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BOUNDS FOR SOLUTIONS OF NONLINEAR SINGULAR
INTERFACE PROBLEMS ON TIME SCALES USING A

MONOTONE ITERATIVE METHOD

D. K. K. VAMSI, PALLAV KUMAR BARUAH

Abstract. In this article, we give bounds for solutions to initial-value prob-

lems associated with nonlinear singular interface problems. The singular in-

terface problem is described using a pair of dynamic equations on a time scale.
The method of upper and lower solutions intertwined with monotone iterative

technique is used.

1. Introduction

Solving boundary-value problems with different types of singularities has re-
mained a challenge for mathematicians over the ages. While “regular” problems,
those over finite intervals with well-behaved coefficients pose no difficulties, there
are applications wherein either the domain of the problem is not well defined, or
the continuity and/or smoothness of the functions, coefficients involved are not
guaranteed in some parts of the domain, sometimes in the boundary or parts of the
boundary. In all such cases the problem is considered to be a “singular” problem.
The definition of the problem and therefore the description of the solution becomes
a highly difficult task.

In the literature we find a class of interface problems, termed as mixed pair of
equations, discussed in the papers [5], [9]–[13], [19]–[25] where two different differ-
ential equations are defined on two adjacent intervals and the solutions satisfy a
matching condition at the point of interface. These problems are called as match-
ing interface problems. If the boundary is well defined then we call the problem to
be a regular interface problem. These interface problems with singularities in the
domain are always of great interest.

We see that these interface problems for regular case has been discussed in [19]–
[25] and the problem of having singularity at the boundary is discussed in [5]. In
[5], authors discuss an application of the classical Weyl limit criterion to define the
coefficients with well-known Wronskian boundary conditions to tackle the singular-
ity at the boundary for this class of problems. Though this work is specifically for
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Sturm-Liouville problems, it paves a way to study the problem of singularity at the
end boundary points.

From the above we see that the regular interface problems and interface problems
with singularity at the boundary are dealt in detail. But the problem of having
a singularity at the point of interface seems to be less explored. Study of these
problems using classical analytical tools is tedious. We term these problems as
singular interface problems [6]–[8],[16]–[17].

The singularity at the point of interface in the domain of definition of the mixed
pair of equations could be of the following three types satisfying certain matching
conditions at the singular interface.

Interface 1: [a, c] ∪ [σ(c), b] a c σ(c) b

Interface 2: [a, ρ(c)] ∪ [c, b] a ρ(c) c b

Interface 3: [a, ρ(c)] ∪ [σ(c), b] a ρ(c) σ(c) b

To describe the singularities in the domain of definition we take help of the
terminology used on Time Scale [3]. The new framework of the dynamic equations
on time scale with facilities of the two jump operators with various definitions of
continuity and derivatives make one’s job simple to study the interface problems
with mixed operators along with a singular interface. Recently we have worked on
the linear singular interface problems as seen in [6]–[8],[16]–[17]. Here we discuss
the corresponding nonlinear problem.

The method of lower and upper solutions is one of the commonly used methods
for dealing with the second order initial and boundary value problems. It has its
origin as early as 1893 [15]. Also this method of lower and upper solutions clubbed
with the monotone iterative technique is used in the existence theory for nonlinear
problems. A good introduction covering different aspects for the monotone iterative
methods is given by Lakshmikantham and others in [4].

Lower and upper solutions give bounds for solutions which are improved itera-
tively using monotone iterative process. This method of lower and upper solutions
for separated BVPs on time scales was developed recently by Akin in [1].

In this article we give bounds for an IVP associated with nonlinear singular
interface problems. The singular interface problem is described using a pair of
dynamic equations on a time scale. The method of upper and lower solutions
intertwined with monotone iterative technique is used. The solution is proved to
be bounded between the minimal and maximal solutions.

2. Mathematical Preliminaries

Definitions 2.1-2.4 can be found in [3]. Let T be a time scale(an arbitrary closed
subset of real numbers).

Definition 2.1. For t ∈ T we define the forward jump operator σ : T → T by

σ(t) := inf{s ∈ T : s > t},

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.
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If σ(t) > t, we say that t is right-scattered, while ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are
called isolated. Also, if t < sup T and σ(t) = t, then t is called right-dense, and
if t > inf T and ρ(t) = t, then t is called left-dense. Points that are right-dense
and left-dense at the same time are called dense. Finally, the graininess function
µ : T → [0,∞) is defined by

µ(t) := σ(t)− t

Definition 2.2. Tκ =

{
T− {m} if sup T < ∞
T if sup T = ∞,

where m is the left scattered

maximum.

Definition 2.3. Let f be a function defined on T. We say that f is delta differ-
entiable at t ∈ Tκ provided there exists an α such that for all ε > 0 there is a
neighborhood N around t with

|f(σ(t)− f(s)− α(σ(t)− s)| ≤ ε |σ(t)− s| for all s ∈ N

Definition 2.4.

f∆(t) =

lims→t,s∈T
f(t)−f(s)

t−s if µ(t) = 0
f(σ(t))−f(t)

µ(t) if µ(t) > 0

Remark 2.5. For a function f : T → R we shall talk about the second derivative
f∆∆ provided f∆ is differentiable on Tκ2 = (Tκ)κ with derivative f∆∆ = (f∆)∆ :
Tκ2 → R. Similarly we define the higher order derivatives f∆n : Tκn → R.

Definition 2.6. For any m,n ∈ C(T, R) we define the sector [m,n] as

[m,n] = {w ∈ C(T, R) : m ≤ w ≤ n}

where C(T, R) denotes the space of continuous functions from T to R.

Definition 2.7. Let T1, T2 be two time scales. Let (u1, u2), (v1, v2) ∈ C(T1, R) ×
C(T2, R). By (u1, u2) ≤ (v1, v2) we mean

u1(t) ≤ v1(t) for t ∈ T1

u2(t) ≤ v2(t) for t ∈ T2

3. Definition of the initial-value problem

Let T1 = [0, a]T(a time scale with end points 0 and a), K1 = [σ(a), l]T(a time scale
with end points σ(a) and l), T2 = K1

κ2
where a, σ(a), l < +∞. Let C(Ti × C(Ti))

denote the space of continuous functions whose first argument is on the time scale
Ti and the second argument is the from the space of continuous functions C(Ti), i =
1, 2. Also let (f1, f2) be nonlinear function tuple in C(T1×C(T1))×C(T2×C(T2)). In
this paper we consider the following IVP associated with singular interface problem
(IVP-SIP).

y∆∆
1 (t) = f1(t, y1), t ∈ T1 (3.1)

y∆∆
2 (t) = f2(t, y2), t ∈ T2 (3.2)
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with the initial conditions

y1(0) = 0 (3.3)

y∆
1 (0) = 0 (3.4)

followed by the matching interface conditions

ρ1y1(a) = ρ2y2(σ(a)) (3.5)

ρ3y
∆
1 (a) = ρ4y

∆
2 (σ(a)), ρi > 0, i = 1, 2, 3, 4. (3.6)

4. Monotone Iterative Methods

We now define the Lower and Upper Solutions for the IVP-SIP in accordance
with [2].

Definition 4.1. We call (α01, α02) ∈ C(T1, R)×C(T2, R) a lower solution for (3.1)-
(3.6) if

α∆∆
01 ≥ f1(t, α01(t)), t ∈ T1

α∆∆
02 ≥ f2(t, α02(t)), t ∈ T2

α01(0) = 0

α01
∆(0) = 0

and (α01, α02) satisfies the interface conditions (3.5)-(3.6).

Definition 4.2. We call (β01, β02) ∈ C(T1, R) × C(T2, R) an upper solution for
(3.1)-(3.6) if

β∆∆
01 ≤ f1(t, β01(t)), t ∈ T1

β∆∆
02 ≤ f2(t, β02(t)), t ∈ T2

β01(0) = 0

β01
∆(0) = 0

and (β01, β02) satisfies the interface conditions (3.5)-(3.6).

Definition 4.3. A pair of functions (γ1, γ2) ∈ C(T1, R) × C(T2, R) is called a
minimal solution of IVP-SIP (3.1)-(3.6) if the following hold:

(i) (γ1, γ2) is a solution of (3.1)-(3.6)
(ii) for any other solution (l1, l2) of (3.1)-(3.6) we have

γ1(t) ≤ l1(t) for t ∈ T1,

γ2(t) ≤ l2(t) for t ∈ T2.

Definition 4.4. A pair of functions (k1, k2) ∈ C(T1, R) × C(T2, R) is called a
maximal solution of IVP-SIP (3.1)-(3.6) if

(i) (k1, k2) is a solution of (3.1)-(3.6)
(ii) for any other solution (r1, r2) of (3.1)-(3.6) we have

r1(t) ≤ k1(t) for t ∈ T1,

r2(t) ≤ k2(t) for t ∈ T2.
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We extend the maximum principle in [14] to the present IVP-SIP under consid-
eration. We denote

µ̃1 = sup
t∈T1

µ(t), µ̃2 = sup
t∈T2

µ(t).

Lemma 4.5. Let M > 0 be such that if µ̃1, µ̃2 > 0,

M <
1
µ̃2

1

, M <
1
µ̃2

2

and (x1, x2) ∈ C(T1, R)× C(T2, R) be such that

x1
∆∆(t) ≤ Mx1(t) for t ∈ T1

x2
∆∆(t) ≤ Mx2(t) for t ∈ T2,

(x1, x2) satisfy the initial and interface conditions (3.3)-(3.6). Then

x1(t) ≥ 0 for t ∈ T1

x2(t) ≥ 0 for t ∈ T2.

Proof. Case I: Let t ∈ T1. Let us assume that there exists a point m1 ∈ T1 such
that x1(m1) < 0. Clearly m1 6= 0 as x1(0) = 0.

(i) If m1 is left dense as shown in [14] we obtain the contradiction

0 < x1
∆∆(m1) ≤ Mx1(m1) < 0.

(ii) If m1 is left scattered as shown in [14] we obtain the contradiction

M ≥ 1
µ̃2

1

Hence x1(t) ≥ 0 for t ∈ T1.
Case II: t ∈ T2. As in the previous case, it can be shown that x2(t) ≥ 0 for

t ∈ T2. �

Remark 4.6. From [18] we see that the IVP-SIP is equivalent to the operator
equation

γ(y1, y2) =
( ∫ t1

0

∫ m

0

f1(s, y1)∆s∆m,

∫ t2

σ(a)

∫ m′

σ(a)

f2(s, y2)∆s∆m′

+
∫ t2

σ(a)

ρ3

ρ4

( ∫ a

0

f1(s, y1)∆s
)
∆m′

+
ρ1

ρ2

( ∫ a

0

∫ m′

0

f1(s, y1)∆s∆m′
))

where t1,m ∈ T1 and t2,m
′ ∈ T2.

Definition 4.7. We define

Ty1(t) =
∫ t1

0

∫ m

0

f1(s, y1)∆s∆m, for t ∈ T1

Ty2(t) =
∫ t2

σ(a)

∫ m′

σ(a)

f2(s, y2)∆s∆m′ +
∫ t2

σ(a)

ρ3

ρ4

( ∫ a

0

f1(s, y1)∆s
)
∆m′

+
ρ1

ρ2

( ∫ a

0

∫ m′

0

f1(s, y1)∆s∆m′
)
, for t ∈ T2
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Definition 4.8. Let (u1, u2), (v1, v2) ∈ C(T1, R) × C(T2, R). We call the operator
T to be monotone if (u1, u2) ≤ (v1, v2) implies that

Tu1(t) ≤ Tv1(t) for t ∈ T1

Tu2(t) ≤ Tv2(t) for t ∈ T2

Theorem 4.9. Let (α01, α02), (β01, β02) be lower and upper solutions of IVP-SIP
(3.1)-(3.6). Let us assume that for (u11, u12), (v11, v12) ∈ C(T1, R)× C(T2, R) and

α01(t) < u11(t) < v11(t) < β01(t)

α02(t) < u12(t) < v12(t) < β02(t),

we have

f1(t, v11)− f1(t, u11) ≤ −M(v11 − u11)

f2(t, v12)− f2(t, u12) ≤ −M(v12 − u12).

Then the sequences {αm1, αm2}, {βm1, βm2} ∈ C(T1, R)× C(T2, R) such that

α01 = α11, αn1 = Tαn1−1,

α02 = α12, αn2 = Tαn2−1,

β01 = β11, βn1 = Tβn1−1,

β02 = β12, βn2 = Tβn2−1

converge uniformly to the minimal and maximal solutions of IVP-SIP (3.1)-(3.6)
whenever

α11 ≤ α21, β21 ≤ β11,

α12 ≤ α22, β22 ≤ β12.

Proof. Let (u11, u12), (v11, v12) ∈ C(T1, R)× C(T2, R) be such that

α01(t) < u11(t) < v11(t) < β01(t),

α02(t) < u12(t) < v12(t) < β02(t).

Let us define

u21 = Tu11, u22 = Tu12,

v21 = Tv11, v22 = Tv12.

We now see that

(v21
∆∆ − u21

∆∆)−M(v21 − u21) = f1(t, v11)− f1(t, u11)−M(v21 − u21)

≤ −M(v11 − u11)−M(v21 − u21)

= −M([v11 + v21]− [u11 + u21]) ≤ 0.

(v22
∆∆ − u22

∆∆)−M(v22 − u22) = f1(t, v12)− f1(t, u12)−M(v22 − u22)

≤ −M(v12 − u12)−M(v22 − u22)

= −M([v12 + v22]− [u12 + u22]) ≤ 0.

v21(0)− u21(0) = Tv11(0)− Tu11(0) = 0,

v∆
21(0)− u∆

21(0) = (Tv11)
∆(0)− (Tu11)

∆(0) = 0
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Let us consider

ρ1[v21 − u21](a) = ρ1[v21(a)− u21(a)]

= ρ1[Tv11(a)− Tu11(a)]

= ρ1

[
T

(ρ2

ρ1
v12(σ(a))

)
− T

(ρ2

ρ1
u12(σ(a))

)]
= ρ2[Tv12(σ(a))− Tu12(σ(a))]

= ρ2[v22(σ(a))− u22(σ(a))]

= ρ2[v22 − u22](σ(a))

Also we see that

ρ3[v∆
21(a)− u∆

21(a)] = ρ3[Tv∆
11(a)− Tu∆

11(a)]

= ρ3

[
T

(ρ4

ρ3
v∆
12(σ(a))

)
− T

(ρ4

ρ3
u∆

12(σ(a))
)]

= ρ4[v∆
22(σ(a))− u∆

22(σ(a))]

Hence from the Lemma 4.5 we have

v21 − u21 ≥ 0 implies Tv11 ≥ Tu11,

v22 − u22 ≥ 0 implies Tv12 ≥ Tu12.

Since from our assumption (u11, u12) ≤ (v11, v12) from Definition 4.8 we see that T
is monotone. From the hypothesis we have

α11 ≤ α21, β21 ≤ β11,

α12 ≤ α22, β22 ≤ β12.

Hence we have

(α01, α02) = (α11, α12) ≤ (α21, α22) ≤ . . . ≤ (αn1, αn2)

≤ (βn1, βn2) ≤ . . . (β21, β22) ≤ (β11, β12) = (β01, β02).

So sequences (αn1, αn2) and (αn1, αn2) are bounded and monotone. From [18] we
see that T is completely continuous. This and boundedness of the sequences implies
that there exists some subsequences such that

(αn1k, αn2k) → (γ1, γ2), (βn1k, βn2k) → (k1, k2)

which implies
(αn1, αn2) → (γ1, γ2), (βn1, βn2) → (k1, k2).

Taking limits in the definition of {αn1, αn2}, {βn1, βn2} we see that (γ1, γ2) and
(k1, k2) are solutions of the IVP-SIP (3.1)-(3.6). We are done through the proof if
we can show that (γ1, γ2) and (k1, k2) are the minimal and maximal solutions of
the IVP-SIP respectively. That is we need to show that for any solution of IVP-SIP
(x1, x2) ∈ [α01, β01]× [α02, β02] satisfies

α11(t) ≤ γ1(t) ≤ x1(t) ≤ k1(t) ≤ β11(t) for t ∈ T1,

α12(t) ≤ γ2(t) ≤ x2(t) ≤ k2(t) ≤ β12(t) for t ∈ T2.

We prove by induction that (αn1, αn2) ≤ (x1, x2) ≤ (βn1, βn2).
For n = 0, we have

(α01, α02) ≤ (x1, x2) ≤ (β01, β02).



8 D. K. K. VAMSI, P. K. BARUAH EJDE-2010/109

We assume the result to hold true for n. Hence

(αn1, αn2) ≤ (x1, x2) ≤ (βn1, βn2).

We see that βn1+1(t)−x1(t) and βn2+1(t)−x2(t) satisfy all the conditions of Lemma
4.5. Hence we have

βn1+1(t) ≥ x1(t) for t ∈ T1

βn2+1(t) ≥ x2(t) for t ∈ T2

Similarly it can be shown that

αn1+1(t) ≤ x1(t) for t ∈ T1

αn2+1(t) ≤ x2(t) for t ∈ T2

By induction we have

(αn1, αn2) ≤ (x1, x2) ≤ (βn1, βn2).

So

α01(= α11) ≤ αn1 ≤ x1 ≤ βn1 ≤ β01(= β11),

α02(= α12) ≤ αn2 ≤ x2 ≤ βn2 ≤ β02(= β12)

implies

α11 ≤ lim
n→∞

αn1 ≤ x1 ≤ lim
n→∞

βn1 ≤ β11,

α12 ≤ lim
n→∞

βn2 ≤ x2 ≤ lim
n→∞

βn2 ≤ β12

which implies

α11 ≤ γ1 ≤ x1 ≤ k1 ≤ β11,

α12 ≤ γ2 ≤ x2 ≤ k2 ≤ β12.

�

Remark 4.10. The results presented here are generalization for the nonlinear
problems of corresponding linear problems studied in [9]–[13], [19]–[25]. A pair
of nonlinear ordinary differential equations with matching interface conditions is a
special case of the problem considered here, and our results hold true by considering
ρ(c) = σ(c) = c and the delta derivative becomes the ordinary derivative.
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