c6‖ϕj‖2
1 ≤ ‖ϕj(x)‖2 (5.17)

for an absolute constant c6. Using the inequalities above (5.13) gives

TrF ′(uε(τ)) ◦Qm(τ) ≤ −εc6

m∑
j=1

‖ϕj‖2
1 −

ν

2

m∑
j=1

‖ϕj(x)‖2
1 +

c5

2ν
‖u‖2

1.

We now use the estimate for ρ. In fact it is λm ∼ cλ1m
2/3 in 3D, which can be

found for example in [11] or [32, Lemma VI.2.1], there exists a constant c7 such
that

m∑
j=1

‖ϕj(x)‖2
1 ≥ λ1 + · · ·+ λm ≥ c7λ1m

5/3,

use (5.17) to estimate TrF ′(uε(τ)) ◦Qm(τ) as follows

TrF ′(uε(τ)) ◦Qm(τ) ≤ −(εc7 +
ν

2
)c7λ1m

5/3 +
c5

2ν
‖uε‖2

1. (5.18)
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Kolmogorov’s mean rate of dissipation of energy in turbulent flow (see e.g. [11, 16,
32, VI.(3.20)]) is defined as

ε = λ
3/2
1 ν lim sup

t→∞
sup

uε0∈Aε

1
t

∫ t

0

‖uε(τ)‖2
1dτ (5.19)

the maximal mean rate of dissipation of energy on the attractor, which is finite
thanks to (4.8). Hence

1
t

∫ t

0

Tr(F ′(Sε(τ)uε0) ◦Qm(τ))dτ ≤ −(εc7 +
ν

2
)c7λ1m

5
3 +

c5

2ν

1
t

∫ t

0

‖uε(τ)‖2
1dτ.

Using (5.19) we can estimate the quantities qm

qm ≤ −κ1m
5/3 + κ2,

with
κ1 = (εc6 +

ν

2
)c7λ1 and κ2 =

c5

2ν2λ
3/2
1

ε.

Therefore, if m′ ∈ N is defined by

m′ − 1 < (
2κ2

κ1
)3/5 = (

2c5

ν2λ
5/2
1 (2εc6 + ν)c7

)3/5ε3/5 ≤ m′,

then qm′ ≤ 0, setting cε
8 = ( 2c5

ν2λ
5/2
1 (2εc6+ν)c7

)3/5so that from (5.11)-(5.12) this m′ is

an upper bound for the dimension of the global attractor,

dimH(Aε) ≤ dimF (Aε) ≤ cε
8ε

3/5.

Using (4.8) we can estimate the energy dissipation flux ε by

ε ≤ λ
1/2
1 ‖f‖2

ν
. (5.20)

To make the dimension estimate more explicit, we can estimate the energy dissipa-
tion flux ε in terms of G by

ε ≤ λ2
1ν

3G2. (5.21)
Therefore, using (5.21) we prove the following Proposition.

Proposition 5.2. The global attractor Aε of the regularized 3D Navier-Stokes
(4.1), is finite dimensional, in V0 has finite Hausdorff and fractal dimensions, which
can be estimated in terms of the Grashoff number by

dimH(Aε) ≤ dimF (Aε) ≤ c9G
6/5

where c9 = cε
8ν

9/5λ
6/5
1 .

We can estimate cε
8 as follow

cε
8 ≤ (

2c5

ν3λ
5/2
1 c7

)3/5 = c0
8.

Then there exists a constant c10 = c0
8ν

9/5λ
6/5
1 independent of ε. Hence

Theorem 5.3. The Hausdorff and fractal dimensions of the global attractor Aε

of the regularized 3D Navier-Stokes (4.1), dimF (Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c10G
6/5.
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6. Numbers of degrees of freedom in turbulent flows

In this Section, we estimate the effects of hyperviscosity on the turbulent flow.
An argument from the classical theory of turbulence (see, L. Landau and Lifshitz
[22]) suggests that there are finitely many degrees of freedom in turbulent flows.
Heuristic physical arguments are used to justify this assertion and to provide an
estimate for this number of degrees of freedom by dividing a typical length scale
of the flow, l0 = λ

−1/2
1 , by the Kolmogorov dissipation length scale lε; i.e., lε = ν3

ε
where ε is Kolmogorov’s mean rate of dissipation of energy in turbulent flow and
taking the third power in 3D.

We will express our primary attractor results in terms of the Kolmogorov length-
scale lε and the Landau-Lifschitz estimates [22] of the number of degrees of freedom
in turbulent flow [11, 32] and we can easily observe such compatibility that exists
between these estimates and the number of degrees of freedom in turbulence (see
also [22]). Such estimates will give us useful information about the capability of
(4.1) to approximate Navier-Stokes equations dynamics. We will show that the
corresponding number of degrees of freedom is proportional to the dimension of the
global attractor.

By Holder’s inequality the right hand side of (5.14) can be estimated as follow∫
Ω

‖u(x)‖1‖ρ(x)‖dx ≤ ‖ρ(x)‖L5/3(Ω)‖A1/2uε(x)‖L5/2(Ω)

≤ (c5

m∑
j=1

‖ϕj‖2
1)

3/5‖A1/2uε(x)‖L5/2(Ω).

By Young’s inequality we obtain∫
Ω

‖u(x)‖1‖ρ(x)‖dx ≤ ν

2

m∑
j=1

‖ϕj‖2
1 +

c5

ν3/2
‖A1/2uε(x)‖5/2

L5/2(Ω)
. (6.1)

Using (5.17), (6.1) we can majorize TrF ′(uε(τ)) ◦ Q̃m(τ) as follows

TrF ′(uε(τ)) ◦ Q̃m(τ)

≤ −εc6

m∑
j=1

‖ϕj(τ)‖2
1 −

ν

2

m∑
j=1

‖ϕj(x)‖2
1 +

c5

ν3/2
‖A1/2uε(x)‖5/2

L5/2(Ω)
.

(6.2)

Note that in the 3D case we have λj ≥ c11L
−2j

2
3 for some positive universal constant

(see, for example [32, Lemma VI 2.1]). Therefore,
m∑

j=1

‖ϕj(x)‖2
1 ≥ λ1 + · · ·+ λm ≥ c12λ1m

5/3. (6.3)

Taking into account (6.2) and (6.7) then yields

TrF ′(uε(τ)) ◦Qm(τ)dτ

≤ −εc6c12λ
2
1m

5/3 − ν

2
c12λ1m

5/3 +
c5

ν3/2
‖A1/2uε(x)‖5/2

L5/2(Ω)
.

≤ (−εc6 −
ν

2
)c12λ1m

5/3 +
c5

ν3/2
‖A1/2uε(x)‖5/2

L5/2(Ω)
.

≤ −(εc6 +
ν

2
)c12λ1m

5/3 +
c5

ν3/2
‖A1/2uε(x)‖5/2

L5/2(Ω)
.
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Thanks to (2.4) with θ = 5/2, we have

‖A1/2uε(x)‖L5/2(Ω) ≤ c2‖A1/2uε(x)‖1/2‖A1/2uε(x)‖1/5
1

and hence

‖A1/2uε(x)‖5/2

L
5
2 (Ω)

≤ c
5/2
2 ‖A1/2uε(x)‖ 5

4 ‖A1/2uε(x)‖1/2
1 . (6.4)

In fact, the norm ‖A1/2
1 uε‖1 is equivalent to the norm ‖uε‖2 in V2. This means

‖Auε(x)‖d2 ≤ ‖A1/2uε(x)‖1 ≤ d1‖Auε(x)‖. (6.5)

Notice that d1 and d2 do not depend on ε. Then, from the above and using Hölder’s
inequality we obtain

lim sup
t→∞

sup
uε0∈Aε

1
t

∫ t

0

‖A1/2uε(τ, x)‖5/2

L5/2(Ω)
dτ

≤ C3 lim sup
t→∞

sup
uε0∈Aε

1
t

∫ t

0

‖A 1
2 uε(x)‖5/4dτ

(6.6)

where C3 = c
5/2
2 d1M

1/2 and

M = sup
t∈[0,T ]

sup
uε0∈Aε∩D(A)

‖Auε(x)‖ (6.7)

it is clear that M is finite.
On the other hand, using (5.19) we have

sup
uε0∈Aε

(lim sup
t→∞

1
t

∫ t

0

‖A1/2uε(x)‖5/4dτ)

≤ sup
uε0∈Aε

(lim sup
t→∞

1
t

∫ t

0

‖A1/2uε(x)‖2dτ)5/8 ≤
( ε

λ
3/2
1 ν

)5/8
.

(6.8)

For uε0 ∈ Aε, we can estimate the quantities qm(t), qm

qm = lim sup
t→∞

qm(t) ≤ −κ1m
5/3 + κ2,

where
κ1 = (εc6 +

ν

2
)c12λ1, κ2 = C3

c5

ν3/2
(

ε

λ
3/2
1 ν

)5/8.

Therefore, if m′ ∈ N is defined by

m′ − 1 <
(2κ2

κ1

)3/5 =
( 4C3c5

(2εc6 + ν)λ
31
16
1 ν

17
8 c12

)3/5

ε3/8 < m′, (6.9)

Setting lε = (ν3

ε )1/4 the dissipation length scale, and l0 = λ
−1/2
1 the macroscopical

length by setting. Then we can rewrite (6.9) in the form

m′ − 1 < c13

( l0
lε

)3/2
< m′, (6.10)

where

c13 =
( 4C3c5

λ
11
16
1 ν

17
8 c12

)3/5
cε
14, cε

14 =
( 1
2εc6 + ν

)3/5
. (6.11)

Thus, we have proved the following Proposition
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Proposition 6.1. The Hausdorff and fractal dimensions of the global attractor Aε

of the regularized 3D Navier-Stokes (4.1), dimF (Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c13(
l0
lε

)3/2. (6.12)

The exponent on l0/lε is significantly less than the Landau–Lifschitz predicted
value of 3, less than the results in [9] for the 3D Camassa–Holm equations, or simply
NS-α model and less than the Avrin exponent (for α = l = 2) [1, Theorem 1].

This, in a sense, suggests that in the absence of boundary effects (e.g., in the
case of periodic boundary conditions) the modified 3D Navier-Stokes represent,
very well, the averaged equation of motion of turbulent flows.

Since the Grashoff number G = ‖f‖/(ν2λ
3/4
1 ) in 3D, (see e.g. [1, 11, 33]) is an

upper bound for ( l0
lε

)2, expressing the above estimates in terms of G is straightfor-
ward. The above Proposition becomes

Proposition 6.2. The Hausdorff and fractal dimensions of the global attractor Aε

of the regularized 3D Navier-Stokes (4.1), dimF (Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c13G
3/4. (6.13)

Thus we recover the improvement on the cubic power; i.e., get a bound propor-
tional to Gp/2 for p < 3, in (6.13) p = 3/2. This improvement suggesting to very
good agreement with the conventional theory of turbulence.

For α = l = 2, motivated by the Chapman–Enskog expansion, we recover (6.13).
This result can be seen as an improved version of the results announced by Joel
Avrin [1, Theorem 2].

We can estimate (6.12) independent of ε.
From (6.10) we have cε

14 = 1/(2εc6 + ν)3/5 ≤ 1/ν3/5 = c0
14. Then there exists a

constant c15, which is independent of ε, such that

c15 = (
4C3c5

λ
11/16
1 ν25/8c12

)3/5.

The following estimates are independent of ε and with them we finish stating our
main results

Theorem 6.3. The Hausdorff and fractal dimensions of the global attractor Aε

of the regularized 3D Navier-Stokes (4.1), dimF (Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c15(
l0
lε

)3/2.

This upper bound is much smaller than what one would expect for three-di-
mensional models; i.e., (l0/lε)3. This improves significantly on previous bounds
have demonstrated that hyperviscosity can have profound effects on the number
of degree freedom. The modifying effects are well understood, which makes the
use of hyperviscosity an efficient tool for numerical studies and suggests that the
regularized 3D Navier-Stokes has a great potential to become a good sub-gridscale
large-eddy simulation model of turbulence. The results obtained agree very well
with those provided in numerical studies of turbulence; see [1, 9, 13, 15, 21].

The present results explain some fundamental differences between the theory use
instead a hyper-viscous term to approximate Navier-Stokes equations and which
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hyperviscous terms are added spectrally to the standard incompressible Navier-
Stokes equations [1]. It would be interesting to obtain estimates for (1.1) in this
context in 3D and to see how the estimates depend on l for l ≥ 3/2.
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7. Addendum posted on September 27, 2011

The author wants to correct some misprints and present a new proof of the
estimates for the dimension of the attractor, using the Lieb-Thirring inequality.

p5, formula (3.3): Replace B̂ by B.
p5, Lemma 3.5: Define B(u) = B(u, u).
p6, Theorem 3.9: Replace ‘u is the weak solution’ by ‘u is a weak solution’; also

in the last line of Section 3; and in Theorem 4.1.
p6, Theorem 3.9: Replace (3.1)–(3.2) by (3.3)–(3.4);
P9: We can just interpolate,

‖u‖4
H1 ≤ ‖u‖2

H2‖u‖2
L2 , (7.1)

which then gives uε ∈ L4
(
0, T ;H1(Ω)

)
if uε ∈ L2

(
0, T ;H2(Ω)

)
∩ L∞

(
0, T ;L2(Ω)

)
(and gives an explicit estimate on the norm), thus a4 = L4(0, T ;V1(Ω)).

p11, entire page: Replace R by R1.
P15, Section 6: We present a new and rigorous proof for estimates of the dimen-

sions of the attractors using Lieb-Thirring inequality [32, Theorem A4.1].
By Holder’s inequality the right hand side of (5.14) can be estimated as∫

Ω

‖uε(x)‖1ρ(x)dx ≤ ‖ρ(x)‖L7/3(Ω)‖A1/2uε(x)‖L7/4(Ω). (7.2)

Applying Young’s inequality with p = 7/3, q = 7/4, σ = 7ε/(6κ), we obtain∫
Ω

‖uε(x)‖1ρ(x) dx ≤ ε

2κ
‖ρ(x)‖7/3

L7/3(Ω)
+ c5‖A1/2uε(x)‖7/4

L7/4(Ω)
, (7.3)

where c5 = 4
7 ( 7ε

6κ )−3/4. Using the above inequality, we have the estimate

TrF ′(uε(τ)
)
◦ Q̃m(τ) ≤ −ν

m∑
j=1

‖ϕj(x)‖2
1 − ε

m∑
j=1

‖ϕj(τ)‖2
2

+
ε

2κ
‖ρ(x)‖7/3

L7/3(Ω)
+ c5‖A1/2uε(x)‖7/4

L7/4(Ω)
.

(7.4)
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Applying the 3D Lieb-Thirring inequality with m = l as developed in [32, Theorem
A4.1] and using the Sobolev embedding V2 ⊂ V1, we obtain

TrF ′(uε(τ)
)
◦ Q̃m(τ) ≤ −c7

m∑
j=1

‖ϕj(x)‖2
1 + c5‖A1/2uε(x)‖7/4

L7/4(Ω)
, (7.5)

where c7 = ν
2 + ε

2c6
. Therefore,

∑m
j=1 ‖ϕj(x)‖2

1 ≥ c9λ1m
5/3 and we have by Holder’s

inequality

‖A1/2uε(x)‖7/4

L7/4(Ω)
≤ c10‖A1/2uε(x)‖7/4, c10 = |Ω|1/8. (7.6)

Taking into account this inequality, we have

TrF ′(uε(τ)
)
◦Qm(τ)dτ ≤ −c7c9λ1m

5/3 + c5c10‖A1/2uε(x)‖7/4. (7.7)

By Hölder’s inequality,

lim sup
t→∞

sup
uε0∈Aε

1
t

∫ t

0

‖A1/2uε(τ, x)‖7/4dτ

≤ lim sup
t→∞

(
sup

uε0∈Aε

1
t

∫ t

0

‖A1/2uε(τ, x)‖2dτ
)7/8

.

(7.8)

On the other hand, using (5.19) we obtain

lim sup
t→∞

sup
uε0∈Aε

1
t

∫ t

0

‖A1/2uε(τ, x)‖7/4dτ ≤
( ε

λ
3/2
1 ν

)7/8
. (7.9)

For uε0 ∈ Aε, we can estimate the quantities qm(t) and qm:

qm = lim sup
t→∞

qm(t) ≤ −κ1m
5/3 + κ2, (7.10)

where κ1 = c7c9λ1 and
κ2 = c5c10

( ε

λ
3/2
1 ν

)7/8
.

Therefore, if m′ ∈ N is defined by

m′ − 1 <
(2κ2

κ1

)3/5 =
( 2c5c10

c7c9λ
37/16
1 ν7/8

)3/5
ε21/40 < m′, (7.11)

Then we can rewrite (7.11) in the form

m′ − 1 < c11

( l0
lε

)21/10
< m′, c11 =

( 2c5c10

c7c9λ
37/16
1 ν7/8

)3/5(ν63/40)λ21/20
1 . (7.12)

Thus, Proposition 6.1. and Proposition 6.2. can be reformulated as follows.

Proposition 7.1. The Hausdorff and fractal dimensions of the global attractor
Aε of the regularized 3D Navier-Stokes (4.1), dimF Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c11(
l0
lε

)21/10. (7.13)

Proposition 7.2. The Hausdorff and fractal dimensions of the global attractor Aε

of the regularized 3D Navier-Stokes (4.1), dimF (Aε) and dimH(Aε) respectively,
satisfy

dimH(Aε) ≤ dimF (Aε) ≤ c11G
21/20. (7.14)
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Thus we recover the improvement on the cubic power; i.e. get a bound propor-
tional to Gp/2 for p < 3, in (7.14) p = 21/10.

End of addendum.
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