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BEHAVIOR AT INFINITY OF »-EVANESCENT SOLUTIONS TO
LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

ABSTRACT. In this article we present some necessary and sufficient conditions
for the existence of Y-evanescent solution of the nonhomogeneous linear differ-
ential equation ' = A(t)x + f(t), which is related to the notion of -ordinary
dichotomy for the equation z’ = A(t)z. We associate that with the condi-
tion of ¥-ordinary dichotomy for the homogeneous linear differential equation
' = A(t)z.

1. INTRODUCTION

The existence of ¥-bounded and -stable solutions on R for systems of ordi-
nary differential equations has been studied by many authors; such as Akinyele
[1], Avramescu [2], Boi [4, 5], Constantin [6], Diamandescu [9, 10} [II]. Also, in
[5, @) 10} [IT] the authors prove several sufficient conditions of the )-evanescence at
o0, —oo for the solutions of linear differential equations.

The purpose of this paper is to provide a condition for the existence of - evanes-
cent solution of the equations 2’ = A(t)x + f(¢), which is concerned with the notion
of t-ordinary dichotomy for the equation ' = A(t)x. We shall deal with the ex-
istence of i-evanescent solution of nonhomogeneous equations, which have been
studied in recent works, such as [5] [9] [IT].

Denote by R? the d-dimensional Euclidean space. Elements in this space are
denoted by x = (21, 72,...,24)7 and their norm by ||| = max{|x1], |22], ..., |z4|}.
For real dx d matrices A, we define the norm |A| = sup <1 [|4z||. Let Ry = [0, 00),
R_ = (-00,0], J=R_,J=RjiorJ=R. Let ¢); : J — (0,00),7=1,2,...,d be

continuous functions and let

T/) = diag{%ﬂb, .. 'aqu}-

Definition 1.1. A function f :J — R? is said to be

e -bounded on J if ¥ f is bounded on J.
e -integrable on J if f is measurable and ¢ f is Lebesgue integrable on J.
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In R?, consider the following equations on J.

2 = Aty + f(8), (1.1)

= A(t)x. (1.2)

where A(t) is a continuous d x d matrix function and f(¢) is a continuous function
for t € J.

By a solution of (1.1)), we mean a continuous function satisfying (|1.1]) for almost

t in J. Let Y (¢) be the fundamental matrix of (1.2)) with Y (0) = I, the identity

d x d matrix. A d x d matrix P is said to be a projection matrix if P? = P. If P is
a projection, then so is I; — P. Two projections P, I;— P are called supplementary.

Definition 1.2. Equation (|1.2) is said to have a t-ordinary dichotomy on J if
there exist positive constants K, L and two supplementary projections P;, P, such
that
()Y () PY H(s)yH(s)| < K for s <t;s,t € J, (1.3)
()Y () PY " H(s)yp (s)| < L fort < s;s,t € J. (1.4)

Also we say that (1.2) has a ¢-ordinary dichotomy on J with two supplementary
projections Py, Ps.

Remark 1.3. It is easily verified that if has a v-ordinary dichotomy on R
and on R_ with two supplementary projections P;, P, then has a -ordinary
dichotomy on R with two supplementary projections P;, P». Note that for ¢ = Iy,
we obtain the notion of ordinary dichotomy (see [7, §])

Theorem 1.4 ([4,09]). (a) Equation has at least one -bounded solution on
Ry for every v-integrable function f on Ry if and only if has a -ordinary
dichotomy on R .

(b) Suppose that has a 1-ordinary dichotomy and lim;_,« | ()Y (t)P1| = 0.
Let f be avp-integrable function on Ry.. Then every v-bounded solution x(t) of
on Ry is such that lims—,o || (t)z(t)]| = 0.

2. PRELIMINARIES

Lemma 2.1. Equation (1.2) has a i-ordinary dichotomy on J with two supple-
mentary projections Py, Py if and only if two following conditions are satisfied for
all € € R4:

[0 (@)Y () Pigll < K (s)Y (s)Ell - for s <tss,te ] (2.1)
[0 (@)Y () Pog|l < Llip(s)Y (s)Ell - fort < s;s,t €] (22)

Proof. If has a y-ordinary dichotomy on J then
[ @) PY (s}~ (s)yll < Kyl for s <t;s,ted (2.3)
[p(O)Y (OPY H(s)p (s)yll < Lyl fort < s;s,te (2.4)
for any vector y € R%. Choose y = 1(s)Y (s){, we obtain (2.1)), ([2.2). Conversely,
if 2.1) (2.2) are true, for any vector y € R?, putting & = Y ~!(s)y~1(s)y we get
(2.3), (2.4). This implies that (1.2) has a ¥-ordinary dichotomy on J. The proof is
complete. O

NN



EJDE-2010/102 BEHAVIOR AT INFINITY 3

Remark 2.2. If (1.2) has a ¢-ordinary dichotomy on R with two supplementary
projections Pi, P> then there exist positive constants Kp, Lp such that

W)Y (@) Préll < Kpllgll,  [0@)Y @)¢] = Lell Pl
for all £ € R, all t > 0.

Indeed, let s = 0, we deduce from that ||¢ ()Y (£) P&l < K|p(0)¢] <
Kp|€]| for all t > 0, where Kp = K|9(0)|. Let t = 0, we deduce from that
[P0) P&l < L[g(s)Y (s)]|, for all s > 0. Then [[¢(s)Y (s)¢]| = Lp[|Po€l], for all
s >0, where Lp = [L[yp=1(0)[] 7.

Now, let X; = {u € Ru = z(0),z(t) is a 1-bounded solution of on R, }
and let Xo = {u € Réu = x(0),z(t) is a solution of on Ry such that
P(t)x(t) — 0, as t — oo }.

Lemma 2.3. If (1.2) has a v-ordinary dichotomy on Ry and Q1,Q2 are two
supplementary projections, then (1.2)) has a v-ordinary dichotomy on Ry with two
supplementary projections Q1, Q2 if and only if

Xo C QiR € X3 (2.5)

Proof. The “only if” part. Suppose that (1.2)) has a ¢-dichotomy with two supple-
mentary projections Q1, Q2, we show that (2.5)) holds. First, we prove Q;R? C X;.

For any u € Q1R?, there exists v € R? such that u = Qiv. Let y(t) be a solution
of (1.2) such that y(0) = u. It follows from Remark [2.2] that

[o@y @) = [P @Y (@ull = [P (#)Quol| < Kqllvl| for ¢ >0,

where K¢ is a positive constant. This implies that v € X;. Hence Q1R? C X;. We
prove Xo C Q1R?. For u € Xy, let x(t) be a solutions of such that z(0) = u.
It implies that

[(®)x(t)]| — 0, as t — oo (2.6)

From Remark 2.2 we have
[L@z@®)| = lv@O)Y #)ull = LollQ2ull,  fort >0 (2.7)

where L is a positive constant. The relations and imply Qou = 0, then
u € QR?. Thus holds.

We prove the “if” part. Suppose that has a -ordinary dichotomy on
R, with two supplementary projections P;, Ps. Let Q1, Q2 be two supplementary
projections such that holds. We will prove that has a t-ordinary di-
chotomy on R} with two supplementary projections Q1,Qs. Let @1,@2 be two
supplementary projections such that @ﬂRd = Xy. Applying to P, P, we get
@1Rd = Xo C PIR? C X;. The set X}, = (P, — @1)Rd is a subset of P;R?, supple-
mentary to Xo. We will show that there exists a positive constant number N such
that

()Y (t)ul| = Nlul, forallue X|, t=>0 (2.8)
In fact, otherwise there exists a sequence of unit vectors {v,} C X{,n =1,2,... and
a sequence of numbers ¢, > 0 such that ||¢(¢,)Y (¢tn)vn] — 0. By the compactness
of the unit sphere in X{j, we may assume that v, — v € X{j as n — oo, where v is
a unit vector. By Remark [2.2(and (v — v,,) € X} C PiR?, we obtain

[0(t)Y (t) (0 = )| = [10(E)Y (£ Pu(v = va)|| < Kpllo — vy
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Letting n — oo, we obtain ||[¢(t,)Y (t,)(v — v,)|| — 0. Then ||¢(t,)Y (£.)va| +
I ()Y (tn)(v — vp)|| — 0 as t, — oco. Then ||¢(t,)Y (t,)v]| — 0 as t, — oc.
Hence v € Xy. On the other hand, v € X{;, we have v = 0, which is a contradiction
to the unit of v. Thus holds.

From and we obtain
N[(Pr = Qu)ull < ()Y (£)(Pr — Q1)u

()Y () Prull + ()Y (£)Quul| (2.9)

K|[[¢(s)Y (s)ull + [ (£)Y (£)Quu]

for u € R4, 0 < s <t Let t — oo, we get [|[1h(t)Y (£)Qrul| — 0. From (2.9), we
have

<
<
<

NII(Py = Qu)ul| < ()Y (s)ul| for s >0 (2.10)
From Remark and , we have
[ ()Y (£)(Pr = Qu)ull < Kpl|(Py = Qu)ull < KpN ! |l(s)Y (s)ul|  for t,5 >0

(2.11)
Consequently,
9 ()Y (OQuull < [$®)Y (8) Prull + [[¥(£)Y (£)(Pr — Qu)ull (2.12)
< (K + KpN Y |(s)Y (s)ul| for 0< s <t '
From @2 =P+ P — @1 and , we obtain
[9OY (O@ull < [OY (O Paull + [9(0Y (0)(Ps - Gu)ul o1

<(L+KpNY|w(s)Y(s)ul|| for 0<t<s

From éle = )gvo C @1Rd - Xl, we obtain Qgéle C QQQle = 0 then Ql@l =
(la — Q2)Q1 = Q1. Thus

Q1Q2=Q1(Is— Q1) = Q1 — Q1 (2.14)
By the definition of X1, there exists N’ > 0 such that
@)Y (@l < N'lull, for ¢ > 0 (2.15)

It follows from Lemma (2.12), (2.13) that (2.2]) has a i-ordinary dichotomy on
R, with two supplementary projections @1, Q2. By Remark we have

[ (s)Y (s)u]| = LallQaull for s > 0.
Combining this inequality, (2.14]) and (2.15) we obtain

[POY (£)(Q1 — Qu)ull < N'[(Q1 — Q1)ul|
< N Q1Qaull < N'|Q1]/|Qaul (2.16)
< Ko|[¢(s)Y (s)ul|, fort,s>0

where K is a positive constant. From (2.12), (2.16)), we have

(@)Y ()Quull < @)Y ()Quull + @)Y ()(@Q1 — Q1)ul|

2.17
<(K+KpN '+ Ko)|[9p(s)Y (s)ull, for0<s<t (2.17)
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From Q2 = Q2 + Q1 — Q1, ([213) and (2.16), we obtain
[0(O)Y (£)Qaull < [P(#)Y () Q2ull + Y)Y (£)(Q1 — Qu)ul|
< (L+ KpN™' 4+ Ko)|[w(s)Y (s)ul|, for0<t<s
Lemma and (2.17), (2.18) follow that (1.2)) has a ¢-ordinary dichotomy on R
with two supplementary projections @1, Q2. The proof is complete. O
Let X; = {u € R%u = z(0), z(t) is a 1-bounded solution of (.2) on R_ }, and

let Xo = {u € R¥u = 2(0), z(t) is a solution of (.2) on R_ such that ¢ (t)z(t) — 0,
as t — —oo }. From Theorem and Lemma we obtain the following results
on half-line R_.

Lemma 2.4. (a) Equation (L.1) has at least one p-bounded solution on R_ for
every -integrable function f on R_ if and only if (1.2) has a ¥-ordinary dichotomy
on R_.

(b) If (1.2) has avp-ordinary dichotomy on R_ and Q1, Q2 are two supplementary
projections, then (1.2) has a ¥-ordinary dichotomy on R_ with two supplementary

projections Q1, Qs if and only if
5(:0 C éng C )?1 (219)
Proof. The proof of this Lemma is similar to that of Theorem and Lemma [2.3

with the corresponding replacement (¢t > s > 0 with 0 > s > t, P with —P, P»
with — Py, oo with —oo, —oo with oo .. .). O

(2.18)

Definition 2.5. A function z(t) is said to be

e -evanescent at oo if limy_, o ||t (¢)z(t)]] = 0.
e 1-evanescent at —oo if limy_._ o || (¢)z(¢)|| = O.
e y-evanescent at +oo if lim; 4o |9 (¢)z(t)| = 0.

Note that for ¢ = I;, we obtain the notion of evanescent solution of (1.1 at +o0
(see [3])

Lemma 2.6. If has at least one solution on R, 1-evanescent at oo for every
Y-integrable function f on R then every solution of is the sum of two solution
of , one of which is Y-bounded on R_, and the other is defined on Ry, -
evanescent at 0o.

Proof. Set
0 for [t| > 1
h(t)=141 fort =0
linear for ¢ € [-1,0], t € [0,1]
Fix a solution z(t) of (L.2). Then h(t)z(t) is a t-integrable function on R. Set
y(t) = z(t) fot h(s)ds , we have

y'(t) = A(t)z(t) /0 h(s)ds + h(t)x(t) = A(t)y(t) + h(t)x(t).
By hypothesis, the equation

y'(t) = A()y(t) + h(t)z(t)
has a solution §(t) on R, y-evanescent at co. Set z1(t) = y(t) — y(t) + 2(t) and

2o(t) = —g(t) + y(t) + Sa(t). 1t follows from [° h(t)dt = [} h(t)dt = L that
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z1(t) = g(t) for t > 1; zo(t) = —y(¢) for t < —1. Then x5 is the solution of (L.2)),
1-bounded on R_, x; is the solution of on Ry, Y-evanescent at oo. The
solution z(t) is the sum of two solutions z1(t) and z2(t) of (1.2), these solutions
satisfy the conditions of Lemma. The proof is complete. O

3. THE MAIN RESULTS

Theorem 3.1. Suppose that f is a ¥-integrable function on Ry. Then (1.1) has at
least one solution on Ry, -evanescent at oo if and only if (1.2) has a v¥-ordinary
dichotomy on R .

Proof. First, we prove the “if” part. By Lemma we can consider (1.2) has a
w-ordinary dichotomy on R, with two supplementary projections P;, P> such that
PRY = X,. Let

t):/OtY(t)PlY ds—/ Y (£)PyY 1 (s)f(s)ds.

It is easy to see that g(x) is a solution of (L.I) on R;. We shall prove that g(z)
is 1p-evanescent at co on Ry. Since f is 1)-integrable on R, it follows that for a
given £ > 0, there exists T > 0 such that

cK+m[fwwﬁﬂ@m5<dz

By PiR? = X, there exists t; > T such that, for t > ¢,

P1|/ [V =1(s)£(s)||ds < /2.

Then for ¢ > t1, we have
[ ()g(t)] < /OT [W(@OY (O PLLIY ()£ (s)llds
+ /Tt [W(O)Y () PrY ()Y (s)] ][4 (s) f(s)llds
+/OO [W(OY (O PY ()07 (s)] 1w (s) £ (5)l1ds

zm/|w wsuK+mﬁfM@ﬁ@ws
<e/24¢e/2=¢

This shows that g(z) is ¥-evanescent at co. The “only if” part evidently holds, by
Theorem [1.4f(a). O

Similarly, we have the following Theorem.

Theorem 3.2. Suppose that f is a -integrable function on R_. Then (1.1)) has at
least one solution on R_, -evanescent at —oo if and only if (1.2)) has a v-ordinary
dichotomy on R_.

Theorem 3.3. Suppose that (1.2) has a ¥-ordinary dichotomy on Ry and f is a
W-integrable function on Ry. Then following statements are equivalent

(a) every i-bounded solution of (L.2)) on Ry is ¢- evanescent at co.
L1}

(b) every v-bounded solution of (1.1) on Ry is 1-evanescent at co.
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Proof. By Lemma we consider has a t-ordinary dichotomy on R, with
two supplementary projections P;, P, such that PR? = X,. Let S; be the set
of all ¥-bounded solutions of on R, and let Sy be the set of all ¥-bounded
solutions of on R,. We establish a mapping i from S5 to Si:

(ha)(t) = (t) + (1),
where g(t) as in the proof of Theorem We obtain

Jim (1) () (1) — w(0)(0)] = Jim [ (0)g(0)] = 0

Thus h(z) is ¥-bounded on R;. Hence h(z) belongs to S;. It is easily to verify
that h is one-to-one mapping between S, and S;.

Suppose that statement (a) is satisfied. Let z be arbitrary i-bounded solution of
on R,. The foregoing follow that there exists ¥-bounded solution = of
on R} such that h(z) = z and

Jim [(1)z() — w(0)x(t)] = 0

By hypothesis, = is 1-evanescent at co. Thus z is 1¥-evanescent at co. Suppose that
statement (b) is satisfied, the proof is similarly. The proof is complete. O

Note that the above Theorem is a supplement to Theorem b). Similarly, we
have the following Theorem.

Theorem 3.4. Suppose that (1.2) has a ¥-ordinary dichotomy on R_ and f is a
y-integrable function on R_. Then following statements are equivalent

(a) every i-bounded solution of (L.2) on R_ is 1- evanescent at —
L1}

(b) every v-bounded solution of (1.1)) on R_ is 1p-evanescent at —

Corollary 3.5. Suppose that (1.2) has a -ordinary dichotomy on R and f is a
W-integrable function on R. Then following statements are equivalent

(a) every i-bounded solution of (1.2) on Ry is 1- evanescent at co and every
-bounded solution of (1.2]) on R_ is - evanescent at —
(b) every y-bounded solution of (1.1)) on R is 1p-evanescent at +oo.

Note that the above corollary is a supplement to [I1, Theorem 3.3].

Theorem 3.6. Suppose that (1.2) has no non-trivial solution on R, 1)-evanescent
at oo. Then (1.1)) has a unique solution on R, 1-evanescent at oo for every -
integrable function f on R if and only if (L.2)) has a ¥-ordinary dichotomy on R.

Proof. First, we prove the “if” part. By Lemma we can consider (|1.2)) has a
1-ordinary dichotomy on R, with two supplementary projections P, P» such that
PR? = X,. Let

/ Y)Y ds—/ Y () PY ! (5)£(s)

Then the function z(t) is a ¥-bounded solution of (L)) on R. We shall prove that
x(t) is 1-evanescent at co. We have, for t > 0,
0

B(t)e(t) = B(1)Y (1) P, / PLY 1 (s)f(s)ds + (t)g(t),

— 00

where g(t) as in the proof of Theorem Since

1PLY = () f(s)Il < [YTHO) [~ (0)[(0)Y (0)PLY ~H (s)w ™ (s) - [eo(s) f (s)l
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and f is -integrable on R, we have that P;Y ~!(s)f(s) is integrable on R_. Let
a= fi)oc PiY~1(s)f(s)ds. Tt follows from PiR? = X that

T [6()Y (8)Pral] = 0.
On the other hand, as in the proof of Theorem we have
T 1609 = 0.

Consequently z(t) is defined on R, t-evanescent at oo. The uniqueness of solution
z(t) result from has no non-trivial on R, 1-evanescent solution at co. Indeed,
suppose that y is a solution on R of , 1p-evanescent at oo then x —y is a solution
solution on R of (|1.2]), ¥-evanescent at co. We conclude z = y since & — y is the
trivial solution of (L.2)).

Now, we prove the “only if” part. Suppose that has a unique ¥-bounded
solution on R for every 1- integrable function f on R. For each u € R?, denote
by z = z(t) the solution of , z(0) = u. By Lemma we get © = 1 + x9,
where x5 is a -bounded solution of on R_, x; is a solutions of on
R, and t-evanescent at co. Thus z1(0) € X, and 22(0) € X;. It follows from
u = x1(0) + 22(0) that

RY = X, + X;. (3.1)
For any v € XoN X, , denote by z(t) the solution of such that z(0) = v. Thus
z(t) is a solution on R of , 1p-evanescent at co. By hypothesis, has no
non-trivial solution on R, ¥-evanescent at oo, then z(t) is the trivial solution. This
implies v = 0. Consequently B
XoNnX;=0 (3.2)
The relations and imply that R? is the direct sum of X, and X 1. Every
1-integrable function f on R, , or on R_ is the restriction of a i-integrable function
fonR, it follows that satisfies Theorem[I.4{a) and Lemmal[2.4{a). Hence
has a t-ordinary dichotomy on Ry and has a t-ordinary dichotomy on R_. Let
P1, P, be two projections such that Im P, = Xy, Im P, = )}1. Lemmas and
(b) follow that has a ¥-ordinary dichotomy on R, and has a t-ordinary
dichotomy on R_ with two supplementary projections P;, P». Remark follows
that has a -ordinary dichotomy on R with two supplementary projections
Py, P,. The proof is complete. O

Similarly, we have the following Theorem.

Theorem 3.7. Suppose that (1.2]) has no non-trivial solution on R, 1-evanescent
at —oco. Then (L.1) has a unique solution on R, -evanescent at —oo for every
Y-integrable function f on R if and only if (1.2)) has a W¥-ordinary dichotomy on R.

Now, consider the equations
a'(t) = [A(t) + B(t)]x(t), (3.3)
a'(t) = [A(t) + B(t)|=(t) + f(t) (3.4)

where B(t) is a d X d continuous matrix function on Ry and f is a t-integrable
function on R;. We have the following result.

Theorem 3.8. Suppose that (1.2) has a v-ordinary dichotomy on Ry. If § =
supyso [V(t)B(t)Y 1 (t)| is sufficiently small, then following statements are equiva-
lent
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(a) every 1-bounded solution of (3.3) on R is - evanescent at +oco.
(b) every ¥-bounded solution of (3.4) on Ry is -evanescent at +00.

Proof. By [4, Theorem 3.7], equation (3.3]) has a ¥-ordinary dichotomy on R, . By
Theorem we have the conclusion. O

With similar proof, we can conclude that J = R_.

Theorem 3.9. Suppose that (1.2) has a ¥-ordinary dichotomy on R_ and § =
sup<q [W(#)B)Y 1 (t)| is sufficiently small. Then the following statements are
equivalent

(a) every 1-bounded solution of (3.3) on R_ is - evanescent at —co.

(b) every ¥-bounded solution of (3.4) on R_ is v-evanescent at —oo.
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