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REGULARITY OF GENERALIZED NAVEIR-STOKES
EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

YUWEN LUO

Abstract. In this article, the author studies the regularity of 3D generalized

Navier-Stokes (GNS) equations with fractional dissipative terms (−∆)αu. It

is proved that if div(u/|u|) ∈ Lp(0, T ; Lq(R3)) with

2α

p
+

3

q
≤ 2α−

3

2
,

6

4α− 3
< q ≤ ∞.

then any smooth on GNS in [0, T ) remains smooth on [0, T ].

1. Introduction

We consider the incompressible generalized Navier-Stokes equation (GNS)

ut + u · ∇u + (−∆)αu = −∇p

∇ · u = 0
(1.1)

Where u = u(x, t) denotes the velocity field, p = p(x, t) the scalar pressure and
u0(x) with ∇ · u0 = 0 in the sense of distribution is the initial velocity field. The
fractional power of Laplace operator (−∆)α is defined as in [13]:

̂(−∆)αf(ξ) = |ξ|2αf̂(ξ).

For notational convenience, we write Λ = (−∆)1/2.
When α = 1, (1.1) become the usual Navier-Stokes equations. Up to now,

it is still unknown whether or not there exist global solution for Navier-Stokes
equations even if the initial data is sufficiently smooth. This famous problem lead
to extensively study the regularity of Navier-Stokes equations.

There are plenty of literatures for usual Navier-Stokes equations, we mentioned
some of them. For well-posedness, the readers could refer to Leray[9], Kato[7],
Cannone[3], Giga and Miyakawa[6] and Taylor[14]. For regularity results, one could
refer to Serrin[12], Kozono and Sohr[8], Beale, Kato and Majda[1], Constantin and
Feffernan[5].

For general α, Wu[17] proved that if u0 ∈ L2, then the GNS (1.1) posses a
weak solution u satisfying u ∈ L∞([0, T ];L2)∩L2([0, T ];Hα). Moreover, he showed
that all solutions are global if α ≥ 1/2 + n/4, where n is space dimension. For
α < 1/2+n/4, Wu[18] studied the local well-posedness of (1.1) in Besov spaces. For
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the regularity of GMHD equations, Wu[19] obtained some Serrin’s type criterion.
Latter, Zhou[21], Wu[16] and Luo[10] improved some results of Wu. These results
can also be used for GNS equations for GMHD equations contains GNS equations.

In this short paper, we studied the regularity to GNS equations in terms of the
direction of velocity which is used firstly by Vasseur[15]. He showed that if the
initial value u0 ∈ L2(R3), and div(u/|u|) ∈ Lp(0,∞;Lq(R3)) with

2
p

+
3
q
≤ 1

2
, q ≥ 6, p ≥ 4

then u is smooth on (0,∞) × R3. Latter, Luo[11] extended this result to MHD
equations.

The main result of this paper is as follows.

Theorem 1.1. Let 3
4 < α < 3

2 , u0 ∈ H1(R3), u is a smooth solution of (1) in
[0, T ). If div(u/|u|) ∈ Lp(0, T ;Lq(R3)) with

2α

p
+

3
q
≤ 2α− 3

2
,

6
4α− 3

< q ≤ ∞.

then u remains smooth in [0, T ].

To prove this theorem, we need the following result.

Lemma 1.2. With 0 < α < 2, θ, Λαθ ∈ Lp with p = 2k we obtain∫
|θ|p−2θΛαθdx ≥ 1

p

∫
|Λα

2 θ
p
2 |2dx.

The proof is similar with Córdoba and Córdoba [4], readers can find the details
in Wu[20].

2. Proof of the main result

Multiplying both side of the equations by |u|2u, and integrating by parts, we
obtain

1
4

d

dt
‖u‖4L4 +

∫
R3
|u|2u · (−∆)αudx = 2

∫
R3

p|u|u · ∇|u|dx (2.1)

By Lemma 1.2, the left side satisfies

1
4

d

dt
‖u‖4L4 +

∫
R3
|u|2u · (−∆)αudx ≥ 1

4
d

dt
‖u‖4L4 +

∫
R3
|Λα|u|2|2dx. (2.2)

So we obtain
1
4

d

dt
‖u‖4L4 + ‖Λα|u|2‖2L2dx ≤ 2

∫
R3

p|u|u · ∇|u|dx. (2.3)

Taking the divergence of (1.1), one has

−∆p =
∑
i,j

∂i∂j(ui, uj),

by Calderon-Zygmund inequality, we have

‖p‖Lp ≤ C‖u‖2L2p .
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Then, using Hölder inequality, one obtains∫
R3

p|u|u · ∇|u|dx =
∫

R3
|p||u|2| u

|u|
· ∇|u||dx

≤ ‖p‖Lr‖u‖2L2r‖|u|div(u/|u|)‖Lq1

≤ C‖u‖4L2r‖|u|div(u/|u|)‖Lq1 ,

where 2/r + 1/q1 = 1. Here we used the fact

|u|div(u/|u|) = − u

|u|
· ∇|u|.

By the interpolation inequality and the Sobolev embedding theorem [2], we have

‖u‖L2r ≤ C‖u‖1−θ
L4 ‖u‖θ

L2s

= C‖u‖1−θ
L4 ‖|u|2‖θ/2

Ls

≤ C‖u‖1−θ
L4 ‖Λα|u|2‖θ/2

L2 ,

where
1− θ

4
+

θ

2s
=

1
2r

, s =
6

3− 2α
, (2.4)

2 < r < s, 0 < θ < 1. (2.5)

So we obtain

2
∫

R3
|p||u|2| u

|u|
· ∇|u||dx ≤ C‖u‖4(1−θ)

L4 ‖Λα|u|2‖2θ
L2‖|u|div(u/|u|)‖Lq1

≤ C‖|u|div(u/|u|)‖
1

1−θ

Lq1 ‖u‖4L4 +
1
2
‖Λα|u|2‖2L2 ,

(2.6)

where the last inequality is deduced from Young’s inequality.
Combining (2.1)-(2.6), we have

1
4

d

dt
‖u‖4L4 + ‖Λα|u|2‖2L2dx ≤ C‖|u|div(u/|u|)‖

1
1−θ

Lq1 ‖u‖4L4 +
1
2
‖Λα|u|2‖2L2 .

If |u|div(u/|u|) ∈ Lp1,q1 and 1/(1 − θ) ≤ p1, then by Gronwell’s inequality, we
can claim that the smooth solution in [0, T ) remains smooth in [0, T ]. Now we
search for the conditions which ensure |u|div(u/|u|) ∈ Lp1,q1 and 1/(1− θ) ≤ p1.

Since θ ∈ (0, 1) and r, q1, s, θ satisfy

2
r

+
1
q1

= 1,
1− θ

4
+

θ

2s
=

1
2r

,

2 < r < s, s =
6

3− 2α
,

we obtain
1

1− θ
=

2αq1

2αq1 − 3
.

That is, if
2α

p1
+

3
q1
≤ 2α,

then 1/(1− θ) ≤ p1.
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Let div(u/|u|) ∈ Lp,q. We know u ∈ L∞([0, T ];L2) ∩ L2([0, T ];Hα) and thus
u ∈ La,b with 2α/a + 3/b = 3/2. So we obtain |u|div(u/|u|) ∈ Lp1,q1 with

1
p1

=
1
a

+
1
p
,

1
q1

=
1
b

+
1
q
.

From this relation, we obtain, if 2α/p + 3/q ≤ 2α− 3/2, then
2α

p1
+

3
q1
≤ 2α.

That is, if
2α

p
+

3
q
≤ 2α− 3

2
,

then |u|div(u/|u|) ∈ Lp1,q1 . And the condition 6
4α−3 < q ≤ ∞ ensures the inequal-

ity q1 > 3
2α , which implies

2 < r < s, 0 < θ < 1, s =
6

3− 2α
.

This completes the proof.
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